JPH0317271A - Cvd apparatus and film formation using same - Google Patents

Cvd apparatus and film formation using same

Info

Publication number
JPH0317271A
JPH0317271A JP1356789A JP1356789A JPH0317271A JP H0317271 A JPH0317271 A JP H0317271A JP 1356789 A JP1356789 A JP 1356789A JP 1356789 A JP1356789 A JP 1356789A JP H0317271 A JPH0317271 A JP H0317271A
Authority
JP
Japan
Prior art keywords
raw material
liquid raw
film
vaporization chamber
cvd apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1356789A
Other languages
Japanese (ja)
Other versions
JP2795868B2 (en
Inventor
Tsukasa Kobayashi
司 小林
Atsushi Sekiguchi
敦 関口
Shinji Takagi
信二 高城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anelva Corp filed Critical Anelva Corp
Priority to JP1013567A priority Critical patent/JP2795868B2/en
Publication of JPH0317271A publication Critical patent/JPH0317271A/en
Application granted granted Critical
Publication of JP2795868B2 publication Critical patent/JP2795868B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prevent deterioration in raw material and to obtain a good-quality film by providing a mechanism for transferring a liquid raw material by a fixed quantity from a storage chamber to a vaporization chamber, transferring small amounts of raw material necessary for a single film-forming stage each time a film is formed, and carrying out film formation by means of a vaporized gas. CONSTITUTION:This CVD apparatus has a reaction chamber 15, an evacuation system, and a gas-introducing system, and a liquid raw material 4 is used in a gasified state. The above gas-introducing system consists of a liquid raw material storage chamber 3, a liquid raw material vaporization chamber 6, and a mechanism for transferring the liquid by a fixed quantity, and small amounts of liquid raw material necessary for a single film-forming stage are transferred to the above vaporization chamber 6 each time a film is formed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は原料として液体を用いるCVD装置とその戒膜
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a CVD apparatus using a liquid as a raw material and a method for coating the same.

(従来の技術) 半導体技術の進展にともない、LSIの微細化・高集積
化が進んでいる。この内で、特にICメタライゼーショ
ン技術においては従来スバック法によるAffi或膜が
行なわれている。この/lはSiを用いた半導体プロセ
スには配線材として欠くことのできないものである。し
かし、最近、LSIの高集積化が進み、コンタクトホー
ルやスルーホールといった穴にカバレージ性良く或膜す
ること、またこれらの穴を埋め込み、平坦化することが
求められている。現在用いられているスバッタ法ではサ
ブミクロンサイズの穴に対して上記の要求を満足するこ
とは不可能である。この要求に応える方法としてバイア
ススパッタ法、選択W−CVD法、Al−CVD法が考
えられる。
(Prior Art) As semiconductor technology advances, LSIs are becoming smaller and more highly integrated. Among these, particularly in IC metallization technology, Affi film is conventionally performed by the Subac method. This /l is indispensable as a wiring material in a semiconductor process using Si. However, recently, as LSIs have become more highly integrated, it has become necessary to coat holes such as contact holes and through holes with a film with good coverage, and to fill and planarize these holes. The currently used sputtering method cannot satisfy the above requirements for submicron-sized holes. Bias sputtering, selective W-CVD, and Al-CVD can be considered as methods to meet this demand.

バイアススパッタ法は、戒膜した/lの膜質に問題があ
り、更に、LSIの微細化が進行し、0.5μmサイズ
のコンタクト・スルーホールを処理する場合に限界があ
るものと思われる。
The bias sputtering method has a problem with the film quality of /l, and furthermore, with the progress of miniaturization of LSI, it seems that there is a limit when processing contacts and through holes of 0.5 μm size.

