JPH03172698A - Pressure pulsation absorbing device - Google Patents

Pressure pulsation absorbing device

Info

Publication number
JPH03172698A
JPH03172698A JP30938289A JP30938289A JPH03172698A JP H03172698 A JPH03172698 A JP H03172698A JP 30938289 A JP30938289 A JP 30938289A JP 30938289 A JP30938289 A JP 30938289A JP H03172698 A JPH03172698 A JP H03172698A
Authority
JP
Japan
Prior art keywords
gas
pressure pulsation
liquid
piping
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30938289A
Other languages
Japanese (ja)
Other versions
JP2734478B2 (en
Inventor
Masaharu Nishimura
正治 西村
Keizo Nakagawa
敬三 中川
Kazuo Izumiyama
泉山 和雄
Manabu Inoue
学 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1309382A priority Critical patent/JP2734478B2/en
Publication of JPH03172698A publication Critical patent/JPH03172698A/en
Application granted granted Critical
Publication of JP2734478B2 publication Critical patent/JP2734478B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To absorb pressure pulsation of liquid in a piping for damping by holding a pressure pulsation absorbing device in a state to make contact with liquid in a piping through a porous material and forming the device as a container sealed with gas and made of a material having flexibility. CONSTITUTION:A porous pipe 4 having the same size as that of a piping 1 and formed of a material, e.g. a porous sheet, or a porous metal, having permeability is arranged to a casing 2 formed by expanding the piping 1. A gas container 3 made of a material, e.g. rubber, having flexibility and abundant ductility is arranged to an annular part formed between the porous pipe 4 and the casing 2. The gas container 3 is provided with a gas sealing plug 7, sealing with gas 6 is effected therethrough. As a result, since gas in the container absorbs pressure pulsation of liquid in the piping for damping, size is reduced and a cost is decreased, and damping is effected by means of all frequencies lower than a minimum cutoff frequency.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば水や油を移送するポンプなどの配管に
適用される圧力脈動吸収装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a pressure pulsation absorbing device applied to piping such as a pump for transferring water or oil.

〔従来の技術〕[Conventional technology]

第7図は従来の圧力脈動吸収装置の構造説明図である。 FIG. 7 is a structural explanatory diagram of a conventional pressure pulsation absorbing device.

図において、従来の圧力脈動吸収装置には同図(a)に
示すサイドブランチ(枝管)10、同郡Φ)に示す拡大
管11、同図(C)に示すレサーバタンク12、同図(
d)に示すアキュムレータ13などがあり、何れも配管
1に比べてかなり大きな形状で、配管1内における液体
5の圧力脈動を吸収して減衰させる。
In the figure, the conventional pressure pulsation absorbing device includes a side branch (branch pipe) 10 shown in FIG. (
There is an accumulator 13 shown in d), which has a considerably larger shape than the pipe 1, and absorbs and attenuates the pressure pulsation of the liquid 5 within the pipe 1.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のような従来の圧力脈動吸収装置において、第7図
(a)に示すサイドブランチ10は、チューニングされ
る周波数の幅が狭く、僅かな脈動の変化で大幅に吸収量
が異る。また、同図ら)に示す拡大管11は、大きな拡
大比をとらないと吸収効果が得られず、大形化、圧力損
失の増加、流れによる2次騒音の発生などの併置を伴う
。また、同図(C)に示すリザーバタンク12は容量が
大きく、設置場所が限定される。また、同図(d)に示
すアキュムレータ13は大きく、高価で、また配管1内
の1部にのみ作用するので、吸収効果に限界がある。
In the conventional pressure pulsation absorbing device as described above, the side branch 10 shown in FIG. 7(a) has a narrow frequency range to be tuned, and the amount of absorption varies greatly with a slight change in pulsation. In addition, the expansion tube 11 shown in FIGS. 3A and 3B cannot obtain an absorption effect unless it has a large expansion ratio, and is accompanied by an increase in size, an increase in pressure loss, and the generation of secondary noise due to the flow. In addition, the reservoir tank 12 shown in FIG. 3(C) has a large capacity, and its installation location is limited. In addition, the accumulator 13 shown in FIG. 3(d) is large and expensive, and acts only on a portion of the pipe 1, so there is a limit to its absorption effect.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る圧力脈動吸収装置は上記課題の解決を目的
にしており、多孔材を介して配管内の液体と接して保持
されるとともに内部に気体が封入され柔軟性を有する材
料で作られた容器を備えた構成を特徴としている。
The pressure pulsation absorbing device according to the present invention aims to solve the above problems, and is made of a flexible material that is held in contact with the liquid in the piping through a porous material, and has gas sealed inside. It is characterized by a configuration that includes a container.

