JPH03171529A - Manufacture of fluorescent lamp - Google Patents

Manufacture of fluorescent lamp

Info

Publication number
JPH03171529A
JPH03171529A JP31006489A JP31006489A JPH03171529A JP H03171529 A JPH03171529 A JP H03171529A JP 31006489 A JP31006489 A JP 31006489A JP 31006489 A JP31006489 A JP 31006489A JP H03171529 A JPH03171529 A JP H03171529A
Authority
JP
Japan
Prior art keywords
exhaust
lamp
fluorescent lamp
alloy
amalgam alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31006489A
Other languages
Japanese (ja)
Inventor
Makoto Fukuda
誠 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP31006489A priority Critical patent/JPH03171529A/en
Publication of JPH03171529A publication Critical patent/JPH03171529A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain satisfied lamp quality with the emission of mercury vapor restrained by providing a constricted part on one side exhaust fine tube to retain a spacer and an amalgam alloy, and making the temperature of the amalgam alloy in the fine tube a melting temperature or below in a heating and exhaust process. CONSTITUTION:Exhaust fine tubes 3 and 4 are outward protrudingly provided in the exhaust work of a double U-shaped fluorescent lamp 1 having an electrode to which an electron radiation substance is applied. A constricted part 5 is provided on the fine tube 4 to retain a spacer 7 and an amalgam alloy 6. Although the lamp 1 is heated in a heating furnace 2, the constricted part 5 is kept at an ordinary temperature, the alloy 6 in not melted, and an exhaust process is finished. Consequently mercury vapor from the alloy 6 is a very small amount, electrode arc discharge is sharply reduced, a decomposition reaction in promoted, an impurity gas such as CO2 is immediately discharged to the lamp outside, an electron radiation substance is activated, and thereby satisfied lamp quality can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は蛍光ランプの製造方法に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to a method of manufacturing a fluorescent lamp.

従来の技術 高効率・長寿命の電球形蛍光ランプ装置の蛍光ランプに
は、通常3次元寸法にコンパクトに折り曲げられた構造
のダブルU形蛍光ランプが用いられる。このランプは、
安定器,スタータとともに小形密閉構造の外管内に組込
まれるので、点灯中必然的に高温になり、ランプ内の水
銀蒸気圧が過度に上昇して発光効率が低下する。これを
防止する目的で水銀をアマルガム合金の形態でランプ内
に封入している。この水銀蒸気圧制御のために封入され
るアマルガム合金としては種々知られているが、効率,
始動性能等すべての蛍光ランプ機能の面から考えて、イ
ンジウム系合金が主に使われている。ランプ内でアマル
ガム合金を設ける位置は、その温度条件から考えて、細
管内が適している。この位置は、ランプ点灯中、合金が
最も適切な水銀蒸気圧にランプ内を制御するための温度
に保たれる。この温度は通常アマルガム合金の溶融温度
に近いものであり、約120℃である。
BACKGROUND OF THE INVENTION A double U-shaped fluorescent lamp having a structure that is compactly folded into three-dimensional dimensions is usually used as a fluorescent lamp of a high-efficiency, long-life compact fluorescent lamp device. This lamp is
Since the lamp is incorporated together with the ballast and starter into a small, sealed outer bulb, the lamp inevitably becomes hot during lighting, and the mercury vapor pressure inside the lamp increases excessively, reducing luminous efficiency. To prevent this, mercury is sealed in the lamp in the form of an amalgam alloy. Various amalgam alloys are known to be sealed to control the mercury vapor pressure, but the efficiency and
Considering all fluorescent lamp functions such as starting performance, indium-based alloys are mainly used. Considering the temperature conditions, the suitable location for providing the amalgam alloy within the lamp is inside the capillary tube. This position maintains the alloy at a temperature that controls the most suitable mercury vapor pressure within the lamp during lamp operation. This temperature is usually close to the melting temperature of the amalgam alloy, approximately 120°C.

発明が解決しようとする課題 このアマルガム合金を内蔵するコンパクト形蛍光ランプ
の製造方法には2つの課題がある。
Problems to be Solved by the Invention There are two problems in the manufacturing method of a compact fluorescent lamp incorporating this amalgam alloy.