選択W−CVD法も、更に高集積化が進み、より高速の
LSIが求められる場合、WはAlに比べ約3倍の抵抗
率(約10μΩ・Cll)を示すため、高速化の点で問
題が生じると思われる。また、選択W− C V Dは
穴埋めにしか用いることができず、平坦部の配線は従来
の/lで行うが、WとAffiの接続部での抵抗の増大
も問題となる。
The selective W-CVD method also poses a problem in terms of speeding up as higher integration progresses and higher speed LSIs are required, as W has a resistivity approximately three times that of Al (approximately 10 μΩ・Cll). seems to occur. In addition, the selection W-CVD can only be used to fill holes, and the wiring in the flat area is performed using the conventional /l, but an increase in resistance at the connection between W and Affi also poses a problem.

一方、/l−CVD法は、現状では膜の平坦性があまり
良くないといった欠点はあるものの、16MビットDR
AM以後の時代においては非常に重要な技術となること
が予想される。
On the other hand, although the /l-CVD method currently has the drawback that the film flatness is not very good,
It is expected that this technology will become extremely important in the post-AM era.

ところで、AN−CVD用の原料ガスとしては種々のも
のが考えられるが、ICプロセスに適したものとしては
次の様な特性が要求される。まずAftc膜反応がより
低温で行なわれること、また、不純物の膜中ヘの混入が
小さいこと、更に安価であること、安定で戊膜条件の制
御がしやすいこと、無害であること等である。現在のと
ころ、これらをすべて満足する原料は見つかっていない
。現在最も広く使用されているのはAI!.の有機化合
物であり、それらはトリメチルアルジニウム、トリエチ
ルアルミニウム、トリイソブチルアルミニウム、ジメチ
ルアルミニウムハイドライト、ジ・イソブチルアルミニ
ウムハイドライドといった化合物である。その中でもト
リイソブチルアルミニウム(以下TIBAと略す)はA
Nの分解温度が約250゜Cと低温であること、膜中ヘ
の不純物、特にカーボンの混入が少ないこと等の点で非
常に優れている。しかし、欠点として常温では液体であ
ること、蒸気圧が室温でQ. l Torrと低いこと
、約50゛C以上に加熱した場合には蒸気圧が1 0 
−’Torrと更に低いジイソブチルアルミニウムハイ
ドライドに分解すること等が挙げられる。
Incidentally, various raw material gases are conceivable for AN-CVD, but those suitable for the IC process are required to have the following characteristics. First, the AftC film reaction is carried out at a lower temperature, the amount of impurities that enter the film is small, it is inexpensive, it is stable, the film forming conditions are easy to control, and it is harmless. . At present, a raw material that satisfies all of these requirements has not been found. AI is currently the most widely used technology! .. These are organic compounds such as trimethylaldinium, triethylaluminum, triisobutylaluminum, dimethylaluminum hydrite, and diisobutylaluminum hydride. Among them, triisobutylaluminum (hereinafter abbreviated as TIBA) is A
It is very superior in that the decomposition temperature of N is as low as about 250°C, and there is little impurity, especially carbon, in the film. However, the drawback is that it is a liquid at room temperature, and its vapor pressure is Q. The vapor pressure is as low as 1 Torr, and when heated above about 50°C, the vapor pressure is 10
-'Torr and even lower diisobutylaluminum hydride.

従来のTIBAを用いるCVD装置の一例を第4図に示
す。原料容器6に保管されたTTBA4は、容器外周に
設置されたヒーター23で加熱されて約50゜Cに保た
れる。不活仕ガス導入口IOよりArガスを導入しTI
BAをパブリングしてガス化し、反応室15内に導く。
An example of a conventional CVD apparatus using TIBA is shown in FIG. The TTBA 4 stored in the raw material container 6 is heated by a heater 23 installed around the outer periphery of the container and maintained at about 50°C. Introduce Ar gas from the inactive gas inlet IO and TI
BA is bubbled and gasified, and then introduced into the reaction chamber 15.

反応室l5内では、約400゜Cに保たれた基板16上
に或膜がなされる前に、これらのガスは、約230゜C
に加熱されたガス分配板l7を通りその際に予備加熱さ
れる。この方法および装置についてはその有効性が本発
明人らによってすでに明らかにされている。
In reaction chamber 15, these gases are heated to about 230°C before a film is deposited on substrate 16, which is maintained at about 400°C.
The gas passes through the heated gas distribution plate l7 and is preheated at that time. The effectiveness of this method and device has already been demonstrated by the inventors.

