JPH03171686A - Bioelement - Google Patents

Bioelement

Info

Publication number
JPH03171686A
JPH03171686A JP1310444A JP31044489A JPH03171686A JP H03171686 A JPH03171686 A JP H03171686A JP 1310444 A JP1310444 A JP 1310444A JP 31044489 A JP31044489 A JP 31044489A JP H03171686 A JPH03171686 A JP H03171686A
Authority
JP
Japan
Prior art keywords
substrate
antibody
film
biodevice
antigen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1310444A
Other languages
Japanese (ja)
Inventor
Takeshi Koyano
武 小谷野
Minoru Saito
稔 斎藤
Masakazu Kato
雅一 加藤
Katsuaki Umibe
海部 勝晶
Hiroo Miyamoto
裕生 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP1310444A priority Critical patent/JPH03171686A/en
Publication of JPH03171686A publication Critical patent/JPH03171686A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00734Lipids

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To obtain a fluorescence intensity change field corresponding to the potential field of a visual cell wall so as to obtain a required bio-element with out inducing the deterioration of ribosome by a method wherein ribosomes containing Ca<2+> ion sensitive fluorescence dye are two-dimensionally arranged on a substrate, where the ribosome formed using either or both of biomaterial and analogous biomaterial converts incident light into the concentration change of Ca<2+> ion. CONSTITUTION:The surface of a substrate is previously made hydrophobic by dipping the substrate into octadecyltrichlorosilane. Antibody gamma-globulin obtained to phosphorus lipide antigen 35 is spread over a sub-phase water solu tion in a Langmuir-Blodgett film forming device tank, and an antibody monomo lecular film is formed on the surface of the water solution by compressing the surface of the water solution. The monomolecular film is transferred onto the surface of a substrate through a horizontal adhesion method to form an LB film. A substrate 47 provided with an LB film 49 is dipped into a ribosome suspended solution, whereby a antigen-antibody reaction is made to take place to form a bioelement.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、生物の光情報処理機能を模倣したバイオ素
子に闇するものである. (従来の技術) 従来のコンピューターは、シリコン半導体素子等によっ
て構成されており、フ才ン・ノイマン(von Neu
mann)方式によって直列型の論理演算を実行する(
以下、ノイマン型コンピューターと称する.)ものであ
った.しかしこの方式は、迅速な論理演Xを行うことは
出来たが、多数の情報処理を同時に並行して行うことは
本震的に困難であるという欠点を有していた. そこで、生物学及び大脳生理学等の知見に基づいて、ノ
イマン型コンピューターでは満足し得なかった様々な機
能をもつコンピュータいわゆるバイオコンピュータを実
現しようとする試みが多数の研究者によpて成されてい
る. 例えば、生体の機能のうちの比較的研究が進んでいる視
覚機能を模倣して視覚情報を処理しようとするバイオコ
ンピュータもその一例である.ここで、生体における視
覚機能は以下に説明するようなものである. まず、視覚を司る器官である目は周知の通り視細胞によ
って構成されている.この視細胞、特に網膜上1こ配列
している細胞は、色彩を識別する錐状体細胞と明暗を感
知する桿状体細胞と『こ大別ずることができる. 第6図は、桿状体細胞(以下、桿状体ε称する場合もあ
る.)の概略図である.11は円盤膜、13は結合繊毛
、15はミトコンドリア、17はゴルジ体、■9はミオ
イド、21は核、23は外節、25は内節、27はシナ
ブス接合部、28は桿状体である.網膜に配列された桿
V体281こ外部(図面左側)から光が入射すると、円
盤膜11{こ存在する光応答性蛋白貢であるロドブシン
に変化を生じ、このロドブシンに補欠分子族として共有
結合しているシス(cis)一レチナールがトランス(
trans)一レチナールに変化することによって円盤
膜11内に包含されているカルシウムイオンが細ll2
!質に放出される。
[Detailed Description of the Invention] (Field of Industrial Application) This invention is directed to bio-elements that imitate the optical information processing function of living organisms. (Prior Art) Conventional computers are composed of silicon semiconductor elements, etc.
mann) method to perform serial logical operations (
Hereinafter, it will be referred to as a von Neumann computer. ). However, although this method was able to perform logical operation X quickly, it had the main drawback that it was difficult to process a large number of information in parallel. Therefore, based on knowledge of biology and cerebral physiology, many researchers have attempted to create a so-called biocomputer, a computer with various functions that could not be satisfied with a Neumann type computer. There is. One example is a biocomputer that attempts to process visual information by imitating the visual function, which is a relatively well-researched biological function. Here, the visual function in living organisms is as explained below. First, as is well known, the eye, which is the organ responsible for vision, is composed of photoreceptor cells. These photoreceptor cells, especially the cells arranged in a row on the retina, can be broadly divided into cone cells, which detect color, and rod cells, which detect brightness and darkness. Figure 6 is a schematic diagram of a rod cell (hereinafter sometimes referred to as rod ε). 11 is the disc membrane, 13 is the connecting cilia, 15 is the mitochondria, 17 is the Golgi apparatus, ■9 is the myoid, 21 is the nucleus, 23 is the outer segment, 25 is the inner segment, 27 is the synaptic junction, and 28 is the rod. .. When light enters from the outside of the rod V bodies 281 arranged in the retina (left side of the figure), a change occurs in rhodobusin, a light-responsive protein present in the disc membrane 11, and covalent bonds to this rhodobusin as a prosthetic group. The cis (cis)-retinal is trans (
trans) - Calcium ions contained within the disc membrane 11 by changing into retinal
! released into the body.