すなわち、ダブルU形蛍光ランプは曲げ加工された後、
一方の細管内にあらかじめ一定量の水銀を含有したアマ
ルガム合金粒子を封入しガラス管封止端から約10mの
長さで細管をチップ・オフする。その後、通常の蛍光ラ
ンプ製造工程に従って加熱排気工程を経て蛍光ランプと
して完成される。ところが、この加熱排気工程において
、ランプのガラス管は400℃以上まで加熱されるので
、細管内に封入されているアマルガム合金もこれに近い
温度となり、これはその溶融温度の120℃に比べては
るかに高い温度であるので、同合金は完全に融解し、水
銀蒸気を発生する。そのため、排気系統の配管内部に水
銀粒子が付着し、系の真空度が低下するのみならず、電
極に塗布されている電子放射物質を活性化する分解排気
工程中において、ランプ内に水銀蒸気が充満しているた
めに、フィラメントコイルの両端間にアーク放電が発生
して加熱温度が低下し、分解活性化が不完全になること
がある。このような悪条件下で製造されたランプは、電
極近傍の早期黒化,始動困難,チラツキ等の問題が発生
しやすい。
That is, after the double U-shaped fluorescent lamp is bent,
Amalgam alloy particles containing a certain amount of mercury are sealed in advance in one of the tubes, and the tube is tipped off at a length of about 10 m from the sealed end of the glass tube. Thereafter, the lamp is completed as a fluorescent lamp through a heating and exhausting process according to the normal fluorescent lamp manufacturing process. However, during this heating and exhausting process, the glass tube of the lamp is heated to over 400℃, so the amalgam alloy sealed inside the tube also reaches a temperature close to this temperature, which is much higher than its melting temperature of 120℃. At such high temperatures, the alloy melts completely, producing mercury vapor. As a result, not only do mercury particles adhere to the inside of the exhaust system piping, reducing the vacuum level of the system, but also mercury vapor is released inside the lamp during the decomposition exhaust process that activates the electron emitting material coated on the electrodes. Because the filament is full, arc discharge may occur between both ends of the filament coil, lowering the heating temperature and causing incomplete decomposition activation. Lamps manufactured under such adverse conditions are prone to problems such as early blackening near the electrodes, difficulty in starting, and flickering.

