JPH01273883A - Pulsation buffer device in inlet pipe of reciprocating-pump - Google Patents

Pulsation buffer device in inlet pipe of reciprocating-pump

Info

Publication number
JPH01273883A
JPH01273883A JP10029888A JP10029888A JPH01273883A JP H01273883 A JPH01273883 A JP H01273883A JP 10029888 A JP10029888 A JP 10029888A JP 10029888 A JP10029888 A JP 10029888A JP H01273883 A JPH01273883 A JP H01273883A
Authority
JP
Japan
Prior art keywords
tank
suction pipe
pulsation
pump
reciprocating pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10029888A
Other languages
Japanese (ja)
Inventor
Hisae Kawamura
川村 久栄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP10029888A priority Critical patent/JPH01273883A/en
Publication of JPH01273883A publication Critical patent/JPH01273883A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pipe Accessories (AREA)
  • Reciprocating Pumps (AREA)

Abstract

PURPOSE:To accomplish effectively the pulsation cushioning of a fluid in an inlet pipe by connecting a reservoir, which has lots of compartments formed therein, to the inlet pipe of a reciprocating-pump to circulate a liquid to be handled in the compartments at the time of a pump's intake stroke. CONSTITUTION:A reservoir 30 is connected to an inlet pipe 18b near the inlet port 14 of a reciprocating-pump 12. This reservoir 30 has lots of liquid-tight compartments devided by lots of partitioning parts and communicated with one another at each different position. The ceiling of the reservoir 30 may be constructed to be open or sealed for making a uniformly-pressurizing hole in the upper part thereof.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、往復動ポンプ吸込管内の脈動緩衝装置に係り
、特に吸込管に接続した槽の内部に多数の部屋を設け、
取扱液をポンプによる吸込時に各部屋間を連通ずる遠道
口を介して槽内の最大限の部屋を流過することにより吸
込管内の脈動を低減する脈動緩衝装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a pulsation damping device in a suction pipe of a reciprocating pump, and in particular, a device for damping pulsation within a suction pipe of a reciprocating pump.
The present invention relates to a pulsation damping device that reduces pulsation in a suction pipe by allowing a handled liquid to flow through the maximum number of chambers in a tank via a long way port that communicates between the chambers when the liquid is sucked in by a pump.

〔従来の技術〕[Conventional technology]

一般に往復動ポンプには吸込行程と吐出行程を有し、吸
込行程では吐出量が零に、また吐出行程では吸込量が零
になるため、吸込配管・吐出配管のいずれにおいても流
量は変動し、その結果流体は脈動する。
Generally, reciprocating pumps have a suction stroke and a discharge stroke, and the discharge amount is zero in the suction stroke, and the suction amount is zero in the discharge stroke, so the flow rate fluctuates in both the suction piping and the discharge piping. As a result, the fluid pulsates.

しかるに、脈動の発生”によってポンプ室内でキャビテ
ーションが発生したり、配管内で異常な振動が発生し、
これにより流体の圧力を読み取ることが困難になる問題
が生じる。
However, cavitation occurs in the pump chamber due to pulsation, and abnormal vibrations occur in the piping.
This creates a problem that makes it difficult to read the pressure of the fluid.

したがって、これらを改善するために第8図乃至第10
図に示すように、気体圧力と配管抵抗を利用した直立管
法、均圧管法、空気室法等の脈動緩衝の方法が採用され
てきた。
Therefore, in order to improve these, Figs.
As shown in the figure, pulsation buffering methods such as the standpipe method, pressure equalization pipe method, and air chamber method that utilize gas pressure and piping resistance have been adopted.

すなわち、第8図に示す直立管法は、取扱液供給タンク
10を大気開放すると共に、往復動ポンプ72(以下ポ
ンプと称す)の吸込口14近傍に大気開放の直立管16
を設置し、この直立管16内に満たされた取扱液により
吸込管18内の脈動を吸収する方法である。
That is, in the standpipe method shown in FIG. 8, the handled liquid supply tank 10 is opened to the atmosphere, and a standpipe 16 opened to the atmosphere is installed near the suction port 14 of the reciprocating pump 72 (hereinafter referred to as pump).
This is a method in which the pulsation in the suction pipe 18 is absorbed by the handling liquid filled in the upright pipe 16.