細胞貢で増えたカルシウムイオンは外節23の細胞膜の
ナトリウムチャネルを閉じ細胞の膜電位の過分極を引き
起す.これはシナブス接合部27への信号となり抑制牲
神経伝達物質の放出速度が減少しシナブス後ニューロン
の興奮が起こる.この信号1よ次々と神経細胞間を伝播
しで脳で高度に情報処理ざれる.このように、視覚では
、光によって生じた網膜上の視細胞の膜電位変化の場が
脳で情報処理されパターン認識される. そして、視覚情報を処理しようとするバイオコンどユー
タを構築するため1こ視細胞を模倣した人工的なバイオ
素子の従来例としで、例えばこの出願人1こ係る特開昭
63−111428号公報Cこ開示ざれているものがあ
った。このバイオ素子は、当該バイオ素子に入射した光
をイオン又は化学物質(こ変換するブロテオリポソーム
を基板上に二次元配列して戊っていた. (発明が解決しようとする課題) しかしながら、特開昭63−111428号公報に開示
ざれたバイオ素子では、入射した光をイオン又は化学物
質に変換出来たが、入射光のバイオ素子上での位置情報
を得るためには何らかの情報変換処理か必要であった。
The increased calcium ions in the cell membrane close the sodium channels in the cell membrane of the outer segment 23, causing hyperpolarization of the cell's membrane potential. This becomes a signal to the synaptic junction 27, which reduces the release rate of inhibitory neurotransmitters and causes excitation of post-synabular neurons. This signal 1 propagates between neurons one after another and undergoes advanced information processing in the brain. In this way, in vision, the field of changes in membrane potential of photoreceptor cells on the retina caused by light is processed in the brain and recognized as a pattern. As a conventional example of an artificial biodevice imitating a photoreceptor cell in order to construct a biocomputer that processes visual information, for example, the present applicant 1 discloses Japanese Patent Application Laid-open No. 111428/1983 C. There was something that had not been disclosed. This biodevice consists of a two-dimensional array of broteoliposomes, which convert light incident on the biodevice into ions or chemicals, on a substrate. The biodevice disclosed in 1982-111428 was able to convert incident light into ions or chemical substances, but some kind of information conversion process is required to obtain positional information of the incident light on the biodevice. Met.