さらに、ランプのコンパクト化が進むにつれて、ガラス
管の内径はますます小さくなり、かつ放電路に折り曲げ
部分が多くなる。この折り曲げ部分は製法上の都合から
縮径されているのが普通である。ランプの排気速度を主
に支配するコンダクタンスは、管径の4乗に比例すると
考えられている。通常のダブルU形蛍光ランプに使用さ
れているガラス管の内径13.5mmは普通形の直管形
・環形蛍光ランプの約1/2であること、また折り曲げ
部分はさらにこれより断面積が約20%程縮径されてい
ることを考慮すれば、このランプは非常に排気が難しい
ものである。特にこれは、排気細管と反対側に位置する
、すなわち閉塞側の電極フィラメントコイル上の電子放
射物質の分解反応に重大な影響を及ぼす。すなわち、熱
陰極形蛍光ランプの電極には、通常B a CO3. 
 S r CO3,CaCO3を主戊分とするトリプル
・カーボネートが塗布されているが、これが熱分解によ
ってCO2を発生して酸化物となり活性化される。この
分解反応は可逆反応であるので、発生したCO2を素早
く排出しないと促進が遅れる。現在の蛍光ランプ製造工
程では、その経済性の面から高速度生産が要求されてお
り、この分解活性化反応のためにかける時間にも自ずか
ら限界がある。したがって、このダブルU形蛍光ランプ
のように、ランプ構造上、閉塞側の細管のコンダクタン
スが排気細管側のそれに比べてきわめて小さい場合、ト
リプル・カーボネートの分解反応に明らかな差が生じ、
閉塞側電極の電子放射物質の分解不良が発生することが
ある。このような条件下で製造されたランプは、ランプ
点灯中に電極温度によって残余カーボネートの分解反応
が進み、CO2等の不純ガスが発生する。これらの不純
ガスは、放電中の紫外線のエネルギーによってさらにC
とOに分解され、Oは直ちにランプ内の水銀と化合して
酸化水銀となって管壁に付着し黒化を生じ、または電極
降下電圧を上昇せしめて電子放射物質の飛散を促進させ
ることにより電極寿命を縮める等の悪影響を及ぼす。
Furthermore, as lamps become more compact, the inner diameter of the glass tube becomes smaller and smaller, and the discharge path has more bends. This bent portion is usually reduced in diameter due to manufacturing process considerations. The conductance, which mainly controls the exhaust speed of the lamp, is thought to be proportional to the fourth power of the tube diameter. The inner diameter of the glass tube used in a normal double U-shaped fluorescent lamp is 13.5 mm, which is about 1/2 that of a normal straight tube or ring-shaped fluorescent lamp. Considering that the diameter has been reduced by about 20%, this lamp is very difficult to vent. In particular, this has a significant influence on the decomposition reaction of the electron emitting material on the electrode filament coil located on the opposite side of the exhaust capillary, ie on the closed side. That is, the electrodes of hot cathode fluorescent lamps usually contain B a CO3.
A triple carbonate whose main components are S r CO3 and CaCO3 is coated, and this is thermally decomposed to generate CO2 and becomes an oxide and is activated. Since this decomposition reaction is a reversible reaction, the acceleration will be delayed unless the generated CO2 is quickly discharged. In the current fluorescent lamp manufacturing process, high-speed production is required from the viewpoint of economic efficiency, and there is a natural limit to the time required for this decomposition activation reaction. Therefore, when the conductance of the capillary on the closed side is extremely small compared to that on the exhaust capillary side due to the lamp structure, as in this double U-shaped fluorescent lamp, there is a clear difference in the decomposition reaction of triple carbonate.
Poor decomposition of the electron-emitting substance in the closed-side electrode may occur. In lamps manufactured under such conditions, the decomposition reaction of residual carbonate progresses depending on the electrode temperature during lamp operation, and impurity gases such as CO2 are generated. These impure gases are further converted to C by the energy of ultraviolet rays during discharge.
O immediately combines with mercury in the lamp to form mercury oxide, which adheres to the tube wall and causes blackening, or by increasing the electrode drop voltage and promoting the scattering of electron emitting substances. This has adverse effects such as shortening the life of the electrode.

課題を解決するための手段 本発明の蛍光ランプの製造方法は、管両端部に電子放射
物質を塗布した電極を有し、かつ前記管両端部から外部
に突出して設けた排気細管内にスペーサとアマルガム合
金を内蔵したダブルU形蛍光ランプの製造方法において
、前記排気細管のうち一方のくびれ部を設け、このくび
れ部にて前記スペーサおよび前記アマルガム合金を保持
し、前記排気細管を下向きにして排気回路に接続し、前
記アマルガム合金を溶融温度以下に保ちつつ前記蛍光ラ
ンプを加熱排気し、その後前記排気細管をそれぞれチッ
プ・オフし、しかる後前記蛍光ランプを上下に反転させ
て、前記排気細管内の前記スペーサおよび前記アマルガ
ム合金を前記電極側に移動させた後、前記排気細管内に
前記アマルガム合金および前記スペーサを残してこの排
気細管を再度チップ・オフするものである。
Means for Solving the Problems The method for manufacturing a fluorescent lamp of the present invention includes electrodes coated with an electron emitting substance at both ends of the tube, and a spacer and a spacer in an exhaust capillary provided protruding from both ends of the tube. In the method for manufacturing a double U-shaped fluorescent lamp with a built-in amalgam alloy, one of the exhaust capillary tubes is provided with a constriction, the spacer and the amalgam alloy are held in the constriction, and the exhaust capillary is directed downward to exhaust air. connected to a circuit, the fluorescent lamp is heated and evacuated while keeping the amalgam alloy below the melting temperature, the exhaust capillary tubes are each tipped off, and the fluorescent lamps are then turned upside down to remove the inside of the exhaust capillary tube. After moving the spacer and the amalgam alloy to the electrode side, the amalgam alloy and the spacer are left in the exhaust tube and the exhaust tube is tipped off again.