また、第9図に示す均圧管法は、取扱液供給タンク10
を密閉にし、ポンプ吸込口14近傍に設置した密閉直立
管20の気相部22と密閉供給タンク24の気相部26
を均圧管28で接続し、均等圧で加圧された直立管20
内の取扱液で吸込管18内の脈動を吸収する方法である
In addition, the pressure equalization pipe method shown in FIG.
The gas phase portion 22 of the hermetically sealed standpipe 20 and the gas phase portion 26 of the hermetically sealed supply tank 24 are sealed and installed near the pump suction port 14.
are connected by a pressure equalizing pipe 28, and the standpipe 20 is pressurized with equal pressure.
This is a method of absorbing pulsations in the suction pipe 18 using the liquid handled within the suction pipe 18.

さらに、第10図に示す空気室法は密閉供給タンク24
の気相部26を加圧すると共に、ポンプ12の吸込口1
4近傍に設置した密閉直立管20の気相部22に高圧ガ
スボンベ29から加圧された空気圧を送り密閉直立管2
0内部の取扱液を加圧することによって吸込管18内の
脈動を吸収する方法である。
Furthermore, the air chamber method shown in FIG.
The gas phase section 26 of the pump 12 is pressurized, and the suction port 1 of the pump 12 is pressurized.
4. Send pressurized air pressure from a high-pressure gas cylinder 29 to the gas phase part 22 of a sealed standpipe 20 installed near the sealed standpipe 2.
This is a method of absorbing pulsations in the suction pipe 18 by pressurizing the handled liquid inside the suction pipe 18.

この場合、第8図乃至第9図に示す吸込管18のA点お
よびB点の測定位置において、第11図に示すようにA
点の大きなlit a波形がB点においては減衰されて
緩やかな脈動波形となる。
In this case, at the measurement positions of point A and point B of the suction pipe 18 shown in FIGS. 8 to 9,
The large point lit a waveform is attenuated at point B and becomes a gentle pulsating waveform.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、吸込管内の脈動は依然として残るため流
速は変動し、その結果吸込管のB点においては脈動に起
因する慣性抵抗が残り、また流速すなわち流Hの変動は
、高精度でかつ連続的に流通を測定する場合には大きな
障害となる難点がある。
However, since the pulsation in the suction pipe still remains, the flow velocity fluctuates, and as a result, inertia resistance due to the pulsation remains at point B of the suction pipe. There is a drawback that poses a major hindrance when measuring.

そこで、本発明は、往復動ポンプ吸込口近傍の吸込管に
槽を接続し、この槽内にそれぞれが連通口で連通可能な
多数の部屋を形成し、ポンプ吸込時に取扱液を槽内の最
多数の部屋を流過さゼるよう連通口を配設することによ
り、槽内を加圧することなく常に安定した無脈動特性を
有効に達成することのできる往復動ポンプ吸込管内の脈
動緩衝装置を提供する。
Therefore, in the present invention, a tank is connected to the suction pipe near the suction port of the reciprocating pump, and a number of chambers are formed in the tank, each of which can be communicated with through a communication port, and when the pump suctions, the handled liquid is transferred to the top of the tank. By arranging communication ports so that water flows through multiple chambers, we have created a pulsation damping device in the reciprocating pump suction pipe that can effectively achieve stable pulsation-free characteristics at all times without pressurizing the tank. provide.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る脈動緩衝装置は、往復動ポンプ吸込管に接
続され、この往復動ポンプの吸込時に生ずる吸込管内の
脈動を低減する往復動ポンプ吸込管内の脈8緩衝装置に
おいて、前記吸込管の往復動ポンプ吸込口近傍に槽を接
続し、この槽内に多数の仕切り部で仕切られた多数の液
密の部屋を設け、これらの多数の部屋は異なる位置関係
において連通することを特徴とする。
A pulsation buffer device according to the present invention is a pulsation buffer device in a reciprocating pump suction pipe that is connected to a reciprocating pump suction pipe and reduces pulsations in the suction pipe that occur during suction of the reciprocating pump. The present invention is characterized in that a tank is connected near the suction port of the dynamic pump, and a number of liquid-tight chambers partitioned by a number of partitions are provided within the tank, and these multiple chambers communicate with each other in different positional relationships.