〔作用〕[Effect]

即ち、本発明に係る圧力脈動吸収装置においては、内部
に気体が封入された柔軟な容器が多孔材により配管内の
液体と接するように保持されており、容器内の気体が配
管内における液体の圧力脈動を吸収して減衰させる。
That is, in the pressure pulsation absorbing device according to the present invention, a flexible container with gas sealed inside is held by a porous material so as to be in contact with the liquid in the piping, and the gas in the container absorbs the liquid in the piping. Absorbs and dampens pressure pulsations.

〔実施例〕〔Example〕

第1図乃至第4図はそれぞれ本発明の第一乃至第四の実
施例に係る圧力脈動吸収装置の構造説明図、第5図およ
び第6図はこれらの作用説明図である。第1図において
、第一の実施例に係る圧力脈動吸収装置は図に示すよう
に、配管lを拡大させたケーシング2に対して配管1と
同一径の多孔板或いは多孔質金属など通気性のある材料
で作られた多孔管4が設置され、この多孔管4とケーシ
ング2との間にできた環状部にゴムなど柔軟で延性に冨
む材料で作られた気体容器3が設置されている。気体容
器3には気体封入栓7が設けられており、ここから気体
6が封入されている。
1 to 4 are structural explanatory diagrams of pressure pulsation absorbers according to first to fourth embodiments of the present invention, and FIGS. 5 and 6 are explanatory diagrams of their operation. In Fig. 1, the pressure pulsation absorbing device according to the first embodiment has a casing 2 with an enlarged pipe 1 and a permeable material such as a perforated plate or porous metal having the same diameter as the pipe 1. A perforated pipe 4 made of a certain material is installed, and a gas container 3 made of a flexible and ductile material such as rubber is installed in an annular portion formed between the perforated pipe 4 and the casing 2. . The gas container 3 is provided with a gas filling stopper 7, from which gas 6 is sealed.

第2図において、第二の実施例に係る圧力脈動吸収装置
は図に示すように、配管1を拡大させずに多孔板或いは
多孔質金属などで作られた多孔管4の径を絞り、第一の
実施例と同様に液体柱の周囲がゴムなどの柔軟で延性に
富む材料で製られた気体容器3と接するようにしている
In FIG. 2, the pressure pulsation absorber according to the second embodiment reduces the diameter of the porous pipe 4 made of a porous plate or porous metal without enlarging the pipe 1, as shown in the figure. As in the first embodiment, the periphery of the liquid column is in contact with a gas container 3 made of a flexible and ductile material such as rubber.

第3図において、第三の実施例に係る圧力脈動吸収装置
は図に示すように、多孔板或いは多孔質金属などで作ら
れた多孔管4を筒状にしてその中に予め気体6を封入し
た気体容器3を入れ、それを配管1内に設置している。
In FIG. 3, the pressure pulsation absorbing device according to the third embodiment has a porous tube 4 made of a porous plate or porous metal shaped into a cylinder, and a gas 6 is sealed in advance as shown in the figure. A gas container 3 is placed inside the piping 1.

第4図において、第四の実施例に係る圧力脈動吸収装置
は図に示すように、配管1の一側部に多孔管4を介して
ポケット2を設け、その中に気体容器3を設けており、
第三の実施例と同様に液体柱の一部がゴムなどの柔軟で
延性に冨む材料を介して気体6と接するようにしている
In FIG. 4, the pressure pulsation absorber according to the fourth embodiment has a pocket 2 provided on one side of the piping 1 through a porous pipe 4, and a gas container 3 provided therein. Ori,
As in the third embodiment, a portion of the liquid column is brought into contact with the gas 6 through a flexible and ductile material such as rubber.