作用 加熱排気工程中、排気細管内のアマルガム合金は溶融温
度以下に保たれるので、電極に塗布されている電子放射
物質を活性化するための分解排気工程において、ランプ
内に高い圧力の水銀蒸気を放散することがなく、電極に
通電して加熱する際にアーク放電等の好ましくない現象
の発生を回避することができる。したがって、電子放射
物質は、排気工程中で分解反応のために与えられた時間
内に十分活性化され、良好なランプ品質を得ることがで
きる。
During the heating and evacuation process, the amalgam alloy in the evacuation capillary is kept below its melting temperature, so during the decomposition evacuation process to activate the electron emitting material coated on the electrodes, high pressure mercury vapor is released into the lamp. It is possible to avoid the occurrence of undesirable phenomena such as arc discharge when the electrodes are energized and heated. Therefore, the electron emitting material is sufficiently activated within the time given for the decomposition reaction during the evacuation process, and good lamp quality can be obtained.

また、本発明にかかる製造方法は2本の排気細管の両方
を排気回路に接続するので、従来の片側の細管のみで排
気する場合に考慮しなければならなかった閉塞側に対す
るコンダクタンスに原因する排気速度の低下が生じない
。したがって、電子放射物質として通常使用されている
トリプル・カーボネートの分解時に発生するCO2等の
ガスは直ちに排出されるので、分解反応はスムーズに促
進され、従来のランプで見られたような閉塞側の電極の
電子放射物質が他方の電極のそれに比べて分解不足とな
り、この原因によって、閉塞側電極近傍の早期黒化や、
電子放射物質の飛散による同電極の短寿命といった好ま
しくない現象を抑えることができる。
In addition, since the manufacturing method according to the present invention connects both of the two exhaust thin tubes to the exhaust circuit, the exhaust gas caused by the conductance on the closed side, which had to be taken into consideration when exhausting with only one thin tube in the past, can be avoided. No speed reduction occurs. Therefore, gases such as CO2 generated during the decomposition of triple carbonate, which is commonly used as an electron emitting material, are immediately exhausted, so the decomposition reaction is smoothly promoted, and the blockage side as seen in conventional lamps is eliminated. The electron-emitting substance in one electrode is insufficiently decomposed compared to that in the other electrode, and this causes early blackening near the occluded electrode.
Undesirable phenomena such as shortened life of the electrode due to scattering of electron emitting substances can be suppressed.

実施例 以下、本発明の一実施例について図面を用いて説明する
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は本発明の蛍光ランプの製造方法を説明するため
の図である。同図において、両端部にトリプル・カーボ
ネートからなる電子放射物質が塗布された電極(図示せ
ず)を有する管径15.5+nmのガラス管によって作
られたダブルU形蛍光ランブ1の排気作業は、電気式加
熱炉2を用いて行われる。2本の排気細管3,4はガラ
ス管の両端部から外部に突出して設けられており、排気
細管4の中央下部には、くさび形のくびれ部5が形成さ
れていて、これにてビスマス,インジウム,水銀の3元
系アマルガム合金6と、スペーサとして機能するガラス
製の無空棒7が保持されている。アマルガム合金6の直
径と無空捧7の直径はともに排気細管4の内径に比べて
十分に小さく、またくびれ部5のスリット幅も排気速度
に支障をきたさない程度に小さくなっている。そして、
排気細管3.4は排気回路8にそれぞれ接続されている
FIG. 1 is a diagram for explaining the method for manufacturing a fluorescent lamp of the present invention. In the same figure, the exhaust work of a double U-shaped fluorescent lamp 1 made of a glass tube with a tube diameter of 15.5+nm and having electrodes (not shown) coated with electron emitting material made of triple carbonate at both ends is as follows: This is carried out using an electric heating furnace 2. Two exhaust thin tubes 3 and 4 are provided to protrude outward from both ends of the glass tube, and a wedge-shaped constriction 5 is formed at the lower center of the exhaust thin tube 4, which allows bismuth, bismuth, A ternary amalgam alloy 6 of indium and mercury and a glass blank rod 7 functioning as a spacer are held. Both the diameter of the amalgam alloy 6 and the diameter of the airless plug 7 are sufficiently smaller than the inner diameter of the exhaust thin tube 4, and the slit width of the constricted portion 5 is also small enough to not interfere with the exhaust speed. and,
The exhaust capillaries 3.4 are each connected to an exhaust circuit 8.