また、往復動ポンプ吸込管内の脈動M衝装置において、
前記槽は、天井部が開放して構成しても良い。
In addition, in the pulsating M impulse device in the reciprocating pump suction pipe,
The tank may have an open ceiling.

さらに、前記槽は、密閉構造どし上部に均圧穴を設けて
構成しても良い。
Furthermore, the tank may have a closed structure with pressure equalizing holes provided in the upper part.

まIζ、前記槽は、内部を多重に仕切られた部屋で構成
すれば好適である。
However, it is preferable that the tank is configured with multiple partitioned rooms.

(作用) 本発明に係る往復動ポンプ吸込管内の脈動緩衝装置によ
れば、往復動ポンプの起動により吸入、吐出行程か開始
されると、ポンプによる送液は交互に吸込口、吐出量共
に零となり、吸込配管・吐出配管内において流量が急激
に変動し、その結果流体は脈動する。この場合ポンプ吸
込口近傍の吸込管に槽を接続し、この槽内に形成された
多数の部屋を相互に異なる位置関係を有する連通口を介
して取扱液を槽内部の最多数の部屋を流過させることに
より、吸込管内の流体の脈動M笥を有効に達成すること
ができる。
(Function) According to the pulsation buffer device in the reciprocating pump suction pipe according to the present invention, when the suction and discharge strokes are started by starting the reciprocating pump, the liquid feeding by the pump is alternately reduced to zero at both the suction port and the discharge amount. As a result, the flow rate changes rapidly in the suction and discharge piping, and as a result, the fluid pulsates. In this case, the tank is connected to the suction pipe near the pump suction port, and the handled liquid is flowed through the maximum number of chambers inside the tank through communication ports that have mutually different positional relationships. By allowing the fluid to pass through the suction pipe, pulsation of the fluid within the suction pipe can be effectively achieved.

〔実施例〕〔Example〕

次に本発明に係る往復動ポンプ吸込管内の脈動緩衝装置
の実施例につき添付図面を参照しながら以下詳細に説明
する。なお、説明の便宜上第8図乃至第10図に示す従
来の構造と同一部分については同一参照符号を付しその
説明を省略する。
Next, embodiments of a pulsation damping device in a reciprocating pump suction pipe according to the present invention will be described in detail with reference to the accompanying drawings. For convenience of explanation, parts that are the same as those of the conventional structure shown in FIGS. 8 to 10 are given the same reference numerals, and the explanation thereof will be omitted.

第1図は第1の実施例を示し、図において参照符号30
は天井部を大気開放した円筒形の槽を示し、この槽30
の内部は小径円筒管で形成された槽32で仕切られ、2
重の円筒管が構成される。
FIG. 1 shows a first embodiment, reference numeral 30 in the figure.
indicates a cylindrical tank with the ceiling open to the atmosphere, and this tank 30
The inside of is partitioned by a tank 32 formed by a small diameter cylindrical tube,
A heavy cylindrical tube is constructed.

