JPH03170866A - Method and apparatus for measuring degree of saturation of oxygen - Google Patents

Method and apparatus for measuring degree of saturation of oxygen

Info

Publication number
JPH03170866A
JPH03170866A JP1308939A JP30893989A JPH03170866A JP H03170866 A JPH03170866 A JP H03170866A JP 1308939 A JP1308939 A JP 1308939A JP 30893989 A JP30893989 A JP 30893989A JP H03170866 A JPH03170866 A JP H03170866A
Authority
JP
Japan
Prior art keywords
light
light emitting
signals
reflected light
blood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1308939A
Other languages
Japanese (ja)
Other versions
JPH0823562B2 (en
Inventor
Masahiro Nudeshima
ぬで島 雅博
Hiromasa Kono
弘昌 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP1308939A priority Critical patent/JPH0823562B2/en
Publication of JPH03170866A publication Critical patent/JPH03170866A/en
Publication of JPH0823562B2 publication Critical patent/JPH0823562B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the S/N ratio of the intensity of reflected light and to accurately detect the degree of saturation of oxygen by narrowing the frequency range of a signal showing the intensity of the reflected light from blood. CONSTITUTION:AC signals f1, f2 having different frequencies outputted from oscillators 11, 12 are amplified by amplifying/driving circuits 15, 16 and lights flashing at respective frequencies are emitted from light emitting diodes 17, 18 reacted in synchronous relation to the circuits 15, 16. These two light signals are allowed to be incident to blood and the intensities of reflection thereof are detected by a photodiode 19 to be amplified by an amplifier 20. A noise component is cut by high-pass and low-pass filters 21, 22 and reflected lights are separated at every frequencies by band-pass filters 23, 24. Subsequently, the reflected lights are synchronously detected at every signal components of frequencies by synchronous demodulators 25, 26 and signal components of other frequencies are removed by low-pass filters 27, 28. The reflected light intensity signals of lights outputted from the diodes 17, 18 are converted by an A/D converter 29 and the degree of saturation of oxygen of hemoglobin in blood is calculated by an operation part 30.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、血液中のヘモグロビンの吸光特性(反射光特
性)を利用してヘモグロビンの酸素飽和度を測定するヘ
モグロビンの酸素飽和度の測定方法とその装置に関する
ものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for measuring the oxygen saturation of hemoglobin, which measures the oxygen saturation of hemoglobin using the light absorption characteristics (reflected light characteristics) of hemoglobin in blood. and its equipment.

[従来の技術] 一般に血液による吸光(反射)特性は、血液中の色素及
び粒子による吸収、散乱によって変化し、特にヘモグロ
ビンの酸素との結合状態及び照射する光の波長によって
大きく変化することが知られている。そこで、このよう
な特性を利用して血液中のヘモグロビンの酸素飽和度を
測定する装置が、本願出願人により特願昭62−186
135号、特願昭62−186136号として出願され
ている。
[Prior Art] It is known that the light absorption (reflection) characteristics of blood generally change due to absorption and scattering by pigments and particles in the blood, and in particular, vary greatly depending on the bonding state of hemoglobin with oxygen and the wavelength of irradiated light. It is being Therefore, a device for measuring the oxygen saturation level of hemoglobin in blood using such characteristics was proposed by the applicant in Japanese Patent Application No. 62-186.
No. 135 and Japanese Patent Application No. 186136/1982.

第4図は従来のヘモグロビンの酸素飽和度を測定する装
置の概略構成を示す図である。第4図において、パルス
発生器201は時間的に重ならない所定間隔の及び所定
の時間幅のパルスを発生させ、LED駆動回路202を
通して発光ダイオード203(波長660nm),20
4 (彼長800nm)を交互に発光させている。これ
ら発光ダイオード203,204よりの光のそれぞれは
、光ファイバ20・5,206を通して血液中に照射さ
れる。そして、この血液中よりの反射光はフォトダイオ
ード207により検出され、検出増幅器208により電
圧信号に変換される。
FIG. 4 is a diagram showing a schematic configuration of a conventional apparatus for measuring oxygen saturation of hemoglobin. In FIG. 4, a pulse generator 201 generates pulses with predetermined intervals and a predetermined time width that do not overlap in time, and passes them through an LED drive circuit 202 to light emitting diodes 203 (wavelength 660 nm), 20
4 (length 800 nm) are emitted alternately. Light from these light emitting diodes 203, 204 is irradiated into the blood through optical fibers 20, 5, 206, respectively. The reflected light from the blood is detected by a photodiode 207 and converted into a voltage signal by a detection amplifier 208.