このようなダブルU形蛍光ランプ1は加熱炉2内で、4
00℃以上の温度に加熱されるが、くびれ部5は加熱炉
2外にあり、これによってこの部分を常温に保つ。した
がって、アマルガム合金6は溶融することなく固形のま
まで排気工程を終了するので、電子放射物質の活性化の
ための加熱工程においては、アマルガム合金6からの水
銀蒸気は微小である。その結果、本発明の方法によると
、従来、ステム細管4を無空棒7,アマルガム合金6を
含めて長さLow以内にチソプ・オフして片側一本の細
管のみで排気し、アマルガム合金部分の温度がその溶融
点106℃以上に上昇していた場合に比べて、電極フィ
ラメントコイルの両端間に発生するアーク放電は大幅に
減少し、分解反応は支障なく促進される。
Such a double U-shaped fluorescent lamp 1 is heated in a heating furnace 2,
Although it is heated to a temperature of 00° C. or higher, the constricted portion 5 is located outside the heating furnace 2, thereby keeping this portion at room temperature. Therefore, since the amalgam alloy 6 completes the evacuation process as a solid without being melted, mercury vapor from the amalgam alloy 6 is minute in the heating process for activating the electron emitting substance. As a result, according to the method of the present invention, conventionally, the stem capillary 4 including the empty rod 7 and the amalgam alloy 6 is blown off within a length of Low, and the amalgam alloy part is evacuated using only one capillary tube on one side. Compared to the case where the temperature of the electrode filament coil had risen above its melting point of 106° C., the arc discharge generated between the ends of the electrode filament coil is significantly reduced, and the decomposition reaction is promoted without any hindrance.

また、このダブルU形蛍光ランブ1は、2本の排気細管
3.4によって排気されるので、両端の電極コイルフィ
ラメントに塗布されているトリプル・カーボネートを主
成分とする電子放射物質の活性化のための加熱分解反応
において生成されるCO2等の不純ガスは、このランプ
構造の低コンダクタンスに関係なく直ちにランプ外に排
出され、このためこの反応は停滞することなく促進され
、良好なランプ品質を得ることができる。
In addition, since this double U-shaped fluorescent lamp 1 is exhausted by two exhaust capillary tubes 3.4, the activation of the electron emitting material mainly composed of triple carbonate applied to the electrode coil filaments at both ends is suppressed. Impure gases such as CO2 generated in the thermal decomposition reaction of the lamp are immediately discharged outside the lamp regardless of the low conductance of this lamp structure, so this reaction is accelerated without stagnation, resulting in good lamp quality. be able to.

第2図(al〜(dlは、本発明にかかる製造方法にお
ける排気細管の処理の順序を示している。同図fa)は
排気工程に入る直前の状態を示しており、排気細管4内
のアマルガム合金6は無空棒7とともにくびれ部5によ
って保持されている。同図fb)は排気終了直後の状態
を示している。排気細管3は短くチップ・オフされてい
るが、排気細管4はくびれ部5よりさらに下側でチップ
・オフされている。同図(Clはその上下を反転して排
気細管4内で無空捧7とアマルガム合金5とを電極側に
移動させた状態を示す。同図(d)はこの位置で約10
++onの長さに排気細管4をチップ・オフして蛍光ラ
ンプとして完威した状態を示している。
FIG. 2 (al to (dl) indicates the order of processing of the exhaust capillary in the manufacturing method according to the present invention. Fa in the same figure shows the state immediately before entering the exhaust process, and the inside of the exhaust capillary 4 is The amalgam alloy 6 is held together with the blank rod 7 by the constricted portion 5. Figure fb) shows the state immediately after the exhaust is finished. The exhaust capillary 3 is tipped off short, but the exhaust capillary 4 is tipped off further below the constriction 5. The same figure (Cl shows the state where the top and bottom have been reversed and the empty core 7 and the amalgam alloy 5 have been moved to the electrode side within the exhaust capillary 4. The figure (d) shows the state in which the empty core 7 and the amalgam alloy 5 are moved to the electrode side in this position.
It shows the state in which the exhaust capillary tube 4 is tipped off to a length of ++on and is fully used as a fluorescent lamp.

