JPH03171711A - Porcelain capacitor and manufacture thereof - Google Patents

Porcelain capacitor and manufacture thereof

Info

Publication number
JPH03171711A
JPH03171711A JP1311094A JP31109489A JPH03171711A JP H03171711 A JPH03171711 A JP H03171711A JP 1311094 A JP1311094 A JP 1311094A JP 31109489 A JP31109489 A JP 31109489A JP H03171711 A JPH03171711 A JP H03171711A
Authority
JP
Japan
Prior art keywords
mol
sio
point
range
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1311094A
Other languages
Japanese (ja)
Other versions
JPH0525378B2 (en
Inventor
Hiroshi Saito
博 齋藤
Mutsumi Honda
本多 むつみ
Hiroshi Kishi
弘志 岸
Hisamitsu Shizuno
寿光 静野
Koichi Chazono
広一 茶園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP1311094A priority Critical patent/JPH03171711A/en
Priority to EP90122656A priority patent/EP0430172B1/en
Priority to DE69009012T priority patent/DE69009012T2/en
Priority to US07/618,649 priority patent/US5089932A/en
Priority to KR1019900019601A priority patent/KR930004742B1/en
Publication of JPH03171711A publication Critical patent/JPH03171711A/en
Publication of JPH0525378B2 publication Critical patent/JPH0525378B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To obtain dielectric porcelain having high permittivity and a low rate of temperature change of permittivity over a wide temperature range by making Ba, Mg, Zn, Ti, etc., a fundamental component and adding an additive component such as Li, Si, etc., to it at a particular ratio. CONSTITUTION:A pair of external electrodes 16 are attached to a laminated sintered chip 15 consisting of three dielectric porcelain layers 12 and two internal electrodes 14 to form a laminated porcelain capacitor 10. The main component of this dielectric porcelain layer consists of (1-alpha){(Bak-xMx)Ok(Ti1-yRy) O2-y/2}+alphaCaZrO3 (where M is at least one of metal selected from between Mg, Zn, and R is at least one kind of metal from among Sc, Y, Gd, Dy, Ho, Er, Yb, Tb, Tm, Lu), and an additive component consists of at least one of metal oxide from among Li2O, SiO2 and MO (where MO is at least one of metal oxide from among BaO, SrO, CaO, MgO and ZnO). The relative permittivity of this dielectric porcelain is not less than 3000, and the rate of temperature change of the relative permittivity thereof is -15%-+15% at -55 deg.C-125 deg.C.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、誘電体磁器と少なくとも2つの電極とから或
る単層又は積層構造の磁器コンデンサ及びその製造方法
に関する. [従来の技術] 従来、積層磁器コンデンサを製造する際には、誘電体磁
器原料粉末から成るグリーンシ一ト(未焼結磁器シート
)に白金又はパラジウム等の貴金属の@電性ペーストを
所望パターンに印刷し、これを複数枚積み重ねて圧着し
、1 300℃〜1600℃の酸化性雰囲気中で焼結さ
せた.これにより、誘電体磁器と内部電極とが同時に得
られる.上述の如く、貴金属を使用すれば、酸化性雰囲
気中で高温で焼結させても目的とする内部電極を得るこ
とができる.しかし、白金、パラジウム等の貴金属は高
価であるため、必然的に積層磁器コンデンサがコスト高
になった. 上述の問題を解決することができるものとして、本件出
願人に係わる特公昭61−14607号公報には、 (Bak−xMx)OkTIO2 (但し、MはMg及
びZnの内の少なくとも1種)から成る基本成分と、L
i  OとS i O 2とから成る添加成分2 とを含む誘電体磁器組成物が開示されている.また、特
公昭61−14608号公報には、上記の特公昭61−
14607号公報のL 1 2 0とS i O 2の
代りに、Li20とSiO2とMO(但し、MOはBa
O、CaO及びSrOの内の少なくと#JIM>とから
成る添加成分とを含む誘電体磁器組成物が開示されてい
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a ceramic capacitor having a single-layer or laminated structure made of dielectric ceramic and at least two electrodes, and a method for manufacturing the same. [Prior Art] Conventionally, when manufacturing multilayer ceramic capacitors, a desired pattern of conductive paste of a precious metal such as platinum or palladium is applied to a green sheet (unsintered porcelain sheet) made of dielectric porcelain raw material powder. The sheets were printed on paper, stacked and pressed together, and sintered in an oxidizing atmosphere at 1,300°C to 1,600°C. This allows the dielectric ceramic and internal electrode to be obtained at the same time. As mentioned above, if noble metals are used, the desired internal electrodes can be obtained even if sintered at high temperatures in an oxidizing atmosphere. However, because precious metals such as platinum and palladium are expensive, the cost of multilayer ceramic capacitors has inevitably increased. As a solution to the above-mentioned problem, Japanese Patent Publication No. 14607/1987, filed by the applicant, describes a method consisting of (Bak-xMx)OkTIO2 (where M is at least one of Mg and Zn). Basic ingredients and L
A dielectric ceramic composition containing an additive component 2 consisting of i O and S i O 2 is disclosed. In addition, the above-mentioned Japanese Patent Publication No. 14608/1983 includes the above-mentioned
Instead of L 1 2 0 and S i O 2 in Publication No. 14607, Li20, SiO2 and MO (however, MO is Ba
A dielectric ceramic composition is disclosed that includes an additive component consisting of at least #JIM> of O, CaO, and SrO.

また、特公昭61−14609号公報には、(Ba1<
−x−y MxLy)OkTtO2 (但し、MはMg
及びZnの少なくとも1種、LはSr及びCaの内の少
なくとも1種)から成る基本成分とLi  OとS I
 O 2とから成る添加成分とを含む2 誘電体磁器紐成物が開示されている. また、特公昭61−14610号公報には、上記の特公
昭61−14609号公報におけるし120と8102
の代りに、L i 2 0とS i O 2とMO(但
し、MOはBaO、CaO及びSrOの内の少なくとも
1種}とから成る添加成分を含む誘電体磁器組成物が開
示されている. また、特公昭61−14611号公報には、( B a
   M  ) O  T i 02 (但し、MはM
g、k−xxk Zn.Sr及びCaの少なくとも1種)から成る基本戒
分と、B O とSiO2とから成る添加23 成分とを含む誘電体磁器組成物が開示されている。
Moreover, in Japanese Patent Publication No. 61-14609, (Ba1<
-x-y MxLy) OkTtO2 (However, M is Mg
and at least one of Zn, L is at least one of Sr and Ca), Li O and S I
A 2 dielectric porcelain composite containing an additive component consisting of O 2 is disclosed. In addition, Japanese Patent Publication No. 61-14610 also includes 120 and 8102 in the above-mentioned Japanese Patent Publication No. 61-14609.
Instead, a dielectric ceramic composition containing additive components consisting of L i 2 0, S i O 2, and MO (where MO is at least one of BaO, CaO, and SrO) is disclosed. In addition, in Japanese Patent Publication No. 14611/1983, (B a
M ) O T i 02 (However, M
g, k-xxk Zn. A dielectric ceramic composition is disclosed that includes a basic component consisting of at least one of Sr and Ca) and an additional component consisting of B O and SiO2.