アナログスイッチ209は、パルス発生器20lよりの
信号によりスイッチSWI,SW2がオン・オフされ、
例えば発光ダイオード203が点灯するときはスイッチ
SWIのみがオンとなり、検出増幅器208よりの電圧
信号がコンデンサ210に加えられて、コンデンサ21
0の両端に平均信号電圧(波長660nmの光の反射光
強度)を発生する。この平均信号電圧はさらに増幅器2
l2により増幅された後、A/Dコンバータ29により
デジタル信号に変換される。また、発光ダイオード20
4による反射光強度(波長800nmの光の反射光強度
)も同様に、スイッチSW2をオンすることにより入力
されてデジタル信号に変換される。そして、演算部30
によりこれら反射光強度の比(I./I.)をもとに血
液中のヘモグロビンの酸素飽和度が計算され、出力部3
1により表示・出力される。
In the analog switch 209, switches SWI and SW2 are turned on and off by a signal from the pulse generator 20l.
For example, when the light emitting diode 203 lights up, only the switch SWI is turned on, and the voltage signal from the detection amplifier 208 is applied to the capacitor 210.
An average signal voltage (reflected light intensity of light with a wavelength of 660 nm) is generated at both ends of 0. This average signal voltage is further applied to amplifier 2.
After being amplified by l2, it is converted into a digital signal by an A/D converter 29. In addition, a light emitting diode 20
Similarly, the reflected light intensity by 4 (reflected light intensity of light with a wavelength of 800 nm) is inputted and converted into a digital signal by turning on the switch SW2. Then, the calculation section 30
The oxygen saturation level of hemoglobin in the blood is calculated based on the ratio (I./I.) of these reflected light intensities, and the output section 3
1 is displayed and output.

[発明が解決しようとする課題] しかしながら、従来の反射光強度を入力する回路では、
発光ダイオード203,204は共にバルス信号により
駆動されており、フォトダイオード207により検出し
た反射光強度信号もパルス状になり、その信号に含まれ
る周波数成分は低周波域より高周波域を含む周波数レン
ジの広い信号となる。そして、この信号は正確に増幅さ
れて後段のA/D変換器などに入力される必要がある。
[Problem to be solved by the invention] However, in the conventional circuit that inputs the reflected light intensity,
The light emitting diodes 203 and 204 are both driven by a pulse signal, and the reflected light intensity signal detected by the photodiode 207 is also pulsed, and the frequency components contained in this signal are in the frequency range including the high frequency range rather than the low frequency range. It becomes a wide signal. This signal needs to be accurately amplified and input to a subsequent A/D converter or the like.

このため、この信号を増幅する増幅器208.212 
 213としては、周波数特性の良好なものが要求され
ることになるが、周波数特性の良い増幅器は一般に、増
幅率やS/N比が低く、また高価である。
Therefore, an amplifier 208, 212 that amplifies this signal
213 is required to have good frequency characteristics, but amplifiers with good frequency characteristics generally have low amplification factors and S/N ratios and are expensive.

また、増幅器の増幅率が低くなることにより微弱信号の
検出が困難になるため、発光ダイオードの出力を大きく
しなければならなくなる。このため、発光ダイオードに
通電する電流が増大して、発光ダイオードの寿命が短く
なったり、発熱が大きくなって発光波長が変化するなど
の問題があった。また、さらに信号成分にフォトダイオ
ードの暗電流や増幅器のバイアス電流が重畳して誤差を
生じる虞れがあるため、暗電流の小さいフォトダイオー
ドやバイアス電流の小さい増幅器が必要になり、そのよ
うなフォトダイオードや増幅器を用いることは装置のコ
ストアップにもなっていた。
Furthermore, since the amplification factor of the amplifier becomes low, it becomes difficult to detect weak signals, so the output of the light emitting diode must be increased. For this reason, there have been problems such as an increase in the current flowing through the light emitting diode, shortening the life of the light emitting diode, and increasing heat generation and changing the emission wavelength. In addition, there is a risk that the dark current of the photodiode and the bias current of the amplifier will be superimposed on the signal component, causing an error, so a photodiode with a small dark current and an amplifier with a small bias current are required. The use of diodes and amplifiers also increased the cost of the device.