なお、上記の4実施例における気体容器3の材料として
は、配管1内の液体5と音響特性インピーダンスが殆ん
ど一致する特性をもつものが良く、水の場合にはρCゴ
ムが最適である。
It should be noted that the material for the gas container 3 in the above four embodiments should preferably have a characteristic whose acoustic characteristic impedance almost matches that of the liquid 5 in the pipe 1, and in the case of water, ρC rubber is optimal. .

このように、上記の第一および第二の実施例に係る圧力
脈動吸収装置は、ゴムのような柔軟で延性に冨んだ材料
で作られた環状の気体容器3を配管lの内壁に内接して
設置し、この気体容器3の内部に配管1内を通る液体5
と圧力がバランスするように気体6を充填することによ
り、液体柱の周わりに圧縮性に冨む気体6を配置するよ
うにし、また気体容器3を多孔板や通気性を有する多孔
質の材料で作られた多孔管4の中に入れることにより、
気体容器3の形状を保つとともに液体5の周囲が気体6
で包まれるようになっている。従って、配管l内の液体
5の圧力脈動は、後述の理由により最小のcut of
f周波数以下の低周波数領域で大幅に減衰する。その減
衰量は気体容器3の長さに比例し、必要に応じて自由に
調節できる。また、液体5と気体6との境界はゴムなど
柔軟で延性に富む材料によって離隔されていて液体5中
に気体6が混合することはないが、力は相互に作用し合
って自由境界面に近いものが得られる。さらに、多孔板
などで製られた多孔管4内に気体容器3を挿入すること
により、液体5の圧力が下がっても気体6の圧力は多孔
管4で支えられ、気体容器3が破裂することはない。こ
のため、気体容器3は非常に柔軟な材料を使用でき、自
由境界面の条件に掻く近付けることができる。また、液
体5の圧力が設定値以上に上昇した場合は、気体容器3
は縮むだけであり、特に問題は起こらない。ポンプなど
の圧力脈動は一般に周波数が低く、非常に効果的に減衰
できる。仮に、液体柱の周わりを気体6が包む理想的な
自由境界面の条件が実現できれば、理論的には十分に低
い周波数頭域で配管lの直径相当の長さ当り約38db
と大きな圧力脈動の減衰が得られる。実際には種々の制
約があるためにここまで減音はしないが、最小のcut
 off周波数以下の総ての周波数で減衰が期待できる
As described above, the pressure pulsation absorbing devices according to the first and second embodiments have an annular gas container 3 made of a flexible and ductile material such as rubber inside the inner wall of the pipe 1. The liquid 5 passing through the pipe 1 inside the gas container 3
By filling the gas 6 so that the pressure is balanced, the highly compressible gas 6 is placed around the liquid column, and the gas container 3 is made of a perforated plate or a porous material with air permeability. By putting it into the made porous tube 4,
While maintaining the shape of the gas container 3, the surroundings of the liquid 5 are filled with gas 6.
It is designed to be wrapped in Therefore, the pressure pulsation of the liquid 5 in the pipe 1 is minimized by the minimum cut of
Significant attenuation occurs in the low frequency region below the f frequency. The amount of attenuation is proportional to the length of the gas container 3, and can be freely adjusted as necessary. In addition, the boundary between the liquid 5 and the gas 6 is separated by a flexible and ductile material such as rubber, so the gas 6 does not mix into the liquid 5, but the forces interact with each other and form a free boundary surface. You can get something close. Furthermore, by inserting the gas container 3 into a perforated tube 4 made of a perforated plate or the like, even if the pressure of the liquid 5 drops, the pressure of the gas 6 will be supported by the perforated tube 4, and the gas container 3 will not burst. There isn't. Therefore, a very flexible material can be used for the gas container 3, and the conditions of the free boundary surface can be closely approached. Additionally, if the pressure of the liquid 5 rises above the set value, the gas container 3
will simply shrink, and no particular problem will occur. Pressure pulsations from pumps and the like generally have low frequencies and can be damped very effectively. If an ideal free boundary surface condition in which the gas 6 surrounds the liquid column can be realized, theoretically the frequency range will be approximately 38 dB per length equivalent to the diameter of the pipe l in a sufficiently low frequency range.
This results in large pressure pulsation attenuation. In reality, due to various restrictions, the sound will not be reduced to this extent, but the minimum cut
Attenuation can be expected at all frequencies below the off frequency.