また、特公昭62−1595号公報には、〈Ba   
M  ) O  T 1 02  ( f旦し、MはM
g,Zk−xxk n,Sr及びCaの内の少なくとも1種)から或る基本
成分と、B203とMO(但しMOはBaO,MgO、
ZnO,SrO及びCaOの少なくとも1種)とから或
る添加成分とを含む誘電体磁器組成物が開示されている
. また、特公昭62−1596号公報には、上記の特公昭
62−1595号公報のB2o3とMOの代りに、BO
  と3 1 0 2とMO(但しMO23 はBaO、MgO、ZnO.SrO及びCaOの内の少
なくとも1種)とから成る添加成分とを含む誘電体磁器
組成物が開示されている.これらに開示されている誘@
.体磁器組成物は、還元性雰囲気1200℃以下の条件
の焼成で得ることができ、比誘電率が2000以上、静
電容量の温度変化率が−25℃〜+85℃で±10%の
範囲にすることができるものである. [発明が解決しようとする課!] ところで、近年の電子回路の高密度化に伴い、積層コン
デンサの小型化の要求が非常に強く、これに対応する為
に、温度変化率を悪化させることなく誘電体の比誘電率
を、上記各公報に開示されている誘t体磁器組成物の比
誘電率よりも更に増大させることが望まれている. そこで、本発明の目的は、非酸化性雰囲気、1200℃
以下の温度での焼成で得るものであるにも拘らず、高い
誘電率を有し、且つ広い温度範囲にわたって誘電率の温
度変化率が小さい誘電体磁器を備えてい・る磁器コンデ
ンサ及びその製造方法を提供することにある。
In addition, in Japanese Patent Publication No. 1595/1983, <Ba
M) O T 1 02 (f day, M is M
g, Zk-xxk n, Sr and Ca), B203 and MO (however, MO is BaO, MgO,
A dielectric ceramic composition containing at least one of ZnO, SrO, and CaO) and a certain additive component is disclosed. In addition, in Japanese Patent Publication No. 62-1596, instead of B2o3 and MO in the above-mentioned Japanese Patent Publication No. 62-1595,
3 1 0 2 and an additive component consisting of MO (where MO23 is at least one of BaO, MgO, ZnO.SrO, and CaO) is disclosed. The invitations disclosed in these @
.. The body porcelain composition can be obtained by firing in a reducing atmosphere at 1200°C or lower, has a dielectric constant of 2000 or more, and has a temperature change rate of capacitance in the range of ±10% from -25°C to +85°C. It is something that can be done. [The problem that the invention tries to solve! ] By the way, with the recent increase in the density of electronic circuits, there is a strong demand for miniaturization of multilayer capacitors. It is desired to further increase the relative dielectric constant of the dielectric ceramic composition disclosed in each publication. Therefore, the purpose of the present invention is to use a non-oxidizing atmosphere at 1200°C.
A ceramic capacitor comprising dielectric ceramic that has a high dielectric constant and a small temperature change rate of dielectric constant over a wide temperature range, even though it is obtained by firing at the following temperatures, and a method for manufacturing the same: Our goal is to provide the following.