本発明は上記従来例に鑑みてなされたもので、血液中で
反射された光の反射光強度を示す信号の周波数レンジを
狭くすることにより、反射光強度のS/N’比を高くし
て、かつ精度良く検出できる酸素飽和度の測定方法及び
装置を提供することを目的とする。
The present invention has been made in view of the above-mentioned conventional example, and by narrowing the frequency range of the signal indicating the reflected light intensity of light reflected in blood, the S/N' ratio of the reflected light intensity is increased. It is an object of the present invention to provide a method and apparatus for measuring oxygen saturation, which can detect oxygen saturation with high accuracy.

[課題を解決するための手段] 上記目的を達成するために本発明の酸素飽和度の測定方
法は以下の様な構成からなる。即ち、それぞれ異なる波
長の光を出力する発光源を備え、前記発光源よりの光を
血液中に照射し、その反射光強度をもとに血液中のヘモ
グロビンの酸素飽和度を測定する方法であって、少なく
とも2つの周波数の異なる第1と第2の交流信号により
前記発光源のそれぞれを駆動し、各発光源よりの光のう
ち血液中で反射された光の反射光強度を電気信号に変換
する工程と、前記電気信号を前記第1と第2の交流信号
の周波数成分を含む信号にそれぞれ分離して、第1と第
2の反射光強度信号を取出す工程と、前記第1と第2の
反射光強度信号をもとに前記血液中のヘモグロビンの酸
素飽和度を演算する工程とを有する。
[Means for Solving the Problems] In order to achieve the above object, the method for measuring oxygen saturation of the present invention has the following configuration. That is, the method includes light emitting sources that output light of different wavelengths, irradiates the blood with light from the light emitting sources, and measures the oxygen saturation level of hemoglobin in the blood based on the intensity of the reflected light. driving each of the light emitting sources with first and second alternating current signals having at least two different frequencies, and converting the reflected light intensity of the light reflected in the blood out of the light from each light emitting source into an electrical signal. a step of separating the electrical signal into signals containing frequency components of the first and second AC signals to extract first and second reflected light intensity signals; and calculating the oxygen saturation level of hemoglobin in the blood based on the reflected light intensity signal.

また上記目的を達成するために他の発明の酸素飽和度の
測定装置は以下の様な構成からなる。即ち、 それぞれ異なる波長の光を出力する発光源を備え、前記
発光源よりの光を血液中に照射し、その反射光強度をも
とに血液中のヘモグロビンの酸素飽和度を測定する酸素
飽和度測定装置であって、少なくとも2つの周波数の異
なる第1と第2の交流信号により前記発光源のそれぞれ
を発光駆動する発光手段と、前記発光源よりの光のうち
血液中で反射された光の反射光強度を電気信号に変換す
る変換手段と、前記電気信号を前記第1と第2の交流信
号の周波数成分を含む信号にそれぞれ分離して、第1と
第2の反射光強度信号を出力する出力手段と、前記第1
と第2の反射光強度信号をもとに前記血液中のヘモグロ
ビンの酸素飽和度を演算する演算手段とを有する。
Further, in order to achieve the above object, an oxygen saturation measuring device according to another invention has the following configuration. That is, the oxygen saturation method includes light emitting sources that output light of different wavelengths, irradiates the blood with light from the light emitting sources, and measures the oxygen saturation of hemoglobin in the blood based on the intensity of the reflected light. The measuring device includes a light emitting means for driving each of the light emitting sources to emit light using first and second alternating current signals having at least two different frequencies; a conversion means for converting reflected light intensity into an electrical signal; and separating the electrical signal into signals containing frequency components of the first and second alternating current signals, and outputting first and second reflected light intensity signals. output means for
and calculation means for calculating the oxygen saturation level of hemoglobin in the blood based on the second reflected light intensity signal.

[作用] 以上の構成において、少なくとも2つの周波数の異なる
第工と第2の交流信号により、それぞれが異なる波長の
光を出力する発光源のそれぞれを駆動し、各発光源より
の光のうち血液中で反射された光の反射光強度を電気信
号に変換する。その電気信号を、第1と第2の交流信号
の周波数成分を含む信号にそれぞれ分離して、第1と第
2の反射光強度信号を取出し、それら第1と第2の反射
光強度信号をもとに、血液中のヘモグロビンの酸素飽和
度を演算するように動作する。
[Function] In the above configuration, each of the light emitting sources that output light of a different wavelength is driven by at least two first and second alternating current signals having different frequencies, and blood from the light from each light emitting source is driven. The intensity of the light reflected inside is converted into an electrical signal. The electric signal is separated into signals containing frequency components of the first and second AC signals, the first and second reflected light intensity signals are extracted, and the first and second reflected light intensity signals are separated. It operates to calculate the oxygen saturation level of hemoglobin in the blood.