従って、視細胞の膜電位変化の場に対応するようなイオ
ンJ度変化の場又は化学物質濃度変化の場を直接得るこ
とが難しいため、視細胞の役割を果させようとしてもお
のずと限界があった. また、視細胞の役割を無機系或いは有機系から或る半導
体を用いたフォトダイオード等の光応答性素子を二次元
的に多数配列させたもので達戒ざせて視細胞の膜電位の
場に対応する電流変化の場を得ることも考えられるが、
フォトダイオード等を微細に配列するにも限界があるた
め、視細胞の膜電位の場{こ対応するような精緻な電流
変化の場を得ることは困難である. この発明はこのような点に鑑みなされたものであり、従
ってこの発明の目的は、生物の視覚を模倣した情報処理
形at持つバイオコンピュータの1M築に利用出来るよ
うなバイオ素子を提供することにある, (課題を解決するための手段) この目的の達成を図るため、この発明のバイオ素子によ
れば、生体物質及び生体類似物質の一方又は双方を用い
て形成され、入射した光をC a ”イオンの濃度変化
に変換するリポソームであってCa2+イオン感受性蛍
光芭素を内包したリポソームを基板上に二次元配列して
或ることを特徴とする. この発明の実施に当たり、前述のりボンームを、生物の
視細胞に存在する円盤膜を再構或したもので構或するの
が好適である. さらにこの発明の実施に当たり、前述のリポソームの基
板への固定を抗原一抗体反応を利用して行なうのが好適
である. (作用) この発明のバイオ素子によれば、入射した光をCa2+
イオン濃度変化{こ変換すると共にCa2+イオン濃度
変化に応じた蛍光強度変化に変換出来るリポソームを二
次元配列してあるため、入射した光のバイオ素子上での
位置情報従って視細胞の膜電位の場に対応するような蛍
光強度変化の場が得られる. また、リポソームの基板への固定を抗原一抗体反応によ
り行うと、その手順としでば先ず基板に抗体から或る膜
を形威しこれの不要部分を例えばガリウムイオン等のイ
オンビーム等を照射して変性除去し残存する抗体1こよ
り所望の二次元パターンを作威し、その後この抗体にリ
ポソームを固定することが出来る.このため、リポソー
ム自体がイオンビーム等によってM接加工されることが
ないため、リポソームの変質を生じさせることなく所望
のバイオ素子が得られる, (実施例) 以下、図面%9照して、この発明のバイオ素子の実施例
につき詳細に説明する.なお、説明に用いる各図は、こ
の発明を理解出来る程度に各構成成分の寸法、形状及び
配置関係ヲ概略的に示してある. 0溶ヒ 出2の雪整 まず始めに、ウシの眼球から@順応した網膜を剥離し、
この網膜の構造を破壊するため、エリトロデキストリン
ーリンゲル液中に懸濁、かくはんして視細胞浮遊液を調
整する.このときに用いたエリトロデキストリンーリン
ゲル液は、NaCj7が0.65重量%、K(lが0.
014重量%、Q a G R 2が0.012重景%
、N a H C O sが0.012重量%となるよ
うに調整したリンゲル液にエリトロデキストリンを加え
て比重ヲ1.10としたものである.この視細胞浮遊液
を遠心分離器によって、上述したエリトOデキストリン
ーリンゲル液の比重が1.10から約1.07の範囲で
密度勾配遠心する.この遠心によって沈殿する両分を採
取すること(こよっで、外節画分が得られる. 次に、この外節両分をシヨ糖溶液1こ懸濁して洗浄した
後、遠心分離して分取する.これら上述の精製操作によ
り、ほぼ単一な円盤膜画分を得ることが出来る。なお、
この実施例で説明する諸操作については、例えば文献:
生化学実験講座、第14巻「生体膜」第431頁等に示
される方法によっている。
Therefore, it is difficult to directly obtain a field for changes in ion J degree or a field for changes in chemical substance concentration that correspond to the field for changes in membrane potential of photoreceptor cells, so there are naturally limits to how they can play the role of photoreceptor cells. Ta. In addition, the role of photoreceptor cells can be fulfilled by a two-dimensional array of photoresponsive elements such as photodiodes made of inorganic or organic semiconductors, and the field of membrane potential of photoreceptor cells can be improved. It is also possible to obtain the corresponding field of current change, but
Because there are limits to the fine arrangement of photodiodes, etc., it is difficult to obtain a field of precise current changes that corresponds to the membrane potential field of a photoreceptor cell. This invention has been made in view of these points, and therefore, the purpose of this invention is to provide a bioelement that can be used to construct a 1M biocomputer that has an information processing form that imitates the visual sense of living things. (Means for Solving the Problems) In order to achieve this object, the biodevice of the present invention is formed using one or both of a biological material and a biosimilar material, and converts incident light into Ca. ``A liposome that converts into a change in the concentration of ions, and is characterized by a two-dimensional array of liposomes containing Ca2+ ion-sensitive fluorescent balms on a substrate.In carrying out this invention, the above-mentioned liposomes are Preferably, the liposome is constructed by reconfiguring the disc membrane present in photoreceptor cells of living organisms.Furthermore, in carrying out the present invention, the above-mentioned liposome is immobilized on the substrate using an antigen-antibody reaction. (Operation) According to the biodevice of the present invention, incident light is converted into Ca2+
Changes in ion concentration {Since the liposomes are two-dimensionally arranged and can be converted into changes in fluorescence intensity according to changes in Ca2+ ion concentration, the position information of the incident light on the bioelement and the field of the membrane potential of photoreceptor cells are A field of fluorescence intensity changes corresponding to is obtained. In addition, when immobilizing liposomes on a substrate by an antigen-antibody reaction, the procedure is to first form a film from antibodies on the substrate, and then irradiate unnecessary parts of this film with an ion beam such as gallium ions. A desired two-dimensional pattern can be created from the remaining antibody after denaturation and removal, and then liposomes can be immobilized on this antibody. For this reason, the liposome itself is not subjected to M-contact processing using an ion beam or the like, so the desired bioelement can be obtained without causing any deterioration of the liposome. Examples of the biodevice of the invention will be explained in detail. Each figure used in the explanation schematically shows the dimensions, shapes, and arrangement relationships of each component to the extent that this invention can be understood. First, we detached the adapted retina from the cow's eyeball,
To destroy this retinal structure, prepare a photoreceptor suspension by suspending and stirring in erythrodextrin-Ringer's solution. The erythrodextrin-Ringer's solution used at this time contained 0.65% by weight of NaCj7 and 0.65% by weight of K (l).
014% by weight, Q a G R 2 is 0.012% by weight
, Erythrodextrin was added to Ringer's solution adjusted to have a NaHCOs content of 0.012% by weight to give a specific gravity of 1.10. This photoreceptor suspension is subjected to density gradient centrifugation using a centrifuge at a density gradient of the above-mentioned Eryto-O dextrin-Ringer's solution in the range of 1.10 to about 1.07. Collect both precipitated fractions by this centrifugation (this will yield the outer segment fraction. Next, wash both outer segment fractions by suspending them in 1 sucrose solution, then centrifuge to separate them. Through these purification operations described above, an almost single disk membrane fraction can be obtained.
For the operations described in this example, see, for example:
The method described in Biochemistry Experiment Course, Vol. 14, "Biomembranes", p. 431, etc. is used.