[課題を解決するための手段] 上記目的を達或するための本発明は、誘電体磁器と、前
記磁器に接触している少なくとも2つの電極とから戒る
磁器コンデンサにおいて、前記磁器が100.0重1部
の基本成分と、0.2〜5.0重量部の添加成分とから
成り、前記基本戒分が、(1−α)((Ba   M 
 )O  (Ti   Rk−XXk    1−y )O    l +αCaZr03  (ただし、Mは
V   2−y/2 Mg,Znの内の少なくとも1種の金属、RはSc,Y
,Gd..Dy,Ho、Er,Yb,Tb、Tm.Lu
の内の少なくとも1種の金属、αは0.005〜0.0
4の範囲の数値、kは1.00〜1.05の範囲の数値
、Xは0.0i 〜0.10の範囲の数値、yは0.0
4以下のOよりも大きい数値)であり、前記添加成分が
L i 2 0とStO2とMO<但し、MOはBaO
、SrO、CaO、MgO及びZnOの内の少なくとも
1種の金属酸化物)から成り、且つ前記L l 2 0
と前記SiO2と前記MOとの組成範囲がこれ等の組成
をモル%で示す三角図における前記L l 2 0が1
モル%、前記S I O 2が80モル%、前記MOが
19モル%の点(A)と、前記L i 2 0が1モル
%、前記S I O 2が39モル%、前記MOが60
モル%の点(B)と、前記Li20’が30モル%、前
記S 1 0 2が30モル%、前記MOが40モル%
の点(C)と、前記L l 2 0が50モル%、前記
S 1 0 2が50モル%、前記MOがOモル%の点
(D)と、前記L l 2 0が20モル%、前記Si
O2が80モル%、前記MOがOモル%の点(E)とを
順に結ぶ5本の直線で囲まれた領域内のものであるコン
デンサに係わるものである.なお、基本成分を示す組成
式におい゜〔、k−x,x.k、1−y,y、2−y/
2は勿論それぞれの元素の原子数を示し、(1−α)と
αは組成式の第1項R   )0 の(Ba(−xMx)Ok(Ti1,  ,  2−,
72と第2項のCaZr03との割合をモルで示すもの
であり、Baはバリウム、0は酸素、Tiはチタン、M
gはマグネシウム、Znは亜鉛である.また、Scはス
カンジウム、Yはイットリウム、Gdはガドリニウム、
Dyはジスプロシウム、HOはホロニウム、Erはエル
ビウム、Ybはイッテルビウム、Tbはテルビウム、T
mはツリウム、Luはルテチウムである.添加戒分にお
けるLi20は酸化リチウム、S 1 0 2は酸化け
い素、BaOは酸化バリウム、SrOは酸化ストロンチ
ウム、CaOは酸化カルシウム、MgOは酸化マグネシ
ウム、ZnOは酸化亜鉛である. 製造方法に係わる発明は、上記の基本成分と添加成分と
の混合物を用意する工程と、少なくとも2つの!極部分
を有する前記混合物の成形物を作る工程と、前記電極部
分を有する前記成形物を非酸化性雰囲気で焼成する工程
と、前記焼成で得られた成形物を酸化性雰囲気で熱処理
する工程とを含む磁器コンデンサの製遣方法に係わるも
のである. 〔作用効果コ 上記発明の磁器コンデンサにおける誘電体磁器を非酸化
性雰囲気、1200℃以下の焼成で得ることができる.
従って、ニッケル等の卑金属の導電性ペーストをグリー
ンシ一トに塗布し、グリーンシ一トと導電性ペーストと
を同時に焼成する方法によって磁器コンデンサを製造す
ることが可能になる.誘電体磁器の組成を本発明で特定
された範囲にすることによって、比誘電率が3000以
上、誘電体摸失tanδが2.5%以下、抵抗率ρがI
X106MΩ・cm以上であり、且つ比誘電率の温度変
化率が−55℃〜125℃で−15%〜+15%(25
℃を基準)、−25℃〜85゜Cでー10%〜+10%
(20℃を基準〉の範囲に収まる誘!#磁器を備えたコ
ンデンサを提供することができる. [実a例] 次に、本発明に従う実施例及び比較例について説明する
. まず、本発明に従う基本成分の組成式 ( 1 −α 冫  (  (Ba k−x  M x
 )O k  (Ti  1,  R)O    )+
αCaZrO3における第1項Y   2−y/2 の(Ba  M  )O  (Ti  R  )Ok−
x  x   k    1−y  y   2−y/
2 (以下第1基本成分と呼ぶ)を第1表及び第2表の
試料ぬ1のk−x,x,y,kの欄に示す割合で得るた
め、換言すれば、(Ba0.96M0.06)0   
(Ti   R   )O    、更に詳細に1.0
2      0.99  0.01    1.99
5!よ− MO.06=Mg O.05ZnO.01及
びRo.ot= Y bo.oiであるので、 ( Ba0.96Mgo.asZnQ.01) 01.
02’ T’ 0.99YbO.01)01.995を
得るために、純度99.0%以上のB a C O 3
(炭酸バリウム)、MgO(酸化マグネシウム),Zn
O(酸化亜鉛)、及びTie(酸化チタン)、Yb20
3 (酸化イ2 ッテルビウム)を用意し、不純物を目方に入れないで BaCO  :1041.96g(0.96モル3 部相当) MgO: 1 1.09g (0.05モル部相当)Z
nO: 4.48g (0.01モル部相当)TiO2
 : 435.06g (0.99モル部相当) Yb  O  :10.84g(0.005モル部23 相当)を秤量した. 次に、秤量されたこれ等の原料をボットミル(pot 
Ilill)に入れ、更にアルミナボールと水2.5j
とを入れ、15時間湿式攪拌した後、攪拌物をステンレ
スポットに入れて熱風式乾燥器で150℃、4時間乾燥
した.次にこの乾燥物を粗粉砕し、この粗粉砕物をトン
ネル炉にて大気中で1200℃、2時間仮焼し、上記組
成式の第1基本戒分を得た. また、基本成分の組成式の第2項のCaZrO3 (以
下、第2基本成分と呼ぶ)を得るために、CaCO  
(炭酸カルシウム〉とZ r O 2  (酸化3 ジルコニウム)とが等モルとなる様に前者を448.9
6g二後者を551.04gをそれぞれ秤量し、これ等
を混合し、乾燥し、粉砕した後に、約1250℃で2時
間大気中で仮焼した.つぎに、第1表の試料Nα1に示
すように1−αが0.98モル、αが0.02モルとな
るように、98モル部(984.34g)の第1基本成
分(Ba0.96MgO.05ZnO.01)01.0
2( T’ 0.99”b0.01> 01.995の
粉末と、2モル部(15.66g)の第2基本成分( 
C a Z r O s )の粉末とを混合して100
0gの基本成分を得た.一方、第3表の試料Nα1の添
加戒分を得るために、L i 2 0を0.44g (
1モル部)と、SiO2を70.99g (80モル部
)と、B aco3を11.Log (3.8モル部)
と、C aco3を14.70g (9.5モル部)と
、MgOを3.40g (5.7モル部)とをそれぞれ
秤量し、この混合物にアルコールを300CC加え、ポ
リエチレンボットにてアルミナボールを用いて10時間
攪拌した後、大気中1000℃で2時間仮焼或し、これ
を300ccの水と共にアルミナポットに入れ、アルミ
ナボールで15時間粉砕し、しかる後、150℃で4時
間乾燥させてL 1 2 0が1モル%、S 1 0 
2が80モル%、MOが19モル%(BaO  3.8
モノレ%+Ca09.5モノレ%+MgO  5.7モ
ル%〉の組成の添加成分の粉末を得た.なお、MOの内
容であるBaOとCaOとMgOとの割合は第3表に示
すように20モル%、50モル%、30モル%となる.
次に、100fJ.量部(1000g)の基本戒分に2
重量部(20g)の添加戒分を添加し、更に、アクリル
酸エステルボリマー、グリセリン、縮合リン酸塩の水溶
液から成る有機バインダを基本成分と添加成分との合計
重量に対して15重量%添加し、更に、50重量%の水
を加え、これ等をボールミルに入れて粉砕及び混合して
磁器原料のスラリーを作製した. 次に、上記スラリーを真空脱泡機に入れて脱泡し2、こ
のスラリーをリバースロールコー夕に入れ、ここから得
られる薄膜成形物を長尺なポリエステルフィルム上に連
続して受け取ると共に、同フィルム上でこれを100℃
に加熱して乾燥させ、厚さ約25μmの未焼結磁器シー
トを得た.このシートは長尺なものであるが、これを1
01角の正方形に裁断して使用する. 一方、内部$極用の導電ペーストは、粒径平均1.5μ
mのニッケル粉末10gと、エチルセルロース0.9g
をプチルカルビトール9.1gに溶解させたも′のとを
攪拌機に入れ、10時間攪拌することにより得た.この
導電ペーストを長さ14關、幅7間のパターンを50個
有するスクリーンを介して上記未焼結磁器シートの片測
に印刷した後、これを乾燥させた. 次に、上記印刷面を上にして未焼結磁器シートを2枚積
層した.この際、隣接する上下のシートにおいて、その
印刷面がパターンの長平方向に約半分程ずれるように配
置した.更に、この積層物の上下両面にそれぞれ4枚ず
つ厚さ60μmの未焼結磁器シートを8!層した.次い
で、この積層物を約50℃の温度で厚さ方向に約40ト
ンの荷重を加えて圧着させた.しかる後、この積層物を
格子状に裁断し、50個の積層チップを得た.次に、こ
の積層体を雰囲気焼成が可能な炉に入れ、大気雰囲気中
で100゜C/hの速度で600℃まで昇温して、有機
バインダを燃焼させた.しかる後、炉の雰囲気を大気か
らH2 (2体積%)十N2 (98体積%)の雰囲気
に変えた.そして、炉を上述の如き還元性雰囲気とした
状態を保って、積層体加熟温度を600℃から焼結温度
の1150℃まで、100℃/hの速度で昇温して11
50℃(最高温度)を3時間保持した後、100゜C/
hの速度で600℃まで降温し、雰囲気を大気雰囲気(
酸化性雰囲気)におきかえて、600℃を30分間保持
して酸化処理を行い、その後、室温まで冷却してWI層
焼結体チップを作製した.次に、第1図に示すM層磁器
コンデンサ10を得るために、3つの誘電体磁器層l2
と2つの内部電優14とから成る積層焼結体チップ15
に一対の外部電極16を形威した.なお、外部電極16
は、@極が露出する焼結体チップ15の側面に亜鉛とガ
ラスフリット(gfass  frit)とビヒクル(
vehicle)とから成る導電性ペーストを塗布して
乾燥し、これを大気中で550℃の温度で15分間焼付
け、亜鉛電極層18を形成し、更にこの上に無電解メッ
キで法で銅層20を形成し、更にこの上に電気メッキ法
でpb−Sn半田層22を設けたものから成る.このコ
ンデンサ10の誘t体磁器層12の厚さは0.02m、
一対の内部電極14の対向面積は5 wmX 5 am
 = 2 5 ma 2である.ナオ、fi m f&
 ノ?iii器層12の組成は、焼結前の基本成分と添
加或分との混合組戒と実質的に同じである. 次に、コンデンサ10の電気的特性を測定し、その平均
値を求めたところ、第3表に示す如く、比誘電率ε3が
3930、tanδが1.1%、抵抗率ρが6.5X1
06MΩ・CI1,25℃の静電容量を基準にした−5
5℃及び+125℃の静電容量の変化率ΔC  、ΔC
125が−10.2%、−55 +3.1%、20℃の静電容量を基準にした−25℃、
+85℃の静電容量の変化率ΔC− 、Δ25 C85は−5、5%、−6.0%であった.なお、電気
的特性は次の要領で測定した.(A)  比誘電率ε,
は、温度20℃、周波数1 kHz,電圧(実効値)1
.OVの条件で静電容量を測定し、この測定値一対の内
部電極14の対向面積25簡2と一対の内部電極14間
の磁器層12の厚さ0.02+m+から計算で求めた.
(B)  誘電体損失tanδ(%)は比誘電率と同一
条件で測定した. (C)  抵抗率ρ《MΩ・cIm)は、温度20℃に
おいてDC 1 0 0Vを1分間印加した後に一対の
外部t極16間の抵抗値を測定し、この測定値と寸法と
に基づいて計算で求めた. (D)  静電容量の温度特性は、恒温槽の中に試料を
入れ、−55℃、−25℃、O℃、+20℃、25℃、
+40℃、+60℃、+85℃、+105℃、+125
℃の各温度において、周波数l kHz.電圧(実効値
)1.OVの条件で静電容量を測定し、20’C及び2
5℃の時の静電容量に対する各温度における変化率を求
めることによって得た. 以上、試料Nα1の作製方法及びその特性について述べ
たが、試料NQ2〜131についても、基本戒分及び添
加戒分の組成、これ等の割合、及び還元性雰囲気での焼
成温度を第1表〜第4表に示すように変えた他は、試料
Nα1と全く同一の方法でWi層磁器コンデンサを作製
し、同一方法で電気的特性を測定した. 第1表には、基本戒分を示す組成式における(1−α)
とα二)k−xとXが示され、Xの欄のMg,Znは一
般式のMの内容を示し、Mg,Znの欄にはこれ等の原
子数が示され、合計の欄にはこれ等の合計値(X値〉が
示されている.第2表には基本成分を示す組成式におけ
るRの内容と量及びkの値が示されている.即ち、yの
欄のSe,Y、’ Gd,DV,Ho,Er,Ybは一
般式のRの内容を示し、これ等の欄にはこれ等の原子数
が示され、合計の欄にはこれ等の合計値が示されている
, :にはそれぞれの試料の添加成分の添加量乙が示されて
いる.添加成分の添加量は基本成分100重量部に対す
る重量部で示されている.第3表の添加成分のMOの内
容の欄には、Bao,MHO,ZnO,SrO,CaO
の割合がモル%で示されている. 第4表は各試料の焼成温度及び電気的特性を示す.この
第4表において、静電容量の温度特性は、25℃の静電
容量を基準にした−55℃及び+125℃の静電容量変
化率ΔC  (%)及びΔC−55 1i5(%》と、20℃の静電容量を基準にしたー25
℃及び+85℃の静電容量変化率ΔC−25(%)及び
ΔC85《%)とで示されている.第1表〜第4表から