ダブルU形蛍光ランプとして上記方法により、電極間距
離2 8 0 mm、封入稀ガスをアルゴンの480P
aとし、ランプ電流2 7 0mA,安定器損失を含め
た消費電力を16.2Wとしたものを得、これを外管内
に組込んでなる電球形蛍光ランプ装置の諸特性を測定し
たところ、チラツキ,始動不良,電極近傍の早期黒化等
の問題は全く発生せず、その働程特性も大幅に改良され
た。
As a double U-shaped fluorescent lamp, the distance between the electrodes is 280 mm, and the rare gas is 480P of argon.
We obtained a lamp with a lamp current of 270 mA and a power consumption of 16.2 W including ballast loss, and measured various characteristics of a compact fluorescent lamp device built into the outer bulb.We found that there was no flickering. There were no problems such as poor starting or early blackening near the electrodes, and the working characteristics were greatly improved.

発明の効果 以上説明したように、本発明の蛍光ランプの製造方法に
よれば、加熱排気工程におけるアマルガム合金からの水
銀蒸気の放出を抑えることができ、かつランプ構造に起
因するコンダクタンスの低下に無関係にガラス管両端部
の電極に塗布された電子放射性物質の活性化のための加
熱分解反応を、発生する不純ガスを素早く排出すること
により、遅滞なく促進することができるので、電子放射
物質の分解活性化の不足、あるいはアンバランスは発生
せず、したがって完成品電球形蛍光ランプ装置でのチラ
ッキ,始動不良、さらに電極近傍黒化等は全くなく、働
程特性の向上とともにランプ品質を大幅に改良すること
ができるものである。
Effects of the Invention As explained above, according to the method for manufacturing a fluorescent lamp of the present invention, it is possible to suppress the release of mercury vapor from the amalgam alloy during the heating and exhaust process, and it is possible to suppress the release of mercury vapor from the amalgam alloy, regardless of the decrease in conductance caused by the lamp structure. The thermal decomposition reaction for activating the electron-emitting material coated on the electrodes at both ends of the glass tube can be accelerated without delay by quickly discharging the generated impurity gas. There is no lack of activation or imbalance, so there is no flickering, poor starting, or blackening near the electrodes in the finished compact fluorescent lamp device, and the lamp quality is significantly improved along with improved working characteristics. It is something that can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の蛍光ランプの製造方法を説明するため
の図、第2図ta+〜(dlは本発明の蛍光ランプの製
造方法の工程図である。 1・・・・・・ダブルU形蛍光ランプ、2・・・・・・
加熱炉、3.4・・・・・・排気細管、5・・・・・・
くびれ部、6・・・・・・アマルガム合金、7・・・・
・・無空棒、8・・・・・・排気回路。
FIG. 1 is a diagram for explaining the method of manufacturing a fluorescent lamp of the present invention, and FIG. 2 ta+(dl) is a process diagram of the method of manufacturing a fluorescent lamp of the present invention. shaped fluorescent lamp, 2...
Heating furnace, 3.4... Exhaust tube, 5...
Neck part, 6... Amalgam alloy, 7...
...No-vacuum rod, 8...Exhaust circuit.

Claims (1)