仮に、液体柱の周わりを気体6が包む理想的な自由境界
面の条件が実現できたとする。この場合、第5図に示す
ような液体柱の中の圧力脈動は配管の断面内で特定の圧
力脈動モードを形成して伝播していく。配管内の任意の
点(x、  y、  z)で(m、n)モードを形成す
る音圧PM1%(X+3’。
Suppose that an ideal free boundary surface condition in which the gas 6 surrounds the liquid column can be realized. In this case, the pressure pulsations in the liquid column as shown in FIG. 5 form a specific pressure pulsation mode within the cross section of the pipe and propagate. Sound pressure PM1% (X+3') forming (m, n) mode at any point (x, y, z) in the pipe.

2) は次式で表わされる。2) is expressed by the following equation.

P□(x+y+z) = ここで、Z、、X、はそれぞれX方向、2方向の配管の
断面寸法、A□はx=0断面における振幅、gym+ 
gunはそれぞれX方向、2方向のm次。
P□(x+y+z) = Here, Z, , X are the cross-sectional dimensions of the piping in the X direction and two directions, respectively, A□ is the amplitude at the x=0 cross section, gym+
The guns are m-order in the X direction and 2 directions, respectively.

n次の固有値で、配管壁の境界条件によって求まる。ω
は角周波数、tは時刻、Cは音速である。
It is an n-th eigenvalue, determined by the boundary conditions of the pipe wall. ω
is the angular frequency, t is the time, and C is the speed of sound.

τ、7は(m、n)モードを形成してX方向に伝播する
圧力脈動の透過係数で、次式で与えられる。
τ, 7 is the transmission coefficient of pressure pulsations that form the (m, n) mode and propagate in the X direction, and is given by the following equation.

・・・・・・・・・・・・(2) ここで、復号−は下流方向への伝播を、+は上流方向へ
の伝播を表わす、λは波長である。τ、7の根号内が正
の場合はX方向に圧力脈動の減衰は無いが、複素数また
は純虚数のときはX方向に減衰する。単位長さ当りの減
音@ A tt、、は次式で表わされる。
(2) Here, decoding - represents propagation in the downstream direction, + represents propagation in the upstream direction, and λ is the wavelength. When the radical of τ, 7 is positive, there is no attenuation of pressure pulsation in the X direction, but when it is a complex number or a pure imaginary number, it is attenuated in the X direction. The sound reduction per unit length @A tt, is expressed by the following formula.

ω Att、、= −8,681,(r、、+)  (db
/m) −(3)に こで、1.()はアーキュメントの虚数部を示す。gy
m+  g、n  は配管壁の表面インピーダンスを自
由境界面の条件とした次式の解である。
ω Att,, = −8,681, (r,, +) (db
/m) -(3) smile, 1. () indicates the imaginary part of the arcument. gy
m+g,n is the solution of the following equation with the surface impedance of the pipe wall as a free boundary surface condition.

ここで、πは円周率、iは虚数単位、ζ7.ぐ2はそれ
ぞれX方向、2方向に垂直な配管壁の表面インピーダン
スである。通常の銅製やコンクリート製の剛壁の配管で
はζ7.ζ、−■となり、但し、m、n=o、1゜ 2、3 ・ ・ ・ となる。つまり、m=n=oなる解が存在し、また式(
2)からあらゆる波長(周波数)に対してτ。。
Here, π is pi, i is an imaginary unit, and ζ7. 2 is the surface impedance of the pipe wall perpendicular to the X direction and the 2 directions, respectively. Normal pipes with rigid walls made of copper or concrete have a diameter of ζ7. ζ, −■, but m, n=o, 1°2, 3 ・ ・ ・ . In other words, there is a solution m=n=o, and the formula (
2) for any wavelength (frequency). .

王1なる解が存在し、1.(τ。。)=0となって式(
3)からA t t o。=0なる解が存在する。即ち
、どのような周波数に対しても配管断面内を平面波(配
管断面内で音圧ゲイン、位相が一定な音波モード)とし
て減衰することなく伝播する。
There is a solution called King 1, and 1. (τ..)=0 and the formula (
3) to A t to. =0 exists. That is, any frequency propagates within the pipe cross section as a plane wave (a sound wave mode with constant sound pressure gain and phase within the pipe cross section) without attenuation.