明らかな如く、本発明に従う試料では、非酸化性雰囲気
、1200゜C以下の焼成で、比誘電率ε8が3000
以上、誘電体損失tanδが2.5%以下、抵抗率ρが
I X 1 06MΩ・CI1以上、静電容量の温度変
化率ΔC−55及びΔC125が−15%〜+15%、
ΔC−25及びΔC85は−10%〜+10%の範囲と
なり、所望特性のコンデンサを得ることが出来る.一方
、試料Nail〜16、42、47、48、53、59
、62、65、68、71、74、77、78、82、
83、87、88、96〜98、104、105、10
9、110、114、119、131では本発明の目的
を達成することができない.従って、これ等は本発明の
範囲外のものである.第4表にはΔC  、ΔC125
、ΔC−25、Δ−55 C85のみが示されているが、本発明の範囲に属する試
料の−25℃〜+85℃の範囲の種々の静電容量の変化
率ΔCは、−10%〜+10%の範囲に収まり、また、
−55℃〜+125℃の範囲の種々の静電容量の変化率
ΔCは、−15%〜+15%の範囲に収まっている. 次に、組成の限定理由について述べる.xL:y)値が
、試料NQ88、98に示す如く、零の場合には、ΔC
−25が−10%〜+10%の範囲外、ΔC−55が−
15%〜+15%の範囲外となるが、試料NQ89、9
9に示す如く、Xの値が0.01の場合には、所望の電
気的特性を得ることができる.従って、Xの値の下限は
0.01である.一方、試料NQ 9 6、97、10
4に示す如く、Xの値が0.12の場合には、ΔC85
が−10%〜+10%の範囲外となるが、試料NQ94
、95、103に示す如く、Xの値が0.10の場合に
は、所望の電気的特性を得ることができる.従って、X
の値の上限は0,10である.なお、M成分のMgとZ
nとはほぼ同様に働き、これ等から選択されfS1・つ
を使用しても、又は複数を使用しても同様な結果が得ら
れる.そして、M成分の1種又は複数種の何れの場合に
おいてもXの値を0.01〜0.10の範囲にすること
が望ましい.yの値が、試料NQ59、62、65、6
8、71、74、77に示す如く、0.06の場合には
緻密な焼結体が得られないが、試料No. 5 8、6
1、64、67、70、73、76に示す如く、yの値
が0.04の場合には所望の電気的特性を得ることがで
きる.従って、yの値の上限は0.04である.なお、
R成分のSc,Y.Dy,Ho、Er,Ybはほぼ同様
に働き、一これ等から選択された1つを使用しても、又
は複数を使用しても同様な結果が得られる.そして、R
成分が1種又は複数種のいずれの場合に於いてもyの値
を0.04以下の範囲にすることが望ましい.また、y
は0.04以下であれば、0に近い微量であってもそれ
なりの効果がある.なお、組戒式Rで示す成分は、静電
容量の温度特性の改善に寄与する.即ち、R成分の添加
によって−55℃〜125℃の範囲での静電容量の温度
変化率△C−5.〜ΔC1。
[Means for Solving the Problems] To achieve the above object, the present invention provides a ceramic capacitor comprising a dielectric ceramic and at least two electrodes in contact with the ceramic, wherein the ceramic is 100. It consists of 0 parts by weight of basic components and 0.2 to 5.0 parts by weight of additional components, and the basic precepts are (1-α)((Ba M
)O (Ti Rk-XXk 1-y )O l +αCaZr03 (However, M is at least one metal among V 2-y/2 Mg, Zn, R is Sc, Y
, Gd. .. Dy, Ho, Er, Yb, Tb, Tm. Lu
at least one metal of the following, α is 0.005 to 0.0
4, k is a value in the range of 1.00 to 1.05, X is a value in the range of 0.0i to 0.10, y is 0.0
4 or less), and the additive components are L i 2 0, StO2, and MO<However, MO is BaO
, SrO, CaO, MgO and ZnO), and the L l 2 0
The composition range of the SiO2 and the MO is such that the L l 2 0 in the triangular diagram showing these compositions in mol% is 1.
Point (A) where the S I O 2 is 80 mol % and the MO is 19 mol %, and the point (A) where the L i 2 0 is 1 mol %, the S I O 2 is 39 mol %, and the MO is 60 mol %
Point (B) of mol%, the Li20' is 30 mol%, the S102 is 30 mol%, and the MO is 40 mol%.
point (C), the point (D) where the L l 2 0 is 50 mol %, the S 1 0 2 is 50 mol %, the MO is O mol %, the L l 2 0 is 20 mol %, The Si
This relates to a capacitor that is within an area surrounded by five straight lines connecting in order the point (E) where O2 is 80 mol % and MO is 0 mol %. In addition, in the composition formula showing the basic components, ゜[, k-x, x. k, 1-y, y, 2-y/
2 of course indicates the number of atoms of each element, and (1-α) and α are (Ba(-xMx)Ok(Ti1, , 2-,
72 and the second term CaZr03 in moles, Ba is barium, 0 is oxygen, Ti is titanium, M
g is magnesium and Zn is zinc. In addition, Sc is scandium, Y is yttrium, Gd is gadolinium,
Dy is dysprosium, HO is holonium, Er is erbium, Yb is ytterbium, Tb is terbium, T
m is thulium and Lu is lutetium. In the additive precepts, Li20 is lithium oxide, S 1 0 2 is silicon oxide, BaO is barium oxide, SrO is strontium oxide, CaO is calcium oxide, MgO is magnesium oxide, and ZnO is zinc oxide. The invention related to the manufacturing method includes a step of preparing a mixture of the above-mentioned basic component and an additive component, and at least two steps! a step of producing a molded article of the mixture having an electrode portion; a step of firing the molded article having the electrode portion in a non-oxidizing atmosphere; and a step of heat-treating the molded article obtained by the firing in an oxidizing atmosphere. This relates to the manufacturing method of porcelain capacitors, including porcelain capacitors. [Operations and Effects] The dielectric ceramic in the ceramic capacitor of the above invention can be obtained by firing in a non-oxidizing atmosphere at 1200°C or lower.
Therefore, it becomes possible to manufacture a ceramic capacitor by applying a conductive paste of a base metal such as nickel to a green sheet and firing the green sheet and the conductive paste simultaneously. By setting the composition of the dielectric ceramic within the range specified in the present invention, the dielectric constant is 3000 or more, the dielectric loss tan δ is 2.5% or less, and the resistivity ρ is I.
X106MΩ・cm or more, and the temperature change rate of relative dielectric constant is -15% to +15% (25
(based on ℃), -10% to +10% at -25℃ to 85℃
(Reference: 20°C) It is possible to provide a capacitor equipped with porcelain. [Example A] Next, examples and comparative examples according to the present invention will be described. First, according to the present invention Compositional formula of basic components (1 −α 冫 ((Ba k−x M x
)O k (Ti 1, R)O )+
(Ba M ) O (Ti R ) Ok- of the first term Y 2-y/2 in αCaZrO3
x x k 1-y y 2-y/
2 (hereinafter referred to as the first basic component) at the ratio shown in the k-x, x, y, k column of sample No. 1 in Tables 1 and 2, in other words, (Ba0.96M0. 06)0
(TiR)O, more specifically 1.0
2 0.99 0.01 1.99
5! Yo- MO. 06=MgO. 05ZnO. 01 and Ro. ot= Y bo. Since oi, (Ba0.96Mgo.asZnQ.01) 01.
02'T' 0.99YbO. 01) To obtain 01.995, B a C O 3 with a purity of 99.0% or more
(barium carbonate), MgO (magnesium oxide), Zn
O (zinc oxide), and Tie (titanium oxide), Yb20
3 (ytterbium oxide), without adding any impurities, BaCO: 1041.96g (equivalent to 0.96 mol 3 parts) MgO: 1 1.09g (equivalent to 0.05 mol part) Z
nO: 4.48g (equivalent to 0.01 mole part) TiO2
: 435.06 g (equivalent to 0.99 mol part) Yb O : 10.84 g (equivalent to 0.005 mol part 23) were weighed. Next, these weighed raw materials are put into a bot mill (pot mill).
Add alumina ball and 2.5j of water.