続いて、この円盤膜画分@ IIOmM−N a C 
(1、2mM−KCA、l.8mM−C a C II
 2及び20mM−シヨ糖からなる水溶液(以下、この
水溶液を溶液Nと略称する.)に懸濁する.この円盤膜
画分懸濁液に非イオン性界面活性剤(以下、可溶化剤と
称することもある。) Triton X−100 (
ポリオキシエチレングリコールp−t−オクチルフェニ
ルエーテルの商品名)を臨界ミセル濃度(約0.24m
M)以上添加して脂貢二重層を破壊する.これによって
得られた試料溶液(以下、可溶化抽出液と称する.)の
状態を第2図(A)に示す.なお、可溶化抽出液は、実
際は、非可溶性物質(mち、光応答性タンパク質29と
リン脂質31に上述の界面活性剤がミセル状に付着した
状態(可溶化状態)のもの)で構戒ざれているが、図示
の便宜上、第2図(A)及び後述の第2図(B)では、
これらの非可溶性物貢を単分散の状態として示している
.なお、この可溶化操作において、可溶化剤をTrit
on−100としたが、可溶化剤はこれに限られるもの
ではない.例えばNP−40 Wの非イオン性界面活性
剤であればタンパク質に対する悪影響(失活、変t等)
が少ないため用いることが出来る.ブロテオリポソーム 次に、このようにして得られた可溶化抽出液に、■式で
示されるリン脂質抗原(バイオ素子を抗原一抗体反応で
得る際の他方の結合因子lこ対応する.)をリン脂貢3
1(第2図(A)参照)の1重量%程度及び■式で示さ
れるCa2+イオン濃度感受性蛍光色素Quin2 (
同仁化学研究所製、商品名)を濃度10uMとなるよう
に加え攪拌して均一にする.この状態の可溶化抽出液を
第2図(B)に示す.第2図(B)中、35はリン脂質
抗原、37は蛍光色素である.なお、■式で示ざれるリ
ン脂貢抗原は合成により得ている. CH3 次に、上述のリン脂貢抗原35と蛍光色素37とを加え
た可溶化抽出液を透析膜に入れ、前述の溶液Nを透析外
液として、コール酸透析法の変法により可溶化剤を除去
してブロテ才リポソームを再構或させる。
Subsequently, this disc membrane fraction @ IIOmM-N a C
(1, 2mM-KCA, l.8mM-C a C II
Suspend in an aqueous solution consisting of 2 and 20 mM sucrose (hereinafter, this aqueous solution will be abbreviated as solution N). A nonionic surfactant (hereinafter sometimes referred to as a solubilizer) Triton X-100 (
polyoxyethylene glycol pt-octylphenyl ether (trade name) at critical micelle concentration (approximately 0.24 m
M) The above addition destroys the fat-containing double layer. The state of the sample solution thus obtained (hereinafter referred to as solubilized extract) is shown in Figure 2 (A). The solubilized extract is actually an insoluble substance (a state in which the above-mentioned surfactant is attached to the photoresponsive protein 29 and phospholipid 31 in the form of micelles (in a solubilized state)). However, for convenience of illustration, in Fig. 2 (A) and Fig. 2 (B) described below,
These insoluble substances are shown as monodisperse. In addition, in this solubilization operation, the solubilizer is
on-100, but the solubilizer is not limited to this. For example, NP-40W nonionic surfactant may have negative effects on proteins (inactivation, deformation, etc.)
It can be used because there are few Broteoliposome Next, the phospholipid antigen represented by the formula (corresponding to the other binding factor when obtaining a biodevice by an antigen-antibody reaction) was added to the solubilized extract obtained in this way. Phosphorus Tribute 3
1 (see Figure 2 (A)) and Ca2+ ion concentration-sensitive fluorescent dye Quin2 (
(trade name, manufactured by Dojindo Kagaku Kenkyusho) to a concentration of 10 uM and stir to make it uniform. The solubilized extract in this state is shown in Figure 2 (B). In Figure 2 (B), 35 is a phospholipid antigen and 37 is a fluorescent dye. The phospholipid antigen represented by formula (■) is obtained by synthesis. CH3 Next, the solubilized extract containing the above-mentioned phospholipid antigen 35 and fluorescent dye 37 is placed in a dialysis membrane, and the solubilizing agent is removed by a modified cholic acid dialysis method using the above-mentioned solution N as the external dialysis liquid. is removed to reconstitute the liposomes.

第3図は、上述の操作によって得られたブロテオリポソ
ーム41の構造を模式的に示した断面図である.この図
から理解出来るよう(こ、ブロテオリボンーム4lの脂
貢二重層43にロドブシン29が脂質二重層43を貫通
した状態(こ挿入されており、この脂質二重層43より
内部(こは、外部と隔結された状態で、円盤膜11を構
戊していた可溶性タンパク貢33の一部及び蛍光芭素3
7が前述の透析外液と共に包含されている。ざらに、こ
の脂質二重層43は、円盤膜11を構成していたリン脂
震31と人為的に加えられたリン脂費抗原35とから構
戊ざれている。
FIG. 3 is a cross-sectional view schematically showing the structure of broteoliposome 41 obtained by the above-mentioned operation. As can be understood from this figure, rhodobucin 29 is inserted into the lipid bilayer 43 of the broteobinome 4l, and the inside of the lipid bilayer 43 is , a part of the soluble protein matrix 33 and the fluorescent membrane 3 that constituted the disc membrane 11 in a state of being isolated from the outside.
7 is included together with the above-mentioned external dialysis fluid. Roughly speaking, this lipid bilayer 43 is composed of the phospholipid antigen 31 that constituted the disc membrane 11 and the phospholipid antigen 35 that was artificially added.