この2重の円筒管で構成された2つの部屋のうち外側の
部屋は、その下部に取扱液供給タンク10から取扱液を
供給する吸込管18atJ<連通接続されている。また
、内側の部屋を構成する小径円筒管32には外側の部屋
と連通ずる連通口42が設けられ、この連通口42は前
記吸込管18a、18bとの接続口44.46とはそれ
ぞれ位置関係を違えて配設されている。さらに、前記配
管接続口46に接続された吸込管18bは往復動ポンプ
12の吸込口14に連通接続されている。
The outer chamber of the two chambers constituted by the double cylindrical pipe is connected in communication with a suction pipe 18atJ to which the handling liquid is supplied from the handling liquid supply tank 10 to the lower part thereof. Further, the small diameter cylindrical pipe 32 constituting the inner chamber is provided with a communication port 42 that communicates with the outer chamber, and this communication port 42 has a positional relationship with the connection ports 44 and 46 with the suction pipes 18a and 18b, respectively. are arranged differently. Furthermore, the suction pipe 18b connected to the piping connection port 46 is communicatively connected to the suction port 14 of the reciprocating pump 12.

このように構成された脈動緩衝装置を、ポンプ吸込口1
4近傍の吸込管18bに取付けて往復動ポンプを起動す
ると、取扱液は槽内の相互に異なる位置関係に配設され
た連通口を、矢印で示す流れとなってポンプ吸込口14
に向は流過する。この場合、槽30゜32内の取扱液の
液位はポンプ起動前は取扱液供給タンク10の液位と同
一で高さHを示しており、ポンプ12が起動すると槽3
0゜32の液位は、ポンプの吸込口14に接続されてい
る内側の部屋の液位hoに対し、供給タンク10に接続
されている外側の部屋の液位h1は吸込圧が低くなる分
高い液位を示す。
The pulsation damping device configured in this way is installed at the pump suction port 1.
When the reciprocating pump is started by attaching it to the suction pipe 18b near the pump suction port 14, the liquid flows through the communication ports arranged at different positions in the tank as shown by the arrows.
The direction flows past. In this case, the liquid level in the tank 30° 32 is the same as the liquid level in the handling liquid supply tank 10 and shows a height H before the pump starts, and when the pump 12 starts, the liquid level in the tank 3
The liquid level at 0°32 is the liquid level ho in the inner chamber connected to the pump suction port 14, while the liquid level h1 in the outer chamber connected to the supply tank 10 is due to the lower suction pressure. Indicates high liquid level.

従って、各液位はl−1>hl >hgとなることは明
らかである。
Therefore, it is clear that each liquid level satisfies l-1>hl>hg.

つぎに、第1図に示す槽30.32内の各測定位置A、
B、Cの各点にJ3いて脈動をそれぞれ測定すると、第
2図に示す脈動波形が得られ、槽の入口側に向うに従っ
て脈動流が小さくなることが判る。すなわち、測定結果
によれば0点にお(プる脈動は大幅に減衰し、はとんど
脈動のみられない安定した状態が得られる。なお、本実
施例においては槽を2重に構成したものを示したが、さ
らに多重構造にすれば脈動緩衝効果は顕著となることは
明らかである。また、第3図に示す第2の実施例では、
やはり2重構造に構成した外側の部屋をポンプ吸込口1
4に接続し、内側の部屋を形成する小径円筒管32を供
給タンク10側に接続して構成したものである。
Next, each measurement position A in the tank 30, 32 shown in FIG.
When the pulsation is measured at each point B and C, the pulsation waveform shown in FIG. 2 is obtained, and it can be seen that the pulsation flow becomes smaller toward the inlet side of the tank. That is, according to the measurement results, the pulsation at point 0 (pulsation) is significantly attenuated, and a stable state with almost no pulsation is obtained. However, it is clear that the pulsation buffering effect will become more significant if the structure is further multilayered.Also, in the second embodiment shown in FIG.
The outer room, which also has a double structure, is the pump suction port 1.
4, and a small diameter cylindrical pipe 32 forming an inner chamber is connected to the supply tank 10 side.

この場合、槽内の流れは矢印で示すように、供給タンク
10から供給される取扱液は槽内部の小径円筒管32に
流入した後、連通口48.50を介して外側の部屋に流
入し、配管接続口46を介してポンプ吸込口14に接続
されている吸込管18bに流出される。したがって、槽
内の液位は第1の実施例とは内側と外側の部屋では逆の
状態となる。
In this case, the flow inside the tank is as shown by the arrow, in which the handling liquid supplied from the supply tank 10 flows into the small diameter cylindrical pipe 32 inside the tank, and then flows into the outer chamber through the communication port 48,50. , and flows out into the suction pipe 18b connected to the pump suction port 14 via the piping connection port 46. Therefore, the liquid level in the tank is opposite to that in the first embodiment in the inner and outer chambers.