After wet stirring for 15 hours, the stirred material was placed in a stainless steel pot and dried in a hot air dryer at 150°C for 4 hours. Next, this dried material was coarsely pulverized, and the coarsely pulverized material was calcined in the atmosphere at 1200° C. for 2 hours in a tunnel furnace to obtain the first basic precept of the above compositional formula. In addition, in order to obtain CaZrO3 (hereinafter referred to as the second basic component) in the second term of the compositional formula of the basic component, CaCO
(Calcium carbonate) and Z r O 2 (3 zirconium oxide) were added to 448.9 mols of the former so that they were equal in mole.
6g of the latter and 551.04g of each were weighed, mixed, dried, crushed, and then calcined in the air at about 1250°C for 2 hours. Next, as shown in sample Nα1 in Table 1, 98 mol parts (984.34 g) of the first basic component (Ba0.96MgO .05ZnO.01)01.0
2 (T'0.99"b0.01>01.995 powder and 2 mole parts (15.66 g) of the second basic component (
C a Z r O s ) powder and mixed with 100
0g of basic ingredients were obtained. On the other hand, in order to obtain the additive amount of sample Nα1 in Table 3, 0.44 g of L i 2 0 (
1 mole part), 70.99 g (80 mole parts) of SiO2, and 11.9 g (80 mole parts) of Baco3. Log (3.8 mole parts)
Weighed 14.70 g (9.5 mol parts) of Caco3 and 3.40 g (5.7 mol parts) of MgO, added 300 cc of alcohol to this mixture, and made alumina balls in a polyethylene bottle. After stirring for 10 hours, the mixture was calcined in the air at 1000°C for 2 hours, placed in an alumina pot with 300cc of water, crushed with an alumina ball for 15 hours, and then dried at 150°C for 4 hours. L 1 2 0 is 1 mol %, S 1 0
2 is 80 mol%, MO is 19 mol% (BaO 3.8
A powder of additive components having a composition of 9.5% monomer + 9.5 mol% Ca + 5.7 mol% MgO was obtained. Note that the proportions of BaO, CaO, and MgO, which are the contents of MO, are 20 mol%, 50 mol%, and 30 mol%, as shown in Table 3.
Next, 100fJ. 2 for the basic precepts of quantity (1000g)
Parts by weight (20 g) of additives were added, and an organic binder consisting of an aqueous solution of acrylic acid ester polymer, glycerin, and condensed phosphate was added in an amount of 15% by weight based on the total weight of the basic components and additive components. Then, 50% by weight of water was added, and these were placed in a ball mill to be ground and mixed to prepare a slurry of porcelain raw materials. Next, the above slurry is put into a vacuum deaerator to defoam 2, and this slurry is put into a reverse roll coater, and the thin film molded product obtained therefrom is continuously received on a long polyester film, and the same Heat this on the film at 100℃
The material was heated to dry to obtain an unsintered porcelain sheet with a thickness of about 25 μm. This sheet is long, but it is
01 Cut into squares and use. On the other hand, the conductive paste for the internal $ electrode has an average particle size of 1.5μ
10g of nickel powder and 0.9g of ethyl cellulose
was dissolved in 9.1 g of butyl carbitol, then placed in a stirrer and stirred for 10 hours. This conductive paste was printed on one side of the unsintered porcelain sheet through a screen having 50 patterns 14 in length and 7 in width, and then dried. Next, two unsintered porcelain sheets were laminated with the printed side facing up. At this time, the adjacent upper and lower sheets were arranged so that their printed surfaces were shifted by about half in the longitudinal direction of the pattern. Furthermore, 8 sheets of unsintered porcelain with a thickness of 60 μm were placed on each of the top and bottom surfaces of this laminate. Layered. Next, this laminate was compressed at a temperature of about 50° C. by applying a load of about 40 tons in the thickness direction. Thereafter, this laminate was cut into a grid shape to obtain 50 laminate chips. Next, this laminate was placed in a furnace capable of firing in an atmosphere, and the temperature was raised to 600°C at a rate of 100°C/h in an air atmosphere to burn the organic binder. Thereafter, the atmosphere in the furnace was changed from air to an atmosphere containing H2 (2% by volume) and N2 (98% by volume). Then, while maintaining the reducing atmosphere in the furnace as described above, the laminate ripening temperature was increased from 600°C to the sintering temperature of 1150°C at a rate of 100°C/h.
After holding 50℃ (maximum temperature) for 3 hours, 100℃/
The temperature is lowered to 600℃ at a rate of h, and the atmosphere is changed to an atmospheric atmosphere (
The sample was changed to an oxidizing atmosphere (oxidizing atmosphere), maintained at 600°C for 30 minutes, and then subjected to oxidation treatment, and then cooled to room temperature to produce a WI layer sintered chip. Next, in order to obtain the M-layer ceramic capacitor 10 shown in FIG.
A laminated sintered chip 15 consisting of
A pair of external electrodes 16 were installed. Note that the external electrode 16
Zinc, glass frit (gfass frit) and vehicle (
A conductive paste consisting of a vehicle) is applied and dried, and this is baked in the air at a temperature of 550° C. for 15 minutes to form a zinc electrode layer 18, and a copper layer 20 is further applied on this by electroless plating. A pb-Sn solder layer 22 is formed on the pb-sn solder layer 22 by electroplating. The thickness of the dielectric ceramic layer 12 of this capacitor 10 is 0.02 m,
The opposing area of the pair of internal electrodes 14 is 5 wmX 5 am
= 2 5 ma 2. Nao, fi m f&
of? The composition of the third layer 12 is substantially the same as the mixture of the basic components and some additives before sintering. Next, the electrical characteristics of the capacitor 10 were measured and the average values were calculated. As shown in Table 3, the relative dielectric constant ε3 was 3930, the tan δ was 1.1%, and the resistivity ρ was 6.5
06MΩ・CI1, -5 based on capacitance at 25℃