[実施例] 以下、添付図面を参照して本発明の好適な実施例を詳細
に説明する。
[Embodiments] Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

[酸素飽和度測定装置の説明 (第1図)]第1図は実
施例の酸素飽和度測定装置の概略構成を示すブロック図
で、第4図に示す従来の構成と同じ部分は同一記号で示
している。
[Description of the oxygen saturation measuring device (Fig. 1)] Fig. 1 is a block diagram showing the schematic configuration of the oxygen saturation measuring device of the embodiment, and the same parts as the conventional configuration shown in Fig. 4 are designated by the same symbols. It shows.

図において、11.12は共に発振器で、それぞれ異な
る周波数を有するAC(サイン波形)信号(t’+,t
’s)を出力している。15.16は増幅駆動回路で、
それぞれ入力したAC信号(サイン波を矩形波に変換し
たもの)を増幅し、そのAC(矩形波)信号に同期して
対応する発光ダイオード(17.18)を駆動して発光
させている。従って、発光ダイオード17は、例えば波
長6 6 0 nmで周波数f1で点滅する光を発光し
、発光ダイオードl8は、例えば波長800nmで周波
数f2で点滅する光を発光している。
In the figure, 11 and 12 are both oscillators, and AC (sine waveform) signals (t'+, t
's) is output. 15.16 is the amplification drive circuit,
Each input AC signal (a sine wave converted into a rectangular wave) is amplified, and the corresponding light emitting diode (17, 18) is driven in synchronization with the AC (rectangular wave) signal to emit light. Therefore, the light emitting diode 17 emits light that blinks at a frequency f1 with a wavelength of 660 nm, for example, and the light emitting diode 18 emits light that blinks at a frequency f2 and a wavelength of 800 nm, for example.

これら2つ光信号は血液中(図示せず)に照射され、そ
の反射光強度がフォトダイオード19により検出される
。20は検出増幅器で、フォトダイオードl9が出力す
る電流を電圧信号4lに変換している。よって、この電
圧信号41は、周波数f1で点滅する光の反射光強度信
号と、周波数f2で点滅する光の反射光強度信号とが多
重した電圧信号となっている。21はハイパスフィルタ
(HPF),22はローパスフィルタ(LPF)で、こ
れらフィルタにより電圧信号4lに含まれるノイズ成分
がカットされる。
These two optical signals are irradiated into blood (not shown), and the intensity of the reflected light is detected by the photodiode 19. A detection amplifier 20 converts the current output from the photodiode 19 into a voltage signal 4l. Therefore, this voltage signal 41 is a voltage signal in which a reflected light intensity signal of light blinking at frequency f1 and a reflected light intensity signal of light blinking at frequency f2 are multiplexed. 21 is a high pass filter (HPF), 22 is a low pass filter (LPF), and noise components contained in the voltage signal 4l are cut by these filters.

23.24は共に帯域フィルタ(BPF)で、帯域フィ
ルタ23は周波数f1をほぼ中心とする周波数帯域の信
号を通過させ、帯域フィルタ24は周波数f2をほぼ中
心とする周波数帯域の信号を通過させる。このようにし
て、これら帯域フィルタ23.24により分離された信
号のそれぞれは、周波数f,で変調された電気信号と、
周波数f2で変調された電気信号となる。25.26は
ともに同期復調器で、同期復調器25は周波数f1の信
号成分を同期検波し、同期復調器26は周波数で2の信
号成分を同期検波している。
23 and 24 are bandpass filters (BPF), and the bandpass filter 23 passes signals in a frequency band approximately centered on the frequency f1, and the bandpass filter 24 passes signals in a frequency band approximately centered around the frequency f2. In this way, each of the signals separated by these bandpass filters 23, 24 is an electrical signal modulated at frequency f,
This becomes an electrical signal modulated at frequency f2. 25 and 26 are both synchronous demodulators, the synchronous demodulator 25 synchronously detects the signal component of frequency f1, and the synchronous demodulator 26 synchronously detects the signal component of frequency 2.