J:.た、リン脂質抗原35は、■式からも理解出来る
通り、その親水基に芳香11jを有するため頭部極′l
i基が嵩高くなっている.従って、胞賃二重層43{こ
あいては、リン脂質抗原35は、曲率の高い外側の層に
存在する確立が高い。これと同様に、プロテオリポソー
ム41における光応答性タンパク貢21も、萌述の方法
のように十分な時間を経て再構成すれば、脂質二重層4
3に生体内と同一の方向性を以って挿入されでいると思
われる. なお、この実施例では、リン脂質抗原35の添加量をリ
ン脂貢31の1重里%程度と1ノたび、この添加li+
よ、バイオ素子構成に用いるブロデオリポソーム41が
、基板(後述ずる。)に付着している抗体(後述する。
J:. In addition, as can be understood from the formula
The i group is bulky. Therefore, in the cell bilayer 43, there is a high probability that the phospholipid antigen 35 exists in the outer layer with high curvature. Similarly, if the photoresponsive protein 21 in the proteoliposome 41 is reconstituted after a sufficient period of time as in the method described by Moe, the lipid bilayer 4
3, it appears that the device was inserted in the same direction as in the living body. In this example, the amount of the phospholipid antigen 35 added was approximately 1% of the phospholipid antigen 31, and this added li+
The brodeoliposome 41 used in the biodevice structure is attached to an antibody (described later) attached to a substrate (described later).

)と抗原一抗体反応を起して基板に固定されるために十
分な里であれば、1歪積%未満或いは1重量%よつ多く
とも良い.捩佳−iL艷碁盟功一胆滅 次1こ、この発明のバイオ素子を構成するため、基板に
抗体令単分子膜として形成する処理操作1こついで説明
する.この大施例Cは、基板表面の平而牲と処理操作の
簡便さとから基板としてガラス基板を用いた場合{こつ
ぎ説明する。しかし、基板は、ボ1ノスチレン簀、その
他任,依好適な材料かうなる基板としでも良い。
), the strain may be less than 1% by volume or more than 1% by weight, as long as it is sufficient to cause an antigen-antibody reaction and be immobilized on the substrate. Next, in order to construct the biodevice of the present invention, a processing operation for forming an antibody monolayer on a substrate will be explained. This large embodiment C is a case where a glass substrate is used as the substrate due to the simplicity of the substrate surface and the simplicity of the processing operation. However, the substrate may be made of boron styrene or any other suitable material.

まず、オクタデシルトリク口ロシランに基板を予め浸漬
することによって、基板表面を疎水化クl理する。
First, the surface of the substrate is hydrophobized by immersing it in octadecyltrichloride silane in advance.

また、リン脂貢抗原35(特(こ■式のリン脂質抗原の
芳香環近傍)(こ対し7:得られた抗体γ−グロプリン
を、ラングミュアーブロジェットー( Langmui
r−Blodqett)膜形戊装置の水槽のサブフヱイ
ズ水溶液上1こ展開し、水溶液表面を圧縮1−ることに
よって水溶液上(こ抗体の単分子膜を形成フる.この単
分子膜は、抗体分子の持つ極性分在のため、ある一定の
方向性、MJ′t5抗体の抗原との結6領域を下にして
形威される。
In addition, the phospholipid antigen 35 (specifically (near the aromatic ring of the phospholipid antigen of this type) (7): The obtained antibody γ-globulin was incubated with Langmuir-Blodgetto (Langmuir-Blodgetto).
A monomolecular film of the antibody is formed on the aqueous solution by spreading the antibody on the subphase aqueous solution in the water tank of the membrane-forming device and compressing the surface of the aqueous solution. Due to the polar distribution of the MJ't5 antibody, it is expressed in a certain direction with the antigen binding region of the MJ't5 antibody facing downward.