Rate of change of capacitance ΔC, ΔC at 5℃ and +125℃
125 is -10.2%, -55 +3.1%, -25℃ based on the capacitance at 20℃,
The capacitance change rates ΔC- and Δ25C85 at +85°C were -5, 5%, and -6.0%. The electrical characteristics were measured as follows. (A) Relative permittivity ε,
is a temperature of 20°C, a frequency of 1 kHz, and a voltage (effective value) of 1
.. The capacitance was measured under OV conditions, and the measured value was calculated from the opposing area of the pair of internal electrodes 14 (25cm2) and the thickness of the ceramic layer 12 between the pair of internal electrodes 14 (0.02+m+).
(B) Dielectric loss tanδ (%) was measured under the same conditions as the relative dielectric constant. (C) Resistivity ρ《MΩ・cIm) is determined by measuring the resistance value between a pair of external t-poles 16 after applying DC 100V for 1 minute at a temperature of 20°C, and based on this measured value and dimensions. Obtained by calculation. (D) Temperature characteristics of capacitance were determined by placing the sample in a constant temperature bath, -55°C, -25°C, 0°C, +20°C, 25°C,
+40℃, +60℃, +85℃, +105℃, +125
At each temperature in °C, the frequency l kHz. Voltage (effective value) 1. The capacitance was measured under OV conditions, 20'C and 2
It was obtained by calculating the rate of change at each temperature with respect to the capacitance at 5°C. The preparation method of sample Nα1 and its characteristics have been described above, but for samples NQ2 to 131, the compositions of basic components and added components, their proportions, and the firing temperature in a reducing atmosphere are shown in Table 1. A Wi-layer ceramic capacitor was manufactured in exactly the same manner as Sample Nα1, except for the changes shown in Table 4, and its electrical characteristics were measured in the same manner. Table 1 shows (1-α) in the composition formula showing the basic precepts.
and α2)k-x and shows the total value (X value) of these. Table 2 shows the content and amount of R and the value of k in the composition formula showing the basic components. That is, Se in the y column , Y, ' Gd, DV, Ho, Er, Yb indicate the content of R in the general formula, the number of atoms of these is shown in these columns, and the total value of these is shown in the total column. , : indicates the added amount of the added ingredient for each sample.The added amount of the added ingredient is shown in parts by weight based on 100 parts by weight of the basic ingredient. In the MO content column, Bao, MHO, ZnO, SrO, CaO
The percentage is shown in mol%. Table 4 shows the firing temperature and electrical characteristics of each sample. In this Table 4, the temperature characteristics of capacitance are the capacitance change rate ΔC (%) and ΔC-55 1i5 (%) at -55 °C and +125 °C based on the capacitance at 25 °C, -25 based on capacitance at 20℃
The capacitance change rate at ℃ and +85℃ is shown as ΔC-25 (%) and ΔC85《%). As is clear from Tables 1 to 4, the samples according to the present invention have a dielectric constant ε8 of 3000 when fired in a non-oxidizing atmosphere at 1200°C or less.
Above, dielectric loss tan δ is 2.5% or less, resistivity ρ is IX106MΩ・CI1 or more, temperature change rate of capacitance ΔC-55 and ΔC125 is -15% to +15%,
ΔC-25 and ΔC85 are in the range of -10% to +10%, making it possible to obtain a capacitor with desired characteristics. On the other hand, sample Nail~16, 42, 47, 48, 53, 59
, 62, 65, 68, 71, 74, 77, 78, 82,
83, 87, 88, 96-98, 104, 105, 10
9, 110, 114, 119, and 131 cannot achieve the object of the present invention. Therefore, these are outside the scope of the present invention. Table 4 shows ΔC, ΔC125
, ΔC-25, Δ-55 Only C85 is shown, but the various capacitance change rates ΔC in the range of -25°C to +85°C of samples belonging to the scope of the present invention are -10% to +10%. % range, and
The various capacitance change rates ΔC in the range of -55°C to +125°C are within the range of -15% to +15%. Next, we will discuss the reasons for limiting the composition. xL:y) value is zero as shown in samples NQ88 and 98, ΔC
-25 is outside the range of -10% to +10%, ΔC-55 is -
Although it is outside the range of 15% to +15%, samples NQ89, 9
9, when the value of X is 0.01, desired electrical characteristics can be obtained. Therefore, the lower limit of the value of X is 0.01. On the other hand, samples NQ 9 6, 97, 10
4, when the value of X is 0.12, ΔC85
is outside the range of -10% to +10%, but sample NQ94
, 95, 103, when the value of X is 0.10, desired electrical characteristics can be obtained. Therefore, X
The upper limit of the value of is 0,10. In addition, M component Mg and Z
n works in almost the same way, and the same result can be obtained even if fS1·one selected from these or more than one is used. It is desirable that the value of X be in the range of 0.01 to 0.10 in either case of one type or multiple types of M components. The value of y is for samples NQ59, 62, 65, 6.
As shown in samples No. 8, 71, 74, and 77, a dense sintered body cannot be obtained in the case of 0.06; 5 8, 6
As shown in Figures 1, 64, 67, 70, 73, and 76, desired electrical characteristics can be obtained when the value of y is 0.04. Therefore, the upper limit of the value of y is 0.04. In addition,
R component Sc, Y. Dy, Ho, Er, and Yb work almost in the same way, and the same result can be obtained even if one selected from them is used or a plurality of them are used. And R
Regardless of whether there is one component or multiple components, it is desirable to keep the value of y within the range of 0.04 or less. Also, y
If it is 0.04 or less, even a small amount close to 0 will have some effect. Note that the component indicated by the formula R contributes to improving the temperature characteristics of capacitance. That is, by adding the R component, the temperature change rate of capacitance in the range of -55°C to 125°C is ΔC-5. ~ΔC1.