さらに、第4図に示す第3の実施例では、天井部を大気
開放した屑形筒36を形成した槽で内部を仕切り部38
で2槽に分割形成したものである。槽内に形成された2
つの部屋は、それぞれ供給タンク10側の吸込管18a
とポンプ吸込口側の吸込管18bに接続される。また、
前記槽内の仕切り部38には連通口52がそれぞれの接
続口44.46とは互いに異なる位置関係になるよう設
けられている。
Furthermore, in the third embodiment shown in FIG. 4, the tank is formed with a waste cylinder 36 whose ceiling is open to the atmosphere, and the inside is partitioned off by a partition 38.
It is divided into two tanks. 2 formed in the tank
Each of the two rooms has a suction pipe 18a on the side of the supply tank 10.
and is connected to the suction pipe 18b on the pump suction port side. Also,
A communication port 52 is provided in the partition portion 38 in the tank so as to have a positional relationship different from that of the respective connection ports 44 and 46.

この場合、槽内の流れは矢印で示す如く、流出側の部屋
の液位は流入側の液位より低下する。
In this case, the flow in the tank is such that the liquid level in the chamber on the outflow side is lower than the liquid level in the inflow side, as shown by the arrow.

つぎに、第5図乃至第7図にそれぞれ対応する第4乃至
第6の実施例に示す槽は、前述した槽の天井部を蓋34
で塞いで全て密閉構造とし、さらに蓋34および仕切り
部32゜38の上部には均圧穴53.54が設けられた
構成となっている。
Next, in the tanks shown in the fourth to sixth embodiments corresponding to FIGS. 5 to 7, respectively, the ceiling of the tank described above is connected to the lid 34.
The pressure equalizing holes 53 and 54 are provided in the upper portions of the lid 34 and the partition portions 32 and 38.

従って、前記構成のみが前述した実施例とは異なり、他
の部分については、第1図は第5図に対応し、第3図は
第6図に、また第4図は第7図に対応しており、それぞ
れ前述した構成と同一構成を有するので詳細な説明は省
略する。
Therefore, only the above-mentioned configuration is different from the embodiment described above, and in other parts, FIG. 1 corresponds to FIG. 5, FIG. 3 corresponds to FIG. 6, and FIG. 4 corresponds to FIG. 7. Since each of them has the same configuration as described above, detailed explanation will be omitted.

以上、本発明の好適な実施例について説明したが、本発
明の脈動緩衝装置を構成する槽の外形は丸形または角形
に限定されるものではなく、また、槽の内部は多重構造
のみではなく、仕切り部の配置により異形形状からなる
多数の部屋で構成することができ、前述した実施例のほ
か、本発明の精神を逸脱しない範囲内において種々の設
計変更をなし得ることは勿論である。
Although the preferred embodiments of the present invention have been described above, the outer shape of the tank constituting the pulsation damping device of the present invention is not limited to a round or square shape, and the interior of the tank does not have only a multilayer structure. The room can be configured with a large number of irregularly shaped rooms depending on the arrangement of the partitions, and it goes without saying that in addition to the above-described embodiments, various design changes can be made without departing from the spirit of the invention.