【特許請求の範囲】[Claims] 管両端部に電子放射物質を塗布した電極を有し、かつ前
記管両端部から外部に突出して設けた排気細管内にスペ
ーサとアマルガム合金を内蔵したダブルU形蛍光ランプ
の製造方法において、前記排気細管のうち一方にくびれ
部を設け、このくびれ部にて前記スペーサおよび前記ア
マルガム合金を保持し、前記排気細管を下向きにして排
気回路に接続し、前記アマルガム合金を溶融温度以下に
保ちつつ前記蛍光ランプを加熱排気し、その後前記排気
細管をそれぞれチップ・オフし、しかる後前記蛍光ラン
プを上下に反転させて、前記排気細管内の前記スペーサ
および前記アマルガム合金を前記電極側に移動させた後
、前記排気細管内に前記アマルガム合金および前記スペ
ーサを残してこの排気細管を再度チップ・オフすること
を特徴とする蛍光ランプの製造方法。
In the method for manufacturing a double U-shaped fluorescent lamp, the double U-shaped fluorescent lamp has electrodes coated with an electron emitting material at both ends of the tube, and a spacer and an amalgam alloy are built into exhaust thin tubes protruding from both ends of the tube. A constriction is provided in one of the thin tubes, the spacer and the amalgam alloy are held in the constriction, and the exhaust thin tube is connected to an exhaust circuit with the exhaust tube facing downward, and the fluorescent light is emitted while keeping the amalgam alloy below the melting temperature. After heating and evacuating the lamp, then tipping off each of the exhaust capillaries, and then turning the fluorescent lamp upside down to move the spacer and the amalgam alloy in the exhaust capillary to the electrode side, A method for manufacturing a fluorescent lamp, characterized in that the amalgam alloy and the spacer are left in the exhaust capillary and the exhaust capillary is tipped off again.
JP31006489A 1989-11-29 1989-11-29 Manufacture of fluorescent lamp Pending JPH03171529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31006489A JPH03171529A (en) 1989-11-29 1989-11-29 Manufacture of fluorescent lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31006489A JPH03171529A (en) 1989-11-29 1989-11-29 Manufacture of fluorescent lamp

Publications (1)

Publication Number Publication Date
JPH03171529A true JPH03171529A (en) 1991-07-25

Family

ID=18000733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31006489A Pending JPH03171529A (en) 1989-11-29 1989-11-29 Manufacture of fluorescent lamp

Country Status (1)

Country Link
JP (1) JPH03171529A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07282776A (en) * 1994-04-01 1995-10-27 Ckd Corp Electrode for cold cathode fluorescent lamp and manufacture thereof
EP1298702A3 (en) * 2001-09-25 2005-12-14 Osram-Sylvania Inc. Amalgam retainer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07282776A (en) * 1994-04-01 1995-10-27 Ckd Corp Electrode for cold cathode fluorescent lamp and manufacture thereof
EP1298702A3 (en) * 2001-09-25 2005-12-14 Osram-Sylvania Inc. Amalgam retainer

Similar Documents

Publication Publication Date Title
US5144201A (en) Low watt metal halide lamp
US3067357A (en) Electric discharge lamp electrode
JP2007095665A (en) Short-arc type high-pressure discharge electrode, short-arc type high-pressure discharge tube, short-arc type high-pressure discharge light source device and their manufacturing methods
CA1122255A (en) Fused silica lamp envelope and seal
JP3415533B2 (en) High pressure discharge lamp
JP2005519436A6 (en) Mercury short arc lamp with cathode containing lanthanum oxide
JP2005519436A (en) Mercury short arc lamp with cathode containing lanthanum oxide
US5327042A (en) Metal halide lamp
US4836816A (en) Method of treating tungsten cathodes
JPH03171529A (en) Manufacture of fluorescent lamp
JP3156904B2 (en) Mercury discharge lamp
JP3565137B2 (en) Method for producing discharge lamp, discharge lamp and carrier for introducing halogen
US2353783A (en) Manufacture and processing of discharge devices
US3390298A (en) Electric discharge lamp envelope having molten inner surface at operating temperature
JPH01243339A (en) Manufacture of fluorescent lamp
JP3211612B2 (en) Discharge lamp and method of manufacturing the same
JPH0515025B2 (en)
JPH04259745A (en) Low pressure mercury vapor discharge lamp and manufacture thereof
JPH04280033A (en) Manufacture of fluorescent lamp
JPS62123637A (en) Manufacture of fluorescent lamp
JPH10326592A (en) Multiple tube type fluorescent lamp and lighting system
JPH05174787A (en) Metal halide lamp
US2966606A (en) Fluorescent lamp
JPH10199478A (en) Fluorescent lamp and manufacture therefor
JPH04274139A (en) Fluorescent lamp gas-discharging method