5を−15%〜+15%の範囲に容易に収めることが可
能になると共に、−25°C〜85゜Cの範囲での静電
容量の温度変化率ΔC−25〜ΔC8.を−10%〜+
10%の範囲に容易に収めることが可能になり、且つ各
温度範囲における静電容量の温度変化率の変動幅を小さ
くすることができる.また、R戒分は抵抗率ρを大きく
する作用及び焼結性を高める作用を有する. αの値が試料NQ78、83に示す如く、零の場合には
、ΔC−25が−10%〜+10%の範囲外、ΔC−5
5が−15%〜+15%の範囲外となるが、試!MNn
79、84に示す如く、αの値が0.005の場合には
、所望の電気的特性を得ることができる.従って、αの
値の下限は0.005である.一方、試料N082、8
7に示す如く、αの値が0.05の場合には、八〇85
が−10%〜+10%の範囲外となるが、試料NQ81
、86に示す如く、αの値が0.04の場合には所望の
電気的特性を得ることができる.従って、αの値の上限
は0.04である. kの値が、試料NQ105、110に示す如く、6 1.0よりも小さい場合には、ρがIXIO  MΩ・
CI未満となり、大幅に低くなるが、試料NQI06、
111に示す如く、kの値が1.OOの場台には、所望
の電気的特性が得られる.従って、kの値の下限はi.
ooである.一方、kの値が、試料No. 1 0 9
、114に示す如く、1.05より大きい場合にはff
i密な焼結体が得られないが、試料No.99〜103
、108、113に示す如く、kの値が1.05の場合
には所望の電気的特性が得られる、従って、kの値の上
限は1.05である. 添加成分の添加量が零の場合には、試料NQ42、48
から明らかな如く、焼成温度が1250℃であっても緻
密な焼結体が得られないが、試INQ43、49に示す
如く、添加量が100重量部の基本成分に対して0、2
重量部の場合には、1180〜1190℃の焼成で所望
の電気的特性を有する焼結体が得られる.従って、添加
成分の下限は0.2重量部である,一方、試料NQ47
、53に示す如く、添加成分の添加量が6.0重量部の
場合には、ε が3000未満となり、更に△C−5S 5が−15%〜+15%の範囲外となるが、試料NQ4
6、52に示す如く、添加量が5.Of重量部の場合に
は所望特性を得ることができる.従って、添加量の上限
は5.Of重量部である.添加成分の好ましい組成は、
第2図のL 1 2 03 1 0 2  M Oの組
成比を示す三角図に基づいて決定することができる.三
角図の第1の点(A)は、試料No. 1の1− 12
 0が1モル%、S i O 2が80モル%、MOが
19モル%の組成を示し、第2の点(B)は、試料k2
のLf20が1モル%、S I O 2が39モル%、
MOが60モル%の組成を示し、第3の点(C)は、試
料No. 3のL 1 2 0が30モル%、S 1 
0 2が30モル%、MOが40モル%の組成を示し、
第4の点(D)は、試料No. 4のL 1 2 0が
50モル%、S t O 2が50モル%、MOがOモ
ル%の組成を示し、第5の点( B ) ハ、試科Ha
 5 f) L 1 2 0が20モル%、SiO2が
80モル%、MOがOモル%の組成を示す. 本発明の範囲に属する試料の添加成分の組成は三角図の
第1〜5の点(A)〜(E)を順に結ぶ5本の直線で囲
まれた領域内の組成になっている.この領域内の組戒と
すれば、所望の電気的特性を得ることができる.一方、
試料ね11〜16のように、添加成分の組成が本発明で
特定した範囲外となれば、ffi密な焼結体を得ること
ができない.なお、MO成分は例えば試料kl7〜21
に示す如(BaO、MgO,ZnO、SrO、CaOの
いずれか1つであってもよいし、又は他の試料で示すよ
うに適当な比率としてもよい. [変形例] 以上、本発明の実施例について述べたが、本発明はこれ
に限定されるものではなく、例えば次の変形例が可能な
ものである. (a)  基本成分の中に、本発明の目的を阻害しない
範囲で微量のM n 0 2  (好ましくは0.05
〜0.1!量%)等の鉱化剤を添加し、焼結性を向上さ
せてもよい.また、その他の物質を必要に応じて添加し
てもよい. (b)  出発原料を、実施飼で示したちの以外の酸化
物又は水酸化物又はその他の化合物としてもよい. (c)  焼成時の非酸化性雰囲気での処理の後の酸化
性雰囲気での処理の温度を600℃以外の焼結温度より
も低い温度(好ましくは500℃〜1000℃の範囲)
としてもよい.即ち、ニッケル等の電極材料と磁器の酸
化とを考慮して種々変更することが可能である. (d)  非酸化性雰囲気中の焼成温度を、電極材料を
考慮して種々変えることができる.ニッケルを内部電極
とする場合には、1050℃〜1200″Cの範囲でニ
ッケル粒子の凝集がほとんど生じない. (e)  焼結を中性雰囲気で行ってもよい.(f) 
 積層磁器コンデンサ以外の一般的な単層の磁器コンデ
ンサにも勿論適用可能である.(g)  組成式におけ
るR成分の中のTb,Tm,Luについては特に第1表
〜第4表に掲載されていないが、R或分の他のものと同
櫟に使用することができることが確認されている.
5 can be easily kept in the range of -15% to +15%, and the temperature change rate of capacitance in the range of -25°C to 85°C is ΔC-25 to ΔC8. -10% to +
It becomes possible to easily keep the capacitance within a range of 10%, and it is also possible to reduce the fluctuation range of the temperature change rate of capacitance in each temperature range. In addition, the R preservative has the effect of increasing the resistivity ρ and the effect of increasing sinterability. As shown in samples NQ78 and 83, when the value of α is zero, ΔC-25 is outside the range of -10% to +10%, and ΔC-5
5 is outside the range of -15% to +15%, but try it! MNn
As shown in 79 and 84, when the value of α is 0.005, desired electrical characteristics can be obtained. Therefore, the lower limit of the value of α is 0.005. On the other hand, sample N082, 8
As shown in 7, when the value of α is 0.05, 8085
is outside the range of -10% to +10%, but sample NQ81
, 86, when the value of α is 0.04, desired electrical characteristics can be obtained. Therefore, the upper limit of the value of α is 0.04. When the value of k is smaller than 61.0 as shown in samples NQ105 and 110, ρ is IXIO MΩ・
Although it is significantly lower than the CI, sample NQI06,
As shown in 111, when the value of k is 1. Desired electrical characteristics can be obtained in the OO stage. Therefore, the lower limit of the value of k is i.
It is oo. On the other hand, the value of k is that of sample No. 1 0 9
, 114, if it is larger than 1.05, ff
Although a dense sintered body could not be obtained, sample No. 99-103
, 108 and 113, desired electrical characteristics can be obtained when the value of k is 1.05. Therefore, the upper limit of the value of k is 1.05. When the amount of additive components added is zero, samples NQ42 and 48
As is clear from the above, even if the firing temperature is 1250°C, a dense sintered body cannot be obtained.
In the case of parts by weight, a sintered body having desired electrical properties can be obtained by firing at 1180 to 1190°C. Therefore, the lower limit of the additive component is 0.2 parts by weight, while sample NQ47
, 53, when the amount of the additive component added is 6.0 parts by weight, ε is less than 3000 and ΔC-5S5 is outside the range of -15% to +15%, but sample NQ4
As shown in 6 and 52, when the amount added is 5. In the case of parts by weight, desired characteristics can be obtained. Therefore, the upper limit of the amount added is 5. Of parts by weight. The preferred composition of the additive components is:
It can be determined based on the triangular diagram showing the composition ratio of L 1 2 03 1 0 2 M O in FIG. The first point (A) in the triangular diagram is sample No. 1-12
The second point (B) is sample k2.
of Lf20 is 1 mol%, SIO2 is 39 mol%,
The third point (C) has a composition of 60 mol % MO, and the third point (C) is sample No. 3 of L 1 2 0 is 30 mol%, S 1
02 shows a composition of 30 mol% and MO 40 mol%,
The fourth point (D) is sample no. 4, L 1 2 0 is 50 mol %, S t O 2 is 50 mol %, MO is O mol %, and the fifth point (B) is Ha.
5 f) Shows a composition of 20 mol % L 1 2 0, 80 mol % SiO2, and 0 mol % MO. The composition of the additive components of the sample that falls within the scope of the present invention is within the area surrounded by five straight lines connecting points 1 to 5 (A) to (E) in the triangular diagram in order. If the combination is within this range, the desired electrical characteristics can be obtained. on the other hand,
If the composition of the additive components falls outside the range specified in the present invention, as in samples 11 to 16, it is not possible to obtain a dense sintered body. Note that the MO component is, for example, sample kl7-21.
(It may be any one of BaO, MgO, ZnO, SrO, CaO, or it may be in an appropriate ratio as shown in other samples. [Modifications] As described above, implementation of the present invention Although the examples have been described, the present invention is not limited thereto, and the following modifications are possible, for example: (a) A trace amount of M n 0 2 (preferably 0.05
~0.1! %) may be added to improve sinterability. In addition, other substances may be added as necessary. (b) The starting materials may be oxides or hydroxides or other compounds other than those shown in the experimental feed. (c) The temperature of the treatment in the oxidizing atmosphere after the treatment in the non-oxidizing atmosphere during firing is lower than the sintering temperature other than 600 °C (preferably in the range of 500 °C to 1000 °C)
It is also possible to do this. That is, it is possible to make various changes in consideration of the electrode material such as nickel and the oxidation of the porcelain. (d) The firing temperature in a non-oxidizing atmosphere can be varied depending on the electrode material. When nickel is used as the internal electrode, almost no agglomeration of nickel particles occurs in the range of 1050°C to 1200″C. (e) Sintering may be performed in a neutral atmosphere. (f)
Of course, it can also be applied to general single-layer ceramic capacitors other than multilayer ceramic capacitors. (g) Tb, Tm, and Lu among the R components in the composition formula are not particularly listed in Tables 1 to 4, but they can be used in the same way as other R components. It has been confirmed.