〔発明の効果〕〔Effect of the invention〕

前述した実施例から明らかなように、本発明によれば、
往復動ポンプ吸込管に接続され、この往復動ポンプの吸
込時に生ずる吸込管内の脈動を低減する往復動ポンプ吸
込管内の脈動緩衝装置において、 前記吸込管の往復動ポンプ吸込口近傍に槽を接続し、こ
の槽内に多数の仕切り部で仕切られた多数の液密の部屋
を設け、これらの多数の8Il屋は異なる位置関係にお
いて連通させることにより吸込管内の脈動を大幅に減衰
させることができ、これによって槽の入口部における脈
動波による慣性抵抗は無視することができ、さらに脈動
に起因する配管の振動も防止することができる。
As is clear from the embodiments described above, according to the present invention,
In a pulsation buffering device in a reciprocating pump suction pipe that is connected to a reciprocating pump suction pipe and reduces pulsations in the suction pipe that occur when the reciprocating pump suctions, a tank is connected to the suction pipe near the reciprocating pump suction port. The pulsation in the suction pipe can be greatly attenuated by providing a large number of liquid-tight rooms partitioned by a large number of partitions in this tank and communicating with each other at different positions. As a result, inertial resistance due to pulsating waves at the inlet of the tank can be ignored, and vibration of the piping due to pulsation can also be prevented.

従って、このようにして、脈動緩衝装置により往復動ポ
ンプ吸込管内の脈動を大幅に減衰することができること
から、安定した流徂が得られ、これによって前記管内の
流旦の測定を汎用の70−メータや電磁流量計により、
高精度に行うことができる客層れた利点が得られる。
Therefore, in this way, the pulsation in the reciprocating pump suction pipe can be significantly damped by the pulsation damper, so that a stable flow range is obtained, which allows the measurement of the flow rate in said pipe to be carried out using the general-purpose 70- With meters and electromagnetic flowmeters,
You can get the advantage of being able to do this with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る往復動ポンプ吸込管内の脈動緩衝
装置の第1の実施例を示す要部断面図、第2図は本発明
に係る脈動緩衝装置を使用した場合の各測定点における
脈動波形図、第3図は本発明に係る第2の実施例を示す
要部断面図、第4図は本発明に係る第3の実施例を示す
要部断面図、第5図乃至第7図は本発明に係る脈動防止
装置を密閉構造としたもので、第5図は本発明に係る第
4の実施例を示す要部断面図、第6図は本発明に係る第
5の実施例を示す要部断面図、第7図は本発明に係る第
6の実施例を示す要部断面図であり、第8図乃至第10
図は従来の脈動緩衝装置を示し、第8図は従来の脈動緩
衝装置を用いた直立管法に係る系統説明図、第9図は従
来の脈動緩衝装置を用いた加圧管法に係る系統説明図、
第10図は従来の脈動緩衝装置を用いた空気室法に係る
系統説明図、第11図は従来の脈動M衝装置を用いた場
合の脈動波形図である。 10・・・取扱液供給タンク 12・・・往復動ポンプ
14・・・吸込口      16・・・直立管’IS
、 18a、 18b・・・吸込管  20・・・密閉
直立管22、26・・・気相部    24・・・密閉
供給タンク28・・・均圧管      29・・・高
圧ガスボンベ30−・槽        32・・・小
径円筒管(槽)34、40・・・蓋      36・
・・角形筒38・・・仕切り部 42.42a、42b、48,50.52−・・連通口
44、46・・・接続口    53.54・・・均圧
穴A、8.C・・・脈動波測定位置 H・・・ポンプ起動前の液位 ha・・・ポンプ起動中の内側の部屋の液位h1・・・
ポンプ起動中の外側の部屋の液位FIG、  I FIG、2 遭 トーーーー→峙同 FIo、  3 FIG、  4 FIG、5 FIo   8 FIG、9
FIG. 1 is a cross-sectional view of a main part showing a first embodiment of a pulsation damping device in a reciprocating pump suction pipe according to the present invention, and FIG. A pulsation waveform diagram, FIG. 3 is a sectional view of a main part showing a second embodiment of the present invention, FIG. 4 is a sectional view of a main part of a third embodiment of the invention, and FIGS. The figure shows a pulsation prevention device according to the present invention having a sealed structure, FIG. 5 is a cross-sectional view of main parts showing a fourth embodiment according to the present invention, and FIG. 6 is a fifth embodiment according to the present invention. FIG. 7 is a cross-sectional view of the main part showing the sixth embodiment of the present invention, and FIGS.
The figure shows a conventional pulsation damping device, FIG. 8 is a system diagram for the standpipe method using the conventional pulsation damping device, and FIG. 9 is a system diagram for the pressurized pipe method using the conventional pulsation damping device. figure,
FIG. 10 is a system explanatory diagram relating to the air chamber method using a conventional pulsation damping device, and FIG. 11 is a pulsation waveform diagram when a conventional pulsation M shock device is used. 10... Handled liquid supply tank 12... Reciprocating pump 14... Suction port 16... Standpipe 'IS'
, 18a, 18b... Suction pipe 20... Sealed standpipe 22, 26... Gas phase part 24... Sealed supply tank 28... Pressure equalization pipe 29... High pressure gas cylinder 30-・Tank 32・...Small diameter cylindrical tube (tank) 34, 40...Lid 36.
... Square tube 38 ... Partition parts 42.42a, 42b, 48, 50.52 - ... Communication ports 44, 46 ... Connection port 53.54 ... Pressure equalization hole A, 8. C...Pulsating wave measurement position H...Liquid level ha before pump startup...Liquid level h1 in the inner chamber while pump is starting...
Liquid level in the outer room while the pump is running FIG, I FIG, 2 Encounter→Fio, 3 FIG, 4 FIG, 5 FIo 8 FIG, 9