続いて、この抗体からなる単分子膜を水平イ11若法に
より、表面を疎水化処理した基板の表面に移1./取り
、基板上にLB膜を形成する6第4図は、この状態の基
板泡模式的1こ示した断面図である。図中、45は抗体
、47は基板、49は抗体45からなるしBit示して
いる。抗体45は、リン脂質抗原35との結合領域が基
板47側とは反対側(基板上方力向)を向くように移し
取られる. なお、この実施例では、[B膜形成装置を用いて基板4
7の表面上に抗体45を付着させていたが、簡単のため
には、抗体45を適当な溶液に溶解させこの溶液に疎水
処理を施した基板47を直接浸潰しても、抗体45を基
板47上に吸着させることができる. リボンーム ニ;−1 上述の抗体のし8膜49を有する基板47は、前述のよ
うに調整したリポソームを懸濁した溶液中に浸漬するこ
とによって、抗原一抗体反応を行なわせる.この結果、
実施例のバイオ素子を得る。M1図(A)及び(B)は
、このバイオ素子の説明に供する図であり、特に第1図
(A)は、プロテオリポソーム41が基板47に固定さ
れた状態を模式的に示した図、第1図(B)は実施例の
バイオ素子の一部分を模式的に示した図である. なお、ブロテオリポソームを所定の二次元的なパターン
で配列する場合、先ず基板47上の抗体から成る1B膜
49の不要部分を例えばガリウムイオン等のイ才ンビー
ム、或いはエレクトロンピームを走査しながら照射して
変性除去し残存する抗体により所定の二次元パターンを
作成し、その後この抗体にブロテオリポソームを固定さ
せて行うのが好適である.この方法によれば、ブロテオ
リポソーム自体がイオンビームやエレクトロンビーム1
こよって直接加工ざれることがないため、ブロテオリポ
ソームの変質が防止出来好適である.九K1社しl廷超 次(こ、この発明のバイオ素子が光lこ応答することを
確認するため、上述のようlこ作製した実施例のバイオ
素子に可視光を照射した後波長340nmの光を照射し
てこのバイオ素子を励起ざせて波長490nmの蛍光強
度(F)を測定する。
Next, the monomolecular film made of this antibody was transferred by a horizontal method to the surface of a substrate whose surface had been made hydrophobic. Figure 4 is a sectional view schematically showing the substrate bubble in this state. In the figure, 45 is an antibody, 47 is a substrate, and 49 is an antibody 45 and indicates a bit. The antibody 45 is transferred so that the binding region with the phospholipid antigen 35 faces the opposite side to the substrate 47 side (in the upward direction of the substrate). In this example, the substrate 4 is formed using the [B film forming apparatus].
However, for simplicity, it is possible to dissolve the antibody 45 in an appropriate solution and directly immerse the hydrophobically treated substrate 47 in this solution. It can be adsorbed onto 47. Ribbon Room 2;-1 The substrate 47 having the antibody membrane 49 described above is immersed in a solution in which liposomes prepared as described above are suspended, thereby causing an antigen-antibody reaction. As a result,
A biodevice of Example is obtained. M1 diagrams (A) and (B) are diagrams for explaining this biodevice, and in particular, FIG. 1 (A) is a diagram schematically showing a state in which proteoliposomes 41 are fixed to a substrate 47, FIG. 1(B) is a diagram schematically showing a part of the biodevice of the example. When arranging the broteoliposomes in a predetermined two-dimensional pattern, first, an unnecessary portion of the 1B film 49 made of antibodies on the substrate 47 is irradiated with an electron beam such as gallium ion or an electron beam while scanning. It is preferable to perform denaturation and removal, create a predetermined two-dimensional pattern using the remaining antibody, and then immobilize the broteoliposomes on this antibody. According to this method, the broteoliposomes themselves are exposed to ion beams or electron beams.
As a result, the broteoliposomes are not directly processed, which prevents deterioration of the broteoliposomes, which is preferable. In order to confirm that the biodevice of the present invention responds to light, the biodevice of the example prepared as described above was irradiated with visible light and then exposed to light at a wavelength of 340 nm. The bioelement is excited by irradiating light, and the fluorescence intensity (F) at a wavelength of 490 nm is measured.

蛍光強度の測定結果を、縦軸に蛍光強度の変化率Δ「(
%)をとり、横軸に時間をとり第5図に示す.ここで、
ΔFは下記の式により求まる。但し、■式中のF。とは
、可視光照射前の蛍光強度である. ΔF=100  CF−Fo ) / Fo  −■ま
た、第5図中の時間軸に沿って矢印を付した各点のうち
のONの点は、可視光照射開始点でありOFFの点は可
視光照射終了点である.第5図からも理解出来るように
、可視光照射前後で、明らかに有意な内部溶液のCa”
やイオンの減少が認められ、光応答性タンパク貢の作用
によって、この発明のリポソームからCa2+が外部に
汲み出されていることが分る.従って、この発明のバイ
オ素子が有するリポソームは、入射ざれた光をCa2+
濃度変化{こ変換し、さらにそのCa2+濃度変化をリ
ポソームに内包ざれた蛍光色素の蛍光強度変化に変換出
来るものであることが分る. なお;この発明のバイオ素子によれば、これに光を全面
的に照射せずにあるパターン状に光を照射すれば、この
パターンに対応するパターンの蛍光強度変化が得られる
ことは明らかである.上述においては、この発明のバイ
オ素子の実施例につき説明したが、この発明は上述の実
施例のみに限定ざれるものではな〈、以下に説明するよ
うな種々の変更又は変形を加えることが出来る.上述の
実施例で述べたバイオ素子の作製法及びその際の数値的
条件、また、バイオ素子作製に用いた材料は、この発明
の理解を容易Cこするための好適例であり、この発明の
目的の範囲内で設計の変更等が可能であること明らかで
ある.例えば、上述の実施例ではバイオ素子の作製(こ
ウシロドプシンを用いたが、この他のイカ口ドブシン、
ニワトリのアイオロドブシン、フナのポルフィロブシン
、好塩菌のバクテリオロドプシン(但し、バクテリオロ
ドブシンはプロトンの膜透過を行なったもの)等を用い
るこども出来る。
The fluorescence intensity measurement results are plotted on the vertical axis as the rate of change in fluorescence intensity Δ(
%) and time is plotted on the horizontal axis as shown in Figure 5. here,
ΔF is determined by the following formula. However, ■F in the formula. is the fluorescence intensity before visible light irradiation. ΔF=100 CF-Fo )/Fo- This is the end point of irradiation. As can be understood from Figure 5, Ca'' in the internal solution was clearly significant before and after visible light irradiation.
A decrease in Ca2+ and ions was observed, indicating that Ca2+ was pumped out from the liposome of the present invention by the action of the photoresponsive protein. Therefore, the liposome included in the biodevice of this invention converts incident light into Ca2+
It can be seen that the Ca2+ concentration change can be converted into a change in the fluorescence intensity of the fluorescent dye encapsulated in the liposome. Furthermore, according to the biodevice of the present invention, it is clear that if the biodevice is irradiated with light in a certain pattern without irradiating the entire surface with light, a pattern of fluorescence intensity change corresponding to this pattern can be obtained. .. Although the embodiments of the biodevice of the present invention have been described above, the present invention is not limited to the above-mentioned embodiments; various changes or modifications can be made as described below. .. The method for producing a bio-element, the numerical conditions used therein, and the materials used for producing the bio-element described in the above-mentioned Examples are preferred examples to facilitate understanding of the present invention, and are examples of the present invention. It is clear that changes in the design are possible within the scope of the purpose. For example, in the above-mentioned example, bio-element production (bovine rhodopsin was used, but other squid-mouth dobuscin,
Children can use aiorodobsin from chickens, porphyrobuscin from crucian carp, bacteriorhodopsin from halophilic bacteria (however, bacteriorhodobuscin has undergone proton membrane permeation), etc.