【図面の簡単な説明】[Brief explanation of the drawing]

第l図は本発明の実施例に係わる積層型磁器コンデンサ
を示す断面図、 第2図は添加成分の組成範囲を示す三角図である. 12・・・磁器層、 14・・・内部電極、 1 6・・・外部電 極. 代 理 人 而 野 則 次
Figure 1 is a sectional view showing a multilayer ceramic capacitor according to an embodiment of the present invention, and Figure 2 is a triangular diagram showing the composition range of additive components. 12... Ceramic layer, 14... Internal electrode, 1 6... External electrode. Agent Noriji Jino

Claims (1)

【特許請求の範囲】 [1]誘電体磁器と、前記磁器に接触している少なくと
も2つの電極とから成る磁器コンデンサにおいて、 前記磁器が100.0重量部の基本成分と、0.2〜5
.0重量部の添加成分とから成り、前記基本成分が、 (1−α){(Ba_k_−_xM_x)O_k(Ti
_1_−_yR_y)O_2_−_y_/_2}+αC
aZrO_3(但し、MはMg、Znの内の少なくとも
1種の金属、RはSc、Y、Gd、Dy、Ho、Er、
Yb、Tb、Tm、Luの内の少なくとも1種の金属、 αは0.005〜0.04の範囲の数値、 kは1.00〜1.05の範囲の数値、 xは0.01〜0.10の範囲の数値、 yは0.04以下の0よりも大きい数値)であり、 前記添加成分がLi_2OとSiO_2とMO(但し、
MOはBaO、SrO、CaO、MgO及びZnOの内
の少なくとも1種の金属酸化物)から成り、且つ前記L
i_2Oと前記SiO_2と前記MOとの組成範囲がこ
れ等の組成をモル%で示す三角図における 前記Li_2Oが1モル%、前記SiO_2が80モル
%、前記MOが19モル%の点(A)と、前記Li_2
Oが1モル%、前記SiO_2が39モル%、前記MO
が60モル%の点(B)と、前記Li_2Oが30モル
%、前記SiO_2が30モル%、前記MOが40モル
%の点(C)と、前記Li_2Oが50モル%、前記S
iO_2が50モル%、前記MOが0モル%の点(D)
と、前記Li_2Oが20モル%、前記SiO_2が8
0モル%、前記MOが0モル%の点(E)と、を順に結
ぶ5本の直線で囲まれた領域内のものであることを特徴
とするコンデンサ。 [2]100.0重量部の基本成分と、0.2〜5.0
重量部の添加成分とから成り、前記基本成分が、 (1−a){(Ba_k_−_xM_x)O_k(Ti
_1_−_yR_y)O_2_−_y_/_2}+αC
aZrO_3(但し、MはMg、Znの内の少なくとも
1種の金属、RはSc、Y、Gd、Dy、Ho、Er、
Yb、Tb、Tm、Luの内の少なくとも1種の金属、
αは0.005〜0.04の範囲の数値、kは1.00
〜1.05の範囲の数値、xは0.01〜0.10の範
囲の数値、yは0.04以下の0よりも大きい数値)で
あり、前記添加成分がLi_2OとSiO_2とMO(
但し、MOはBaO、SrO、CaO、MgO及びZn
Oの内の少なくとも1種の金属酸化物)から成り、且つ
前記Li_2Oと前記SiO_2と前記MOとの組成範
囲がこれ等の組成をモル%で示す三角図における前記L
i_2Oが1モル%、前記SiO_2が80モル%、前
記MOが19モル%の点(A)と、前記Li_2Oが1
モル%、前記SiO_2が39モル%、前記MOが60
モル%の点(B)と、前記Li_2Oが30モル%、前
記SiO_2が30モル%、前記MOが40モル%の点
(C)と、前記Li_2Oが50モル%、前記SiO_
2が50モル%、前記MOが0モル%の点(D)と、前
記Li_2Oが20モル%、前記SiO_2が80モル
%、前記MOが0モル%の点(E)とを順に結ぶ5本の
直線で囲まれた領域内のものであることを特徴とする混
合物を用意する工程と、 少なくとも2つの電極部分を有する前記混合物の成形物
を作る工程と、 前記電極部分を有する前記成形物を非酸化性雰囲気で焼
成する工程と、 前記焼成で得られた成形物を酸化性雰囲気で熱処理する
工程と を含む磁器コンデンサの製造方法。
[Scope of Claims] [1] A ceramic capacitor comprising dielectric ceramic and at least two electrodes in contact with the ceramic, wherein the ceramic contains 100.0 parts by weight of a basic component and 0.2 to 5 parts by weight of a basic component.
.. 0 parts by weight of additional components, and the basic components are (1-α) {(Ba_k_-_xM_x)O_k(Ti
_1_-_yR_y)O_2_-_y_/_2}+αC
aZrO_3 (where M is at least one metal selected from Mg and Zn, R is Sc, Y, Gd, Dy, Ho, Er,
At least one metal among Yb, Tb, Tm, and Lu, α is a numerical value in the range of 0.005 to 0.04, k is a numerical value in the range of 1.00 to 1.05, x is 0.01 to a numerical value in the range of 0.10, y is a numerical value less than or equal to 0.04 and larger than 0), and the additive components are Li_2O, SiO_2, and MO (however,
MO consists of at least one metal oxide of BaO, SrO, CaO, MgO, and ZnO, and the L
The composition range of i_2O, the SiO_2, and the MO is a point (A) where the Li_2O is 1 mol%, the SiO_2 is 80 mol%, and the MO is 19 mol% in a triangular diagram showing these compositions in mol%. , said Li_2
O is 1 mol%, the SiO_2 is 39 mol%, the MO
Point (B) where Li_2O is 60 mol%, point (C) where Li_2O is 30 mol%, SiO_2 is 30 mol%, and MO is 40 mol%, and Li_2O is 50 mol% and the S
Point (D) where iO_2 is 50 mol% and the MO is 0 mol%
, the Li_2O is 20 mol%, and the SiO_2 is 8 mol%.
0 mol %, and the capacitor is within an area surrounded by five straight lines sequentially connecting the point (E) where the MO is 0 mol %. [2] 100.0 parts by weight of basic components and 0.2 to 5.0 parts by weight
parts by weight of additional components, and the basic components are (1-a) {(Ba_k_-_xM_x)O_k(Ti
_1_-_yR_y)O_2_-_y_/_2}+αC
aZrO_3 (where M is at least one metal selected from Mg and Zn, R is Sc, Y, Gd, Dy, Ho, Er,
At least one metal selected from Yb, Tb, Tm, and Lu;
α is a number in the range of 0.005 to 0.04, k is 1.00
~1.05, x is a value in the range of 0.01 to 0.10, y is a value less than or equal to 0.04 and larger than 0), and the additive components are Li_2O, SiO_2, and MO(
However, MO is BaO, SrO, CaO, MgO and Zn
(at least one metal oxide among
Point (A) where i_2O is 1 mol%, SiO_2 is 80 mol%, MO is 19 mol%, and Li_2O is 1 mol%.
mol%, the SiO_2 is 39 mol%, the MO is 60
point (B) where the Li_2O is 30 mol%, the SiO_2 is 30 mol%, and the MO is 40 mol%, and the point (C) where the Li_2O is 50 mol% and the SiO_
Five wires connecting in order the point (D) where 2 is 50 mol% and the MO is 0 mol%, and the point (E) where the Li_2O is 20 mol%, the SiO_2 is 80 mol%, and the MO is 0 mol%. a step of preparing a mixture characterized in that the mixture is within a region surrounded by a straight line; a step of making a molded article of the mixture having at least two electrode portions; and a step of making the molded article having the electrode portions A method for manufacturing a ceramic capacitor, comprising: firing in a non-oxidizing atmosphere; and heat-treating a molded product obtained by the firing in an oxidizing atmosphere.
JP1311094A 1989-11-30 1989-11-30 Porcelain capacitor and manufacture thereof Granted JPH03171711A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1311094A JPH03171711A (en) 1989-11-30 1989-11-30 Porcelain capacitor and manufacture thereof
EP90122656A EP0430172B1 (en) 1989-11-30 1990-11-27 Solid dielectric capacitor and method of manufacture
DE69009012T DE69009012T2 (en) 1989-11-30 1990-11-27 Solid dielectric capacitor and manufacturing method.
US07/618,649 US5089932A (en) 1989-11-30 1990-11-27 Solid dielectric capacitor and method of manufacture
KR1019900019601A KR930004742B1 (en) 1989-11-30 1990-11-30 Solid dielectric capacitor and mehtod of manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1311094A JPH03171711A (en) 1989-11-30 1989-11-30 Porcelain capacitor and manufacture thereof

Publications (2)

Publication Number Publication Date
JPH03171711A true JPH03171711A (en) 1991-07-25
JPH0525378B2 JPH0525378B2 (en) 1993-04-12

Family

ID=18013062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1311094A Granted JPH03171711A (en) 1989-11-30 1989-11-30 Porcelain capacitor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH03171711A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04218207A (en) * 1990-10-31 1992-08-07 Murata Mfg Co Ltd Dielectric porcelain composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04218207A (en) * 1990-10-31 1992-08-07 Murata Mfg Co Ltd Dielectric porcelain composition

Also Published As

Publication number Publication date
JPH0525378B2 (en) 1993-04-12

Similar Documents

Publication Publication Date Title
JPH0355002B2 (en)
JPH0355003B2 (en)
JPH0361963B2 (en)
JPH0552604B2 (en)
JPH0524656B2 (en)
JPH0552602B2 (en)
JPH0524655B2 (en)
KR930004744B1 (en) Solid dielectric capacitor and method of manufacture
KR930004743B1 (en) Solid dielectric capacitor and method of manufacture
JPH0524653B2 (en)
JPH0524654B2 (en)
JPH0524652B2 (en)
KR930004745B1 (en) Solid dielectric capacitor and method of manufacture
JPH0544764B2 (en)
JPH03171711A (en) Porcelain capacitor and manufacture thereof
JPH02228014A (en) Porcelain capacitor and manufacture thereof
JPH0552603B2 (en)
JPH0532892B2 (en)
JPH03171715A (en) Porcelain capacitor and manufacture thereof
JPH0530047B2 (en)
JPH0525379B2 (en)
JPH0530042B2 (en)
JPH0530045B2 (en)
JPH03171714A (en) Porcelain capacitor and manufacture thereof
JPH03174710A (en) Porcelain capacitor and manufacture thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080412

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090412

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100412

Year of fee payment: 17

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100412

Year of fee payment: 17