Claims (4)

【特許請求の範囲】[Claims] (1)往復動ポンプ吸込管に接続され、この往復動ポン
プの吸込時に生ずる吸込管内の脈動を低減する往復動ポ
ンプ吸込管内の脈動緩衝装置において、 前記吸込管の往復動ポンプ吸込口近傍に槽 を接続し、この槽内に多数の仕切り部で仕切られた多数
の液密の部屋を設け、これらの多数の部屋は異なる位置
関係において連通することを特徴とする往復動ポンプ吸
込管内の脈動緩衝装置。
(1) In a pulsation buffering device in a reciprocating pump suction pipe that is connected to a reciprocating pump suction pipe and reduces pulsations in the suction pipe that occur during suction of the reciprocating pump, a tank is provided in the vicinity of the reciprocating pump suction port of the suction pipe. A pulsation buffer in a reciprocating pump suction pipe characterized in that a number of liquid-tight chambers partitioned by a number of partitions are provided in the tank, and these multiple rooms communicate in different positional relationships. Device.
(2)前記槽は、天井部が開放して構成される請求項1
記載の往復動ポンプ吸込管内の脈動緩衝装置。
(2) Claim 1 in which the tank is configured with an open ceiling.
A pulsation damper in the reciprocating pump suction pipe as described.
(3)前記槽は、密閉構造とし上部に均圧穴を設けてな
る請求項1記載の往復動ポンプ吸込管内の脈動緩衝装置
(3) The pulsation damping device in a reciprocating pump suction pipe according to claim 1, wherein the tank has a sealed structure and has a pressure equalizing hole provided in the upper part.
(4)前記槽は、内部を多重に仕切られた部屋で構成さ
れる請求項1乃至3のいずれかに記載の往復動ポンプ吸
込管内の脈動緩衝装置。
(4) The pulsation damping device in a reciprocating pump suction pipe according to any one of claims 1 to 3, wherein the tank is configured with multiple partitioned rooms.
JP10029888A 1988-04-25 1988-04-25 Pulsation buffer device in inlet pipe of reciprocating-pump Pending JPH01273883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10029888A JPH01273883A (en) 1988-04-25 1988-04-25 Pulsation buffer device in inlet pipe of reciprocating-pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10029888A JPH01273883A (en) 1988-04-25 1988-04-25 Pulsation buffer device in inlet pipe of reciprocating-pump

Publications (1)

Publication Number Publication Date
JPH01273883A true JPH01273883A (en) 1989-11-01

Family

ID=14270263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10029888A Pending JPH01273883A (en) 1988-04-25 1988-04-25 Pulsation buffer device in inlet pipe of reciprocating-pump

Country Status (1)