これにより、例えば発光ダイオード17より発光された
光の反射光強度信号が同期復調器25で取出され、さら
にローバスフィルタ(LPF)27により周波数f,の
信号成分が除去されて、発光ダイオード17よりの光の
反射光強度信号が出力される。また同様に、発光ダイオ
ード18より発光された光の反射光強度信号が同期検出
器26で取出され、さらにローバスフィルタ(LPF)
28により周波数f2の信号成分が除去されて、発光ダ
イオードl8よりの光の反射光強度信号が出力される。
As a result, for example, the reflected light intensity signal of the light emitted from the light emitting diode 17 is extracted by the synchronous demodulator 25, and the signal component of the frequency f is removed by the low pass filter (LPF) 27. A reflected light intensity signal of the light is output. Similarly, the reflected light intensity signal of the light emitted from the light emitting diode 18 is extracted by the synchronization detector 26, and further filtered by a low-pass filter (LPF).
28 removes the signal component of the frequency f2, and outputs a reflected light intensity signal of the light from the light emitting diode l8.

これら各発光ダイオードよりの光の反射光強度信号は、
A/Dコンバータ29に入力され、デジタル信号に変換
される。そして、演算部30によりこれら反射光強度の
比N./r2)をもとに血液中のヘモグロビンの酸素飽
和度が計算され、出力部31により表示・出力される。
The reflected light intensity signal from each of these light emitting diodes is
The signal is input to the A/D converter 29 and converted into a digital signal. Then, the calculation unit 30 calculates the ratio N of these reflected light intensities. /r2), the oxygen saturation of hemoglobin in the blood is calculated and displayed/outputted by the output unit 31.

この演算部30における演算については、特願昭62−
186135、特願昭62−186136に詳しく示さ
れているので、ここでは特に説明しない。
Regarding the calculation in this calculation section 30,
No. 186135 and Japanese Patent Application No. 62-186136, the details are not explained here.

[回路の具体例の説明 (第2図、第3図)]第2図及
び第3図は第1図の構成の具体例を示す回路図で、説明
のため第1図と共通する部分は同じ記号で示す。
[Explanation of a specific example of the circuit (Figs. 2 and 3)] Figs. 2 and 3 are circuit diagrams showing a specific example of the configuration of Fig. 1, and for the sake of explanation, the common parts with Fig. 1 are Indicated by the same symbol.

ここでは、発光ダイオード17は周波数320Hzの矩
形波信号で点滅駆動され、発光ダイオード18は周波数
740Hzの矩形波信号で点滅駆動されている。また、
発光ダイオードl7の発光する光の波長は660nm,
発光ダイオード18の波長は800nmである。発光ダ
イオード17の駆動回路に組込まれた移相器l3は、サ
イン波形信号をもとに参照信号REF1を出力しており
、この参照信号REF 1は同期復調器25に入力され
て、検波信号出力が最大となるように調整される。また
、発光ダイオード18の駆動回路に組込まれた移相器1
3も同様にREF2を出力して、同期復調器26よりの
検波信号出力が最犬になるように調整される。
Here, the light emitting diode 17 is driven to blink by a rectangular wave signal having a frequency of 320 Hz, and the light emitting diode 18 is driven to blink by a rectangular wave signal having a frequency of 740 Hz. Also,
The wavelength of the light emitted by the light emitting diode l7 is 660 nm,
The wavelength of the light emitting diode 18 is 800 nm. The phase shifter l3 incorporated in the drive circuit of the light emitting diode 17 outputs a reference signal REF1 based on the sine waveform signal, and this reference signal REF1 is input to the synchronous demodulator 25 to output a detected signal. is adjusted so that it is the maximum. Furthermore, the phase shifter 1 incorporated in the drive circuit of the light emitting diode 18
3 similarly outputs REF2, and the detection signal output from the synchronous demodulator 26 is adjusted so as to be at the maximum level.

第3図で、サンプル血液からの反射光はフォトダイオー
ド19により検出され、検出増幅器20により電圧信号
41に変換される。この電圧信号41は1 50Hzの
ローパスフィルタ21と5KHzのハイパスフィルタ2
2を通されてノイズ成分が除去された後、増幅器34に
より所定の信号レベルまで増幅される。
In FIG. 3, reflected light from the sample blood is detected by photodiode 19 and converted to a voltage signal 41 by sense amplifier 20. In FIG. This voltage signal 41 is passed through a 50Hz low-pass filter 21 and a 5KHz high-pass filter 2.
2 to remove noise components, the signal is amplified by an amplifier 34 to a predetermined signal level.