また、上述した実施例では、基板47に抗体45を付着
させ、リン脂質抗原35はブロテオリポソーム41の脂
質二重層43に挿入して抗原一抗体反応を起させてバイ
オ素子を形威した.しかし、前述の単分子膜を付着させ
る方法によって基板47上にリンf¥3貢抗原35を付
着させ、一方、リン脂貢31と抗体45とにグルタルア
ルデヒド及びマレイミド化合物等の架橋剤を作用させて
架橋したものをブロテオリポソーム41の脂質二重層4
3(こ挿入することによっても、実施例と同様の結果を
得ることが期待出来る. また、この発明のバイオ素子を製造するに当たり、基板
上にブロテオリポソームを固定する結合因子として抗体
及び抗原を用いていたが、これら結合因子を、例えば卵
白中に含まれるアビジンとビオチンに置き換えることに
よっても、実施例と同様のバイオ素子を得ることが出来
る.また、上述の実施例では、Ca2+イオンを輸送す
る物貢をタンパク貢としたためにリポソームをブロテオ
リポソームとして説明したが、Ca2+イオンの輸送物
質をタンパク貢以外の物質としたリポソームでも実施例
と同様な効果を期待出来る.(発明の効果) 上述した説明からも明らかなように、この発明のバイオ
素子は、入射した光を二次元的に配列されたリポソーム
のCa’◆イオン濃度変化の場に対応ずる蛍光強度変化
の場に変換することが出来るので、入射した光のバイオ
素子上での位置情報が得られる.従って、生物の視覚を
模倣した情報処理形態をもつバイオコンピュータの情報
処理装置、入力装M或いは出力装ffi!等Cこ利用す
ることが出来る.
Further, in the above-described embodiment, the antibody 45 was attached to the substrate 47, and the phospholipid antigen 35 was inserted into the lipid bilayer 43 of the broteoliposome 41 to cause an antigen-antibody reaction to form a biodevice. However, the phospholipid antigen 35 is attached onto the substrate 47 by the method of attaching a monolayer described above, and on the other hand, a crosslinking agent such as glutaraldehyde and maleimide compound is applied to the phospholipid antigen 31 and the antibody 45. The lipid bilayer 4 of the broteoliposome 41 is
3 (By inserting this, it is expected that the same results as in the example will be obtained. In addition, in manufacturing the biodevice of this invention, antibodies and antigens may be used as binding factors to immobilize the broteoliposomes on the substrate. However, by replacing these binding factors with, for example, avidin and biotin contained in egg white, the same biodevice as in the example can be obtained.In addition, in the above example, Ca2+ ion transport Although the liposome was explained as a broteoliposome because the donor for transporting Ca2+ ions was a protein donor, the same effects as in the example can be expected with liposomes in which the transport substance for Ca2+ ions is a substance other than a protein donor. (Effects of the Invention) As mentioned above. As is clear from the above description, the biodevice of the present invention is capable of converting incident light into a field of fluorescence intensity changes corresponding to a field of Ca'◆ ion concentration changes in two-dimensionally arranged liposomes. Therefore, information on the position of the incident light on the bio-element can be obtained. Therefore, it is possible to use the information processing device, input device M or output device ffi!, etc. of a biocomputer that has an information processing form that imitates the vision of living things. You can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)及び(B)は、実施例のバイオ素子の説明
に供する図、 第2図(A)及び(B)は、可溶化抽出液の状態説明図
、 第3図は、実施例のリボンームの構造を模式的に示した
図、 第4図は、抗体付着基板の説明1こ供する図、第5図は
、実施例のバイオ素子の光応答特性を示す図、 第6図は、桿状体細胞を概略的に示した図である. 29・・・光応答性蛋白v4(ロドブシン)31・・・
リン脂質、    3 3 ・・・可溶性蛋白質35・
・・リン脂質抗原、  37・・・蛍光芭素41・・・
プロテオリポソーム 43・・・リン脂質二重層、 47・・・基板、 45・・・抗体 4 9−・・抗体から4ルLBII. 特 許 出 願 入 沖電気工業株式会社 時間(min) 実施例のバイオ素子の光応答狛牲を示す図第5 図
Figures 1 (A) and (B) are diagrams used to explain the biodevice of the example, Figures 2 (A) and (B) are diagrams explaining the state of the solubilized extract, and Figure 3 is a diagram used to explain the state of the solubilized extract. FIG. 4 is a diagram schematically showing the structure of the ribbon beam in the example. FIG. 4 is a diagram that provides an explanation of the antibody-attached substrate. FIG. , a diagram schematically showing a rod cell. 29...Photoresponsive protein v4 (rhodobusin) 31...
Phospholipid, 3 3... Soluble protein 35.
...Phospholipid antigen, 37...Fluorescent fluorophore 41...
Proteoliposome 43... Phospholipid bilayer, 47... Substrate, 45... Antibody 4 9-... 4 LBII from antibody. Patent application filed by Oki Electric Industry Co., Ltd. Time (min) Figure 5 showing the photoresponse failure of the biodevice of the example