液体柱の外側が気体で包まれている場合は、気体の音響
特性インピーダンスは液体の音響特性インピーダンスに
比べて非常に小さく、この場合はζア、ζz”ioとな
る。この関係を式(4)、 (5)に代入すると、 但し、fは周波数である。
When the outside of the liquid column is surrounded by gas, the acoustic characteristic impedance of the gas is very small compared to the acoustic characteristic impedance of the liquid, and in this case, ζa and ζz”io. ), (5), where f is the frequency.

内が≧Oの場合は1.(τ□) =0となるが、根号内がくO 〉0となって減衰が生じる。If the inside is ≧O, then 1. (τ□) = 0, but the radical O >0 and attenuation occurs.

波数を ・・・・・・・・・・・・・・・・・・・・・(8)前
述のように、根号 =0となって減衰量 の場合は1.(τan) つまり、cut off周 とすると、f≧fcmで(m、n)モードは伝播し、f
 < f c、、で(m、n)モードは減衰する。
The wave number is 1. (τan) In other words, if the cut off period is f≧fcm, the (m, n) mode propagates, and f
< f c, , the (m, n) mode is attenuated.

液体柱の周囲が気体の場合は、f CIIFIの最小値
が但し、m、n=1.2.3 ・ ・ ・となり、m=
0またはn=0なる解は存在しない。
When the surroundings of the liquid column are gas, the minimum value of f CIIFI is, however, m, n=1.2.3 ・ ・ ・ , m=
There is no solution where 0 or n=0.

この場合の透過係数は次式のようになる。The transmission coefficient in this case is as shown in the following equation.

となる。つまり、f<fctt以下の周波数はどのよう
なモードも形成できず、減衰してしまうことになる。こ
れに対して、液体柱の外側が剛壁の場合にはm=n=0
の解が存在するため、f cmnの最小値はrco。=
Oとなり、総ての周波数が伝播モードを形成できる。
becomes. In other words, no mode can be formed at frequencies below f<fctt, and the frequencies are attenuated. On the other hand, if the outside of the liquid column is a rigid wall, m=n=0
Since there exists a solution of , the minimum value of f cmn is rco. =
0, and all frequencies can form propagation modes.

因みに、’y ””lx =1mの配管で液体を水とす
ると、C!:11500m/secであるのでfc++
 =1061Hzとなり、これ以下の周波数の圧力脈動
は減衰することになる。f =500Hzの場合につい
て、式(8)。
By the way, if the liquid is water in a pipe of 'y "" lx = 1 m, C! :11500m/sec, so fc++
= 1061 Hz, and pressure pulsations at frequencies below this are attenuated. For the case f = 500 Hz, equation (8).

(3)を用いて減衰量を求めると、A tt+ 1= 
34 db/mとなり、理論的には非常に大きな減衰効
果が得られる。なお、参考までに液体柱の周囲が剛壁の
場合を第6図(a)に、また液体柱の周囲が気体の場合
を同図ら)に、それぞれの内部音圧モードを2次元表示
で示す。前者の場合は壁面で音圧層のモードであるのに
対し、後者の場合は壁外面で音圧節のモードが成り立つ
必要があり、これからみてもm=0の解は成り立たない
ことが容易に推察される。
When calculating the attenuation amount using (3), Attt+ 1=
34 db/m, which theoretically provides a very large attenuation effect. For reference, the internal sound pressure modes are shown in two-dimensional representations in Figure 6 (a) when the liquid column is surrounded by a rigid wall, and in Figure 6 (a) when the liquid column is surrounded by gas). . In the former case, the mode is the sound pressure layer on the wall surface, whereas in the latter case, the mode of the sound pressure node must hold on the outer surface of the wall, and it is easy to see from this that the solution for m = 0 does not hold. It is inferred.

また、本実施例は配管の断面が矩形の場合について述べ
たが、断面が円形、或いはその他任意の形状の場合でも
同様である。
Further, although the present embodiment has been described with respect to the case where the cross section of the piping is rectangular, the same applies to cases where the cross section is circular or any other arbitrary shape.