こうして増幅された電気信号は、後段の帯域フイルタ2
3,24に入力される。帯域フィルタ23は250Hz
のハイバスフィルタ23aと、400Hzのローパスフ
ィルタ23bとで構成されており、250Hz〜400
Hzの通過帯域特性を有する3次のバターワースタイブ
のフィルタである。従って、この帯域フィルタ23は、
320Hzで変調された電気信号は容易に通過するが、
もう一方の740Hzで変調された信号成分は通過しに
くい。同様に、帯域フィルタ24は600Hzのハイパ
スフィルタ24aと、920Hzのローパスフィルタ2
4bとで構成されており、600Hz〜920Hzの通
過帯域特性を有する3次のバターワースタイブのフィル
タである。よって、この帯域フィルタ24は、740H
zで変調された電気信号は容易に通過するが、もう一方
の320Hzで変調された信号成分は通過しにくい。こ
のようにして、2つの異なる周波数を有する電気信号に
分離されたことになる。
The electrical signal amplified in this way is passed through the subsequent bandpass filter 2.
3 and 24. Bandpass filter 23 is 250Hz
It is composed of a high-pass filter 23a of 400 Hz and a low-pass filter 23b of 400 Hz.
It is a third-order Butterworth-type filter with a passband characteristic of Hz. Therefore, this bandpass filter 23 is
Electrical signals modulated at 320Hz pass through easily, but
The other signal component modulated at 740 Hz is difficult to pass through. Similarly, the bandpass filter 24 includes a 600Hz high-pass filter 24a and a 920Hz low-pass filter 2.
4b, and is a third-order Butterworth-type filter having a pass band characteristic of 600 Hz to 920 Hz. Therefore, this bandpass filter 24 has 740H
The electrical signal modulated at 320 Hz is easily passed through, but the other signal component modulated at 320 Hz is difficult to pass through. In this way, the electrical signals are separated into two different frequencies.

次に、同期復調器25は、移相器13よりの位相調整さ
れた参照信号REF1を入力し、帯域フィルタ23より
の電気信号を同期検波して、発光ダイオード17よりの
光の反射光強度信号を検出している。そしてさらに、5
Hzのローパスフィルタ27により、320Hzの信号
成分を除去して、帯域フィルタ23の出力信号の振幅に
比例した直流電圧信号、即ち発光ダイオードl7よりの
光の反射光強度信号を得ている。同様にして、同期復調
器26で発光ダイオードl8よりの光の反射光強度信号
を検出し、5Hzのローバスフィルタ28により7 4
 0 H zの周波数成分を除去して直流電圧信号を取
出している。
Next, the synchronous demodulator 25 inputs the phase-adjusted reference signal REF1 from the phase shifter 13, synchronously detects the electric signal from the bandpass filter 23, and generates a reflected light intensity signal of the light from the light emitting diode 17. is being detected. And furthermore, 5
The 320 Hz signal component is removed by the Hz low-pass filter 27 to obtain a DC voltage signal proportional to the amplitude of the output signal of the band pass filter 23, that is, a reflected light intensity signal of the light from the light emitting diode 17. Similarly, the synchronous demodulator 26 detects the reflected light intensity signal of the light from the light emitting diode l8, and the 5Hz low-pass filter 28 detects the reflected light intensity signal.
The DC voltage signal is extracted by removing the 0 Hz frequency component.

以上説明したように本実施例によれば、周波数レンジの
広い信号を用いることなく反射光強度を検出するように
したので、周波数レンジの狭い信号を増幅する増幅器で
反射光強度信号を増幅することができる。これにより、
検出信号の増幅率を大きくできるため、S/N比をよく
して反射光強度を検出できる。
As explained above, according to this embodiment, the reflected light intensity signal is detected without using a signal with a wide frequency range, so the reflected light intensity signal can be amplified with an amplifier that amplifies a signal with a narrow frequency range. Can be done. This results in
Since the amplification factor of the detection signal can be increased, the reflected light intensity can be detected with a good S/N ratio.

また、高速応答の検出増幅器や、周波数レンジの広い増
幅回路などを必要としないため、回路コストを低く抑え
ることができるとともに、発光源への物理的な負担を軽
減できるため、製造コストを抑えるとともに、製品寿命
を長くできる効果がある。
In addition, because it does not require a high-speed response detection amplifier or an amplifier circuit with a wide frequency range, it is possible to keep circuit costs low. It also reduces the physical burden on the light source, which reduces manufacturing costs. , which has the effect of extending the product life.