Claims (3)

【特許請求の範囲】[Claims] (1)生体物質及び生体類似物質の一方又は双方を用い
て形成され、入射した光をCa^2^+イオンの濃度変
化に変換するリポソームであつてCa^2^+イオン感
受性蛍光色素を内包したリポソームを基板上に二次元配
列して成ることを特徴とするバイオ素子。
(1) A liposome that is formed using one or both of a biological material and a biosimilar substance, converts incident light into a change in the concentration of Ca^2^+ ions, and contains a Ca^2^+ ion-sensitive fluorescent dye. A biodevice characterized by a two-dimensional arrangement of liposomes on a substrate.
(2)前記リポソームを、生物の視細胞に存在する円盤
膜を再構成したもので構成した請求項1に記載のバイオ
素子。
(2) The biodevice according to claim 1, wherein the liposome is composed of a reconstituted disc membrane present in photoreceptor cells of living organisms.
(3)前記リポソームは、前記基板上に抗原−抗体反応
を利用して固定されていること を特徴とするバイオ素子。
(3) A biodevice, wherein the liposome is immobilized on the substrate using an antigen-antibody reaction.
JP1310444A 1989-11-29 1989-11-29 Bioelement Pending JPH03171686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1310444A JPH03171686A (en) 1989-11-29 1989-11-29 Bioelement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1310444A JPH03171686A (en) 1989-11-29 1989-11-29 Bioelement

Publications (1)

Publication Number Publication Date
JPH03171686A true JPH03171686A (en) 1991-07-25

Family

ID=18005322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1310444A Pending JPH03171686A (en) 1989-11-29 1989-11-29 Bioelement

Country Status (1)

Country Link
JP (1) JPH03171686A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018143473A1 (en) * 2017-02-06 2019-11-21 国立大学法人 東京大学 Temperature-responsive color material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018143473A1 (en) * 2017-02-06 2019-11-21 国立大学法人 東京大学 Temperature-responsive color material

Similar Documents

Publication Publication Date Title
Dimova et al. The giant vesicle book
Desai et al. Characterization of micromachined silicon membranes for immunoisolation and bioseparation applications
Ragni et al. Biosilica from diatoms microalgae: smart materials from bio-medicine to photonics
US6342389B1 (en) Modified phycobilisomes and uses therefore
US5919576A (en) Immobilized biological membranes
EP2331673A2 (en) Device for cell culture
Elie-Caille et al. Self-Assembly of solid-supported membranes using a triggered fusion of phospholipid-enriched proteoliposomes prepared from the inner mitochondrial membrane1
Gözen et al. Calcium-ion-controlled nanoparticle-induced tubulation in supported flat phospholipid vesicles
Oliver et al. Templating membrane assembly, structure, and dynamics using engineered interfaces
CN107709223A (en) High density microcavity array and the assay method for having used the high density microcavity array
Schuster et al. Nanotechnology with S-layer proteins
Vercruysse et al. Geometry-driven migration efficiency of minimal cell clusters
Albers et al. Engineering connectivity by multiscale micropatterning of individual populations of neurons
JPH03171686A (en) Bioelement
Uzgiris Supported phospholipid bilayers for two-dimensional protein crystallization
JPH0558490B2 (en)
JP2883132B2 (en) Bio element
Jang et al. Biologically-active unilamellar vesicles from red blood cells
DeNardis et al. From algal cells to autofluorescent ghost plasma membrane vesicles
JPH05133795A (en) Bio-element
JPH046446A (en) Bioelement
JPH03163887A (en) Bioelement
Ніжельська et al. The Stabilizing Effect of Magnetic Field for the Shape of Yeast Cells Saccharomyces cerevisiae on Silicon Surface
JPH04273028A (en) Biological element and manufacture thereof
JPH06140688A (en) Photoresponsive excitable artificial film and manufacture thereof and bio element