また、第三および第四の実施例に係る圧力脈動吸収装置
は、ゴムのような柔軟で延性に富んだ材料で作られた柱
状の気体容器3を配管l内に挿入し、その気体容器3の
内部に配管lを通る液体5と圧力がバランスするように
気体6を充填することにより、液体柱の一部に必ず圧縮
性に富む気体6が配置され、また気体容器3を多孔板や
通気性を有する多孔質の材料で製られた多孔管4の中に
入れることにより、気体容器3の形状を保つとともに液
体5の内部に気体6が存在して液体5と気体6との間で
直接力が作用し合うようになっている。この場合は、液
体5の周囲が気体6で包まれている場合はど顕著な圧力
脈動の減衰効果は得られないが、液体5中に気体6が占
める割合いに応じて相当の減衰量が得られる。また、既
存の配管1を変更せずに気体容器3を挿入するだけで実
施が可能である。圧力脈動の減衰量は第一および第二の
実施例の場合と同様に気体容器3の長さに比例し、また
多孔管4の作用も同様である。
In addition, the pressure pulsation absorbing devices according to the third and fourth embodiments include a columnar gas container 3 made of a flexible and highly ductile material such as rubber, which is inserted into the pipe l, and the gas container 3 By filling the inside of the container with gas 6 so that the pressure is balanced with the liquid 5 passing through the pipe 1, the highly compressible gas 6 is always placed in a part of the liquid column. By placing the gas in the porous tube 4 made of a porous material with properties, the shape of the gas container 3 is maintained, and the gas 6 is present inside the liquid 5, so that the liquid 5 and the gas 6 are directly connected to each other. Forces interact with each other. In this case, if the liquid 5 is surrounded by the gas 6, no significant pressure pulsation damping effect will be obtained, but depending on the proportion of the gas 6 in the liquid 5, a considerable amount of attenuation will occur. can get. Further, the present invention can be implemented by simply inserting the gas container 3 without changing the existing piping 1. The amount of attenuation of the pressure pulsation is proportional to the length of the gas container 3 as in the first and second embodiments, and the effect of the perforated tube 4 is also similar.

〔発明の効果〕〔Effect of the invention〕

本発明に係る圧力脈動吸収装置は前記の1il)/)構
成されており、容器内の気体が配管内における液体の圧
力脈動を吸収して減衰させるので、小形で安価であると
ともに、最小のcut off周波数以下の総ての周波
数で減衰が行われる。
The pressure pulsation absorbing device according to the present invention has the above-described structure, and the gas in the container absorbs and attenuates the pressure pulsation of the liquid in the piping, so it is small and inexpensive, and has a minimum cut. Attenuation is performed at all frequencies below the off frequency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第4図はそれぞれ本発明の第一乃至第四の実
施例に係る圧力脈動吸収装置の断面図で、(b)図はそ
れぞれの(a)図におけるb−b断面図、第5図および
第6図はこれらの作用説明図、第7図(a)〜(d)は
それぞれ従来の圧力脈動吸収装置の断面図である。 1・・・配管、2・・・ケーシング、3・・・気体容器
、4・・・多孔管、5・・・液体、6・・・気体、7・
・・気体封入栓。
1 to 4 are sectional views of pressure pulsation absorbers according to first to fourth embodiments of the present invention, respectively, and FIG. 1(b) is a bb sectional view in FIG. 5 and 6 are explanatory diagrams of these functions, and FIGS. 7(a) to 7(d) are sectional views of conventional pressure pulsation absorbing devices, respectively. DESCRIPTION OF SYMBOLS 1... Piping, 2... Casing, 3... Gas container, 4... Porous pipe, 5... Liquid, 6... Gas, 7...
・Gas filled plug.

Claims (1)

【特許請求の範囲】[Claims] 多孔材を介して配管内の液体と接して保持されるととも
に内部に気体が封入され柔軟性を有する材料で作られた
容器を備えたことを特徴とする圧力脈動吸収装置。
A pressure pulsation absorbing device comprising a container made of a flexible material that is held in contact with a liquid in piping through a porous material, has a gas sealed inside, and is made of a flexible material.
JP1309382A 1989-11-30 1989-11-30 Pressure pulsation absorber Expired - Lifetime JP2734478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1309382A JP2734478B2 (en) 1989-11-30 1989-11-30 Pressure pulsation absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1309382A JP2734478B2 (en) 1989-11-30 1989-11-30 Pressure pulsation absorber