なお、この実施例では、発光ダイオードをそれぞれ32
0Hzと720Hzの矩形波で駆動するようにしたが、
本発明はこれらの周波数に限定されるものでなく、互い
に分離可能な周波数であれば良い。好ましくは、100
Hz〜100KHzの間にあり、2つの周波数は1オク
ターブ以上の差があればよい。
Note that in this example, the number of light emitting diodes is 32 each.
I set it to drive with 0Hz and 720Hz square waves, but
The present invention is not limited to these frequencies, and any frequency that can be separated from each other may be used. Preferably 100
It is between Hz and 100 KHz, and it is sufficient that the two frequencies have a difference of one octave or more.

また、この実施例に示された回路構成などは、本願発明
の一例として示したもので、本願発明を特定するもので
はないことはもちろんである。
Further, the circuit configuration shown in this embodiment is shown as an example of the present invention, and it goes without saying that it does not specify the present invention.

[発明の効果] 以上説明したように本発明によれば、血液中で反射され
た光の反射光強度を示す信号の周波数レンジを狭くする
ことにより、反射光強度をS/N比を高くして、かつ精
度良く検出できる効果がある。
[Effects of the Invention] As explained above, according to the present invention, the S/N ratio of the reflected light intensity is increased by narrowing the frequency range of the signal indicating the reflected light intensity of the light reflected in the blood. This has the effect of allowing accurate detection.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本実施例の酸素飽和度測定装置の概略構成を示
すブロック図、 第2図は本実施例の発光ダイオード駆動回路の具体例を
示す回路図、 第3図は実施例のフォトダイオードの信号検出回路の具
体例を示すブロック図、そして第4図は従来の発光ダイ
オードの駆動回路とその反射光強度の検出回路の構成を
示すブロック図である。 図中、11.12・・・発振器、13・・・移相器、1
5,16・・・増幅駆動回路、17.18・・・発光ダ
イオード、19・・・フォトダイオード、20・・・検
出増幅器、21.23a,24a・・・ハイバスフィル
タ(HPF) 、22,27.28・・・ローバスフィ
ルタ(LPF),23.24・・・帯域フィルタ(BP
F) 、25.26・・・同期復調器、29・・・A/
Dコンバータ、30・・・演算部、31・・・出力部で
ある。
Fig. 1 is a block diagram showing the schematic configuration of the oxygen saturation measuring device of this embodiment, Fig. 2 is a circuit diagram showing a specific example of the light emitting diode drive circuit of this embodiment, and Fig. 3 is a photodiode of the embodiment. FIG. 4 is a block diagram showing a specific example of a signal detection circuit, and FIG. 4 is a block diagram showing the configuration of a conventional light emitting diode drive circuit and a detection circuit for the intensity of reflected light. In the figure, 11.12... Oscillator, 13... Phase shifter, 1
5,16...Amplification drive circuit, 17.18...Light emitting diode, 19...Photodiode, 20...Detection amplifier, 21.23a, 24a...High bass filter (HPF), 22, 27.28...Low-pass filter (LPF), 23.24...Band filter (BP)
F), 25.26...synchronous demodulator, 29...A/
D converter, 30... calculation section, 31... output section.

Claims (3)

【特許請求の範囲】[Claims] (1)それぞれ異なる波長の光を出力する発光源を備え
、前記発光源よりの光を血液中に照射し、その反射光強
度をもとに血液中のヘモグロビンの酸素飽和度を測定す
る方法であつて、 少なくとも2つの周波数の異なる第1と第2の交流信号
により前記発光源のそれぞれを駆動し、各発光源よりの
光のうち血液中で反射された光の反射光強度を電気信号
に変換する工程と、 前記電気信号を前記第1と第2の交流信号の周波数成分
を含む信号にそれぞれ分離して、第1と第2の反射光強
度信号を取出す工程と、 前記第1と第2の反射光強度信号をもとに前記血液中の
ヘモグロビンの酸素飽和度を演算する工程と、 を有することを特徴とする酸素飽和度の測定方法。
(1) A method that includes light emitting sources that output light of different wavelengths, irradiates the blood with light from the light emitting sources, and measures the oxygen saturation of hemoglobin in the blood based on the intensity of the reflected light. Each