(特關昭62−172374号及び特願昭63−224
63号参照) なお、TIBAの約50″Cの加熱は、蒸気圧の低いT
IBAを反応室15に有効に供給し(50゜CではTI
BAの蒸気圧が〜l Torrに上昇する)、基仮16
上に良膜の膜を得るためには不可欠の要因である。
(Tokukan Sho 62-172374 and Patent Application Sho 63-224
(Refer to No. 63) Note that the heating of TIBA at approximately 50"C is due to the low vapor pressure of T.
IBA is effectively supplied to the reaction chamber 15 (at 50°C, TI
BA vapor pressure rises to ~l Torr), basis 16
This is an essential factor to obtain a good film on the top.

(発明が解決しようとする問題点) しかしながら上記第4図の装置には特に原料容器および
その供給部に次の欠点があった。すなわち、大量のTI
BAを原料容器6内に保管し、それ全体を約50゜Cに
加熱するため、長期にわたって或膜をくり返し行うにつ
れて、TIBAが蒸気圧の低いジイソブチルアルくニウ
ムハイドライドに徐々に分解して行くため、戒膜条件を
一定に設定しても、原料供給量及び生成膜のllK質に
経時変化が観測される。一例として第5図に、上記装置
にTIBAを用いた成膜における生戊膜の膜質、特にそ
の結晶配向性の経時変化の様子を示す。基板としてSt
  (111)を用いた場合にAffi (l11)の
エビタキシャル膜が作戒可能であることは、すでに本発
明人らの特願昭63−71160号及び特願昭6318
9177号に示されているところであるが、成膜をくり
返すにつれてその配向性が(111)から(110)に
変化する。
(Problems to be Solved by the Invention) However, the apparatus shown in FIG. 4 has the following drawbacks, particularly in the raw material container and its supply section. That is, a large amount of TI
Since BA is stored in the raw material container 6 and the entire container is heated to about 50°C, as a certain film is repeatedly applied over a long period of time, TIBA gradually decomposes into diisobutylaluminum hydride, which has a low vapor pressure. Even if the film conditions are set constant, changes over time are observed in the raw material supply amount and the IK quality of the produced film. As an example, FIG. 5 shows how the quality of the raw film, especially the crystal orientation, changes over time in film formation using TIBA in the above-mentioned apparatus. St as a substrate
The fact that the epitaxial film of Affi (l11) can be controlled when using (111) has already been demonstrated in Japanese Patent Application No. 63-71160 and Japanese Patent Application No. 6318 of the present inventors.
As shown in No. 9177, the orientation changes from (111) to (110) as the film formation is repeated.

また生成膜の表面平滑の度合を示す反射率も、波長50
0nII1の光に対し90%以上であったのが60%以
下に減少してしまった。
In addition, the reflectance, which indicates the degree of surface smoothness of the produced film, also has a wavelength of 50.
For light of 0nII1, it was 90% or more, but it has decreased to 60% or less.

以上述べたように、TIBAを用いた/l−CVDは生
成膜の膜質等の点では非常に優れているが、TIBAと
いう材料自体の問題として加熱によりジイソブチルアル
ミニウムハイドライドに徐々に分解し劣化するため、従
来の装置では長時間安定して良質の膜を作或することに
困難があった。
As mentioned above, /l-CVD using TIBA is very superior in terms of the quality of the produced film, but the problem with the TIBA material itself is that it gradually decomposes into diisobutylaluminum hydride and deteriorates when heated. However, with conventional equipment, it has been difficult to produce a high-quality film stably for a long period of time.

(発明の目的) 本発明は、液体原料の加熱による劣化を防止し、長期に
亘り安定して再現性良く良質の薄膜を形威することので
きるCVD装置およびそのe.Ft方法を提供すること
を目的とする。
(Object of the Invention) The present invention provides a CVD apparatus that can prevent deterioration of liquid raw materials due to heating and form high-quality thin films with good reproducibility over a long period of time, and an e.g. The purpose is to provide a Ft method.

(問題点を解決するための手段) 本発明においては、上記目的を達或するために、ガス導
入系に、液体原料保管室、液体原料気化室、及び保管室
から気化室へ液体を定量移送する機構を設け、一回の成
膜工程に必要な尿少量の原料をその戒膜の都度、保管室
から気化室へ移送するように構威される。なお、その気
化室内には気化を助長するために、多孔質金属体を配置
し、原料液体を多孔質金属体の中心部より吐出しその多
孔質部に含浸させる機構と輸送用の不活性ガスを多孔質
金属体の中心より噴出する機構と、気化室の全体を一定
温度に加熱する機構とを設けるよう構戒し、または、気
化を助長する手段として気化室に超音波発振装置を設け
るよう構威して、その効果を上げることができる。
(Means for Solving the Problems) In order to achieve the above object, the present invention includes a gas introduction system including a liquid raw material storage chamber, a liquid raw material vaporization chamber, and a quantitative transfer of liquid from the storage chamber to the vaporization chamber. A mechanism is provided to transfer a small amount of raw material required for one film forming process from the storage chamber to the vaporization chamber each time the film is formed. In addition, in order to promote vaporization, a porous metal body is arranged inside the vaporization chamber, and a mechanism for discharging the raw material liquid from the center of the porous metal body and impregnating the porous part, and an inert gas for transportation are installed. A mechanism for ejecting the gas from the center of the porous metal body and a mechanism for heating the entire vaporization chamber to a constant temperature, or an ultrasonic oscillator in the vaporization chamber as a means of promoting vaporization. You can use it to increase its effectiveness.

(作 用) この構戒によれば、原料保管室の温度を低く保ち、一回
の成膜工程に必要な最少量の原料のみをその都度気化室
に導入し、気化したガスで戒膜を行うことで、前述の原
料の劣化現象は生しなくなる。この際、少量の原料のみ
では従来の方法では気化が困難になるおそれがある。そ
れは原料の表面積が減少したためであり、気化を助長す
るためには液体原料の表面積を大きくするなどの必要が
ある。このために多孔質金属体を気化室に設置しこれに
液体原料を含浸させて表面積を大きくした後に、輸送用
不活性ガスを多孔質金属体内に通過させて少量の原料で
も容易にその全部を速やかに気体させることが可能とな
る。あるいは、気化を助長させる手段として超音波によ
る振動を液体原料に印加して原料分子に動揺を与え飛沫
を生じさせる処置をとる。
(Function) According to this precept, the temperature of the raw material storage chamber is kept low, only the minimum amount of raw material necessary for one film formation process is introduced into the vaporization chamber each time, and the vaporized gas is used to form the film. By doing so, the above-mentioned deterioration phenomenon of raw materials will not occur. At this time, if only a small amount of the raw material is used, it may be difficult to vaporize it using the conventional method. This is because the surface area of the raw material has decreased, and in order to promote vaporization, it is necessary to increase the surface area of the liquid raw material. For this purpose, a porous metal body is placed in a vaporization chamber, impregnated with liquid raw material to increase its surface area, and then an inert gas for transportation is passed through the porous metal body to easily remove all of the raw material, even if it is a small amount. It becomes possible to gasify quickly. Alternatively, as a means to promote vaporization, ultrasonic vibrations are applied to the liquid raw material to agitate the raw material molecules and generate droplets.

(実施例) 第1図は本発明のCVD装置の実施例の概要を示す図で
ある。Arガスボンベ1内の高圧Arガスは、圧力調整
器2により大気圧に減圧されて、バルブを介し液体原料
(TIBA)保管室3の上部に接続される。原料保管室
3内にはTIBA4が充たされており、それは保管室底
部に達するまで挿入されたディプ・チューブ5を介して
原料気化室6側へ移送可能となっている。液体原料保管
室3と原料気化室6との間にはバルブ7とバルブ8が設
けられ、その中間の位置に輸送用Arガス導入口10か
らの配管がハルブ9を介して接続されている。ディブ・
チューブ5、バルブ7、バルブ8からの移送用配管には
、原料気化室6内に入った後、その先端が多孔質金属体
工1の内部に接続される。この接続部の詳細を第2図に
示す。移送用配管13の先端は多孔質金属体11の中心
部まで達し、両者が接触する部分の移送用配管l2には
多数の側孔l3が設けられている。多孔質金属体l1は
、例えば径が0.1M程度の繊維状のステンレスのm線
を束ねて構戒される。連続気泡を有する金属粉焼結体で
もよい。原料気化室6の全体はその周辺部に設置したヒ
ーター23により均一に一定温度に加熱される。原料気
化室の出口はバルブl4を介して反応室15に接続され
る。反応室内の各部の構戒は従来通りである。
(Embodiment) FIG. 1 is a diagram showing an outline of an embodiment of a CVD apparatus of the present invention. The high pressure Ar gas in the Ar gas cylinder 1 is reduced to atmospheric pressure by a pressure regulator 2 and connected to the upper part of a liquid raw material (TIBA) storage chamber 3 via a valve. The raw material storage chamber 3 is filled with TIBA 4, which can be transferred to the raw material vaporization chamber 6 via a dip tube 5 inserted until it reaches the bottom of the storage chamber. A valve 7 and a valve 8 are provided between the liquid raw material storage chamber 3 and the raw material vaporization chamber 6, and a pipe from a transportation Ar gas inlet 10 is connected via a hull 9 to an intermediate position between the valves 7 and 8. Dib・
The transfer pipes from the tube 5, valve 7, and valve 8 enter the raw material vaporization chamber 6, and then their tips are connected to the inside of the porous metal body 1. The details of this connection are shown in FIG. The tip of the transfer pipe 13 reaches the center of the porous metal body 11, and a large number of side holes 13 are provided in the transfer pipe 12 at the portion where the two come into contact. The porous metal body l1 is made by bundling fibrous stainless steel m-wires having a diameter of about 0.1M, for example. A metal powder sintered body having open cells may also be used. The entire raw material vaporization chamber 6 is uniformly heated to a constant temperature by a heater 23 installed around the periphery thereof. The outlet of the raw material vaporization chamber is connected to the reaction chamber 15 via a valve l4. The structure of each part inside the reaction chamber is the same as before.

この装置を用いて成膜を行う手順を説明すると、マスバ
ルブ7、バルブ9を閉じ、バルブ8、ハルブl4を開き
、反応室l5、原料気化室6、及び移送用配管l2を真
空排気する。この際に原料気化室6はヒーター23で十
分加熱して残留ガスを極力減少させておく。真空排気後
の原料気化室は約70゜Cに保っておく。この後、バル
ブ8、バルブI4を閉じ、基板l6を設置し反応室内を
高真空に排気する。基板ホルダー18とガス分配板17
の温度が所定の値に達したら、まずバルブ7を開くこと
により、液体原料保管室3の上部のArガスによってT
IBAが押し出され、バルブ7を通ってバルブ7、8、
9で囲まれた配管内に流れ込む。本実施例においては、
バルブ7、8、って囲まれた部分の容量は約1 ccに
して置いた。次にバルブ7を閉じバルブ8を開くと、バ
ルブ7、8、9で囲まれた部分の一定量のTIBAが移
送用配管l2を通り気化室6内の多孔質金属体11に含
浸される。移送用配管12に設けられた多数の側孔13
があるので、この含漫は比較的均一になされる。この後
、流量制御されたArガスを導入口10より流入させ、
バルブ9、バルブ14を開けば、多孔質金属体11に含
浸されたTIBAはその表面積が増加しているため比較
的容易に気化し、輸送用のArガスに運ばれて反応室に
導かれ、基$H16上に一戊膜工程分のAfの堆積が生
じる。
To explain the procedure for forming a film using this apparatus, the mass valve 7 and the valve 9 are closed, the valve 8 and the valve 14 are opened, and the reaction chamber 15, the raw material vaporization chamber 6, and the transfer pipe 12 are evacuated. At this time, the raw material vaporization chamber 6 is sufficiently heated by the heater 23 to reduce residual gas as much as possible. After evacuation, the raw material vaporization chamber is maintained at approximately 70°C. Thereafter, the valve 8 and the valve I4 are closed, the substrate 16 is placed, and the inside of the reaction chamber is evacuated to a high vacuum. Substrate holder 18 and gas distribution plate 17
When the temperature reaches a predetermined value, by opening the valve 7, the T
The IBA is pushed out through valve 7 to valves 7, 8,
It flows into the pipe surrounded by 9. In this example,
The volume of the area surrounded by valves 7 and 8 was set to approximately 1 cc. Next, when the valve 7 is closed and the valve 8 is opened, a certain amount of TIBA in the area surrounded by the valves 7, 8, and 9 passes through the transfer pipe 12 and is impregnated into the porous metal body 11 in the vaporization chamber 6. A large number of side holes 13 provided in the transfer pipe 12
This inclusion is made relatively uniform because of the After that, Ar gas whose flow rate is controlled is introduced from the inlet 10,
When the valves 9 and 14 are opened, the TIBA impregnated into the porous metal body 11 is relatively easily vaporized due to its increased surface area, and is carried by Ar gas for transportation and guided into the reaction chamber. One film step's worth of Af is deposited on the base $H16.

以下、これが繰返される。This is repeated below.

第3図は本発明の別の実施例の概要の図である.気化室
以外の構或は第1図と同じなので図示を省略した。本実
施例では原料気化室6の底部に超音波発振用の磁歪振動
子30が直接接着してある。
FIG. 3 is a schematic diagram of another embodiment of the present invention. Since the structure other than the vaporization chamber is the same as that in FIG. 1, illustration thereof is omitted. In this embodiment, a magnetostrictive vibrator 30 for ultrasonic oscillation is directly bonded to the bottom of the raw material vaporization chamber 6.

前実施例と同様にして定量移送されたTII3Aはあら
かじめ50゜Cに設定された原料気化室6の底部の磁歪
振動子の振動部の上にたまる。バルプ14を開いた後電
源3lより24KHz、数十ワットの電力を印加すると
TIBAの気化が促進される。
The TII3A, which was quantitatively transferred in the same manner as in the previous embodiment, accumulates on the vibrating part of the magnetostrictive vibrator at the bottom of the raw material vaporization chamber 6, which is preset at 50°C. After opening the valve 14, applying power of several tens of watts at 24 KHz from the power source 3l accelerates the vaporization of TIBA.

輸送用Arガスを導入して或膜を前の実施例と同様に行
う。なお、本実施例では原料気化室の全体にステンレス
を用いているが、底部の板厚は超音波の減衰を少くする
ためその肉厚を約IMと薄いものにした。なお、印加電
力を大きくしすぎると気化室出口部で再凝縮が生じて好
ましくないことが判っている。
A membrane is carried out as in the previous example with the introduction of transport Ar gas. In this embodiment, stainless steel is used for the entire raw material vaporization chamber, but the thickness of the bottom plate is made as thin as about IM in order to reduce the attenuation of ultrasonic waves. It is known that if the applied power is too large, re-condensation will occur at the outlet of the vaporization chamber, which is undesirable.

以上の2つの実施例のいづれにおいても、少量のTIB
Aで実用的な気化効率が得られ、長時間に亘って安定し
て再現性良く良質の薄膜が作或できた。
In both of the above two examples, a small amount of TIB
Practical vaporization efficiency was obtained with A, and a high-quality thin film could be produced stably over a long period of time with good reproducibility.

なおまた、以上の実施例では原料としてTIBAを用い
ているが、材料的に加熱による劣化の生じないようなA
2の有機化合物や、液体を原料とするCVD一般の分野
も本発明が有効に使用できることは明らかである。特に
原料の蒸気圧が低い場合に、本発明は非常に有用である
Furthermore, although TIBA is used as a raw material in the above examples, it should be noted that TIBA is a material that does not deteriorate due to heating.
It is clear that the present invention can be effectively used in the general field of CVD using organic compounds (2) and liquids as raw materials. The present invention is particularly useful when the vapor pressure of the raw material is low.

(発明の効果) 本発明により、液体原料の加熱による劣化が生じやすい
原料を用いても、生或膜の膜質に劣化を生ずることなく
、長期に亘って安定して再現性良く、良質の膜を作戊で
きることは産業上の利用価値が高い。
(Effects of the Invention) According to the present invention, even if raw materials that tend to deteriorate due to heating of liquid raw materials are used, there is no deterioration in the film quality of raw films, and high-quality films can be produced stably over a long period of time with good reproducibility. Being able to produce this has high industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の概要の図である。 第2図は第1図の部分的拡大断面図。第3図は本発明の
別の実施例の概要の図である。第4図はTIBAを用い
た従来のCVD装置の一例の概要の図である。第5図は
従来の装置及びその方法で作成したAl膜の結晶配同性
の戒膜回数による変化を示す。 3・・・液体原料保管室、6・・・原料気化室、15・
・・反応室、l1・・・多孔質金属体、30・・・磁歪
振動子。
FIG. 1 is a schematic diagram of an embodiment of the present invention. FIG. 2 is a partially enlarged sectional view of FIG. 1. FIG. 3 is a schematic diagram of another embodiment of the invention. FIG. 4 is a schematic diagram of an example of a conventional CVD apparatus using TIBA. FIG. 5 shows the change in crystal conformity of an Al film produced by a conventional apparatus and method depending on the number of films. 3... Liquid raw material storage chamber, 6... Raw material vaporization chamber, 15.
...Reaction chamber, l1... Porous metal body, 30... Magnetostrictive oscillator.

Claims (5)

【特許請求の範囲】[Claims] (1) 反応室、真空排気系及びガス導入系を備え、液
体原料を使用するCVD装置において、該ガス導入系が
、液体原料保管室、液体原料気化室、及び該液体原料保
管室から該液体原料気化室へ液体を定量移送する機構を
設えたことを特徴とするCVD装置。
(1) In a CVD apparatus that uses a liquid raw material and is equipped with a reaction chamber, a vacuum evacuation system, and a gas introduction system, the gas introduction system supplies the liquid from a liquid raw material storage chamber, a liquid raw material vaporization chamber, and the liquid raw material storage chamber. A CVD apparatus characterized by being equipped with a mechanism for quantitatively transferring a liquid to a raw material vaporization chamber.
(2) 特許請求の範囲第1項記載のCVD装置におい
て、該液体原料気化室内に、多孔質金属体を設けて該原
料保管室から移送された定量の原料を該多孔質金属体の
中心部より吐出させて多孔質金属体内に含浸させる機構
と、該多孔質金属体の中心部より気化原料ガス輸送用の
不活性ガスを噴出させる機構と、該液体原料気化室全体
を一定温度に加熱する機構とを設けたことを特徴とする
CVD装置。
(2) In the CVD apparatus according to claim 1, a porous metal body is provided in the liquid raw material vaporization chamber, and a fixed amount of raw material transferred from the raw material storage chamber is transferred to the center of the porous metal body. a mechanism for discharging liquid raw material to impregnate it into the porous metal body; a mechanism for spouting an inert gas for transporting the vaporized raw material gas from the center of the porous metal body; and a mechanism for heating the entire liquid raw material vaporization chamber to a constant temperature. A CVD apparatus characterized by being provided with a mechanism.
(3) 特許請求の範囲第2項記載のCVD装置におい
て、該多孔質金属体が金属細線を束ねたものであること
を特徴とするCVD装置。
(3) A CVD apparatus according to claim 2, wherein the porous metal body is a bundle of thin metal wires.
(4) 特許請求の範囲第1項記載のCVD装置におい
て、該液体原料気化室に液体原料の気化を促進させる超
音波発振器を設けたことを特徴とするCVD装置。
(4) A CVD apparatus according to claim 1, wherein the liquid raw material vaporization chamber is provided with an ultrasonic oscillator for promoting vaporization of the liquid raw material.
(5) 液体原料をガス化して使用するCVD装置にお
いて、一回の成膜工程に必要な最少量の液体原料を、そ
の成膜の都度、液体原料気化室に移送しCVDに使用す
る如くしたことを特徴とする成膜方法。
(5) In a CVD apparatus that gasifies and uses a liquid raw material, the minimum amount of liquid raw material required for one film forming process is transferred to the liquid raw material vaporization chamber each time the film is formed and used for CVD. A film forming method characterized by the following.
JP1013567A 1989-01-23 1989-01-23 CVD equipment Expired - Lifetime JP2795868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1013567A JP2795868B2 (en) 1989-01-23 1989-01-23 CVD equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1013567A JP2795868B2 (en) 1989-01-23 1989-01-23 CVD equipment

Publications (2)

Publication Number Publication Date
JPH0317271A true JPH0317271A (en) 1991-01-25
JP2795868B2 JP2795868B2 (en) 1998-09-10

Family

ID=11836738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1013567A Expired - Lifetime JP2795868B2 (en) 1989-01-23 1989-01-23 CVD equipment

Country Status (1)

Country Link
JP (1) JP2795868B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009098815A1 (en) * 2008-02-07 2009-08-13 Tokyo Electron Limited Liquid material carburetor, and filming device using the carburetor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5845373A (en) * 1981-06-18 1983-03-16 アイテイ−テイ−・インダストリ−ズ・インコ−ポレ−テツド Metal foil cladding device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5845373A (en) * 1981-06-18 1983-03-16 アイテイ−テイ−・インダストリ−ズ・インコ−ポレ−テツド Metal foil cladding device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009098815A1 (en) * 2008-02-07 2009-08-13 Tokyo Electron Limited Liquid material carburetor, and filming device using the carburetor
JP2009188266A (en) * 2008-02-07 2009-08-20 Tokyo Electron Ltd Liquid raw material vaporizer and film-forming device using it

Also Published As

Publication number Publication date
JP2795868B2 (en) 1998-09-10

Similar Documents

Publication Publication Date Title
US7452424B2 (en) Vaporizer
US5766682A (en) Process for chemical vapor deposition of a liquid raw material
US6432205B1 (en) Gas feeding system for chemical vapor deposition reactor and method of controlling the same
TW531796B (en) Apparatus and method for depositing thin film on wafer using atomic layer deposition
JP3831165B2 (en) Liquid transport device
EP0468996B1 (en) Method for providing a proportioned vapour flow and also apparatus for carrying it out
CN101772590A (en) Raw gas supply system, and filming apparatus
JPH07268634A (en) Cvd apparatus for liquid raw material and cvd process using liuqid raw material and the liquid raw material
WO2001036702A1 (en) Method of vaporizing liquid sources and apparatus therefor
JP3893177B2 (en) Vaporizer, CVD apparatus, and thin film manufacturing method
KR20010050136A (en) Dual fritted bubbler
US20050249873A1 (en) Apparatuses and methods for producing chemically reactive vapors used in manufacturing microelectronic devices
US20050217575A1 (en) Ampoules for producing a reaction gas and systems for depositing materials onto microfeature workpieces in reaction chambers
JPH11168092A (en) Method and equipment for vapor phase growth
JPH0317271A (en) Cvd apparatus and film formation using same
JPH0927455A (en) Manufacture of semiconductor substrate and material gas supplying apparatus
JPS62176662A (en) Metallic compound coated graphite whisker
JPH05117864A (en) Cvd device
JPH06316765A (en) Vaporizer for liquid material
US20080070017A1 (en) Layered Thin Film Structure, Layered Thin Film Forming Method, Film Forming System and Storage Medium
JPH1133390A (en) Powder material evaporating apparatus
JP2002012975A (en) Device for supplying raw liquid material and method for forming copper layer therewith
KR940007175Y1 (en) Low pressure cvd apparatus of wafer
JPH03112894A (en) Gas feeder
JPH06283440A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080626

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080626

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080626

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090626

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090626

Year of fee payment: 11