Publications (2)

Publication Number Publication Date
JPH03172698A true JPH03172698A (en) 1991-07-26
JP2734478B2 JP2734478B2 (en) 1998-03-30

Family

ID=17992335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1309382A Expired - Lifetime JP2734478B2 (en) 1989-11-30 1989-11-30 Pressure pulsation absorber

Country Status (1)

Country Link
JP (1) JP2734478B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0814469A (en) * 1994-07-01 1996-01-16 Hitachi Constr Mach Co Ltd Hydraulic pulsation reducing device
JPH08500658A (en) * 1993-06-22 1996-01-23 ゲフィピ アクチェン ゲゼルシャフト Vibration noise attenuator for hydraulic equipment
JPH1130387A (en) * 1997-07-09 1999-02-02 Mitsubishi Heavy Ind Ltd Fluctuating pressure reduction device
WO2005092515A1 (en) * 2004-03-25 2005-10-06 Toray Industries, Inc. Painting device, painting method, and display member provided therefrom
JP2010104883A (en) * 2008-10-29 2010-05-13 Hitachi Maxell Ltd Coating apparatus and method of manufacturing functional support using the same
JP2016087482A (en) * 2014-10-29 2016-05-23 中外炉工業株式会社 Coating device and coating method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS563394A (en) * 1979-06-18 1981-01-14 Tonen Sekiyukagaku Kk Damping device of water hammer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS563394A (en) * 1979-06-18 1981-01-14 Tonen Sekiyukagaku Kk Damping device of water hammer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08500658A (en) * 1993-06-22 1996-01-23 ゲフィピ アクチェン ゲゼルシャフト Vibration noise attenuator for hydraulic equipment
JPH0814469A (en) * 1994-07-01 1996-01-16 Hitachi Constr Mach Co Ltd Hydraulic pulsation reducing device
JPH1130387A (en) * 1997-07-09 1999-02-02 Mitsubishi Heavy Ind Ltd Fluctuating pressure reduction device
WO2005092515A1 (en) * 2004-03-25 2005-10-06 Toray Industries, Inc. Painting device, painting method, and display member provided therefrom
JP2010104883A (en) * 2008-10-29 2010-05-13 Hitachi Maxell Ltd Coating apparatus and method of manufacturing functional support using the same
JP2016087482A (en) * 2014-10-29 2016-05-23 中外炉工業株式会社 Coating device and coating method

Also Published As

Publication number Publication date
JP2734478B2 (en) 1998-03-30

Similar Documents

Publication Publication Date Title
EP0196812B1 (en) Hydraulic noise attenuators
US2100404A (en) Fluid transmission
EP1715238A2 (en) Double throat pulsation dampener for a compressor
CN108561669B (en) Elastic back cavity type pipeline vibration damping and noise eliminating device
CN102087852A (en) Acoustic resonator and sound chamber
JPH03172698A (en) Pressure pulsation absorbing device
JP2012220428A (en) Silencer for ultrasonic flowmeter and ultrasonic flowmeter with silencer
CN106090523B (en) A kind of pipeline pressure pulsation attenuator based on mass-spring system
CN103353042A (en) Pressure self-adaptation low-frequency broadband elastic resonance noise-abatement device
KR100229250B1 (en) Sound damping device
JPH01273883A (en) Pulsation buffer device in inlet pipe of reciprocating-pump
JPH08240202A (en) Helmholtz hydraulic pressure pulsation filter of gas sealed type
JPH06194006A (en) Refrigerator
CN213745482U (en) Phonon crystal pipeline sound insulation device
JP3062378B2 (en) Sound absorbing device
JPH08135881A (en) Pressure fluctuation suppressing device
JPS608232Y2 (en) Silencer
CN205919056U (en) Pipeline pressure pulsation dampening based on spring oscillator system
CN107461562A (en) A kind of through type tracheae shock-reducing and noise-reducing structure
JPS5919780Y2 (en) pressure pulsation dampener
CN112431986A (en) Phonon crystal pipeline sound insulation device
JPH08135882A (en) Pressure fluctuation suppressing device
JPH0346715B2 (en)
GB1465218A (en) Acoustical energy attenuation apparatus and method
JP3016283B2 (en) Water hammer shock absorber