Country Link
JP (1) JPH01273883A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2738038A1 (en) * 1995-08-23 1997-02-28 Davco Manufacturing Llc FUEL PULSATION SHOCK ABSORBER
JP2007026157A (en) * 2005-07-19 2007-02-01 Tokyo Electron Ltd Pulsation reducing device and inspection device
JP2007071364A (en) * 2005-09-09 2007-03-22 Sato Jushi Kogyo Kk Fluid pulsation mitigating device
JP2007085459A (en) * 2005-09-22 2007-04-05 Sato Jushi Kogyo Kk Fluid pulsation mitigating device
DE102010053502A1 (en) * 2010-12-04 2012-06-06 Volkswagen Ag Fluid pulsation dampener
JP2012127372A (en) * 2010-12-13 2012-07-05 Kao Corp Method of sending liquid and method of manufacturing liquid impregnated sheet
CN106286268A (en) * 2016-09-21 2017-01-04 新奥科技发展有限公司 A kind of fluid pump assemblies
WO2019000797A1 (en) * 2017-06-27 2019-01-03 广船国际有限公司 Pressure buffering-type funnel device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2738038A1 (en) * 1995-08-23 1997-02-28 Davco Manufacturing Llc FUEL PULSATION SHOCK ABSORBER
JP2007026157A (en) * 2005-07-19 2007-02-01 Tokyo Electron Ltd Pulsation reducing device and inspection device
JP2007071364A (en) * 2005-09-09 2007-03-22 Sato Jushi Kogyo Kk Fluid pulsation mitigating device
JP2007085459A (en) * 2005-09-22 2007-04-05 Sato Jushi Kogyo Kk Fluid pulsation mitigating device
JP4733486B2 (en) * 2005-09-22 2011-07-27 佐藤樹脂工業株式会社 Fluid pulsation mitigation device
DE102010053502A1 (en) * 2010-12-04 2012-06-06 Volkswagen Ag Fluid pulsation dampener
JP2012127372A (en) * 2010-12-13 2012-07-05 Kao Corp Method of sending liquid and method of manufacturing liquid impregnated sheet
CN106286268A (en) * 2016-09-21 2017-01-04 新奥科技发展有限公司 A kind of fluid pump assemblies
WO2019000797A1 (en) * 2017-06-27 2019-01-03 广船国际有限公司 Pressure buffering-type funnel device

Similar Documents

Publication Publication Date Title
US11815110B2 (en) Systems and methods for managing noise in compact high speed and high force hydraulic actuators
CN111677647A (en) A new type of compressor buffer tank
CN203867817U (en) Acoustic attenuator device used for compressor
TWI700434B (en) Pump
JPH01273883A (en) Pulsation buffer device in inlet pipe of reciprocating-pump
CN105041655B9 (en) Pulsation damping assemblies
US8591208B2 (en) Multi-frequency pulsation absorber at cylinder valve cap
WO2019134520A1 (en) Water flow pressure pulsation attenuation device and water appliance having same
CN106542103A (en) A kind of monoblock type compartment structure liquid propellant conveyer device
KR102112980B1 (en) Liquid pump
US6491065B1 (en) Surge suppression apparatus
KR100306531B1 (en) Engine fuel supply system
US20030000588A1 (en) Pulsation dampener
CN108894942A (en) A kind of polymer-injecting pump
US2631614A (en) Gas stream pulsation dampener
CN108136280A (en) For the device that a kind of liquid is exhausted
JP2002349629A (en) Hydraulic shock absorber
US3523557A (en) Pulsation dampener
RU2311584C2 (en) Pressure stabilizer
TW201522778A (en) Draining device
CN104989622A (en) Compressor and pipeline system damping energy-saving apparatus thereof
CN207598456U (en) A kind of duct type active flow pulsation damping device for large reciprocating compressor
JPH03172698A (en) Pressure pulsation absorbing device
JP2818410B2 (en) Leakless reciprocating pump
KR20040032290A (en) Pulsation absorbing device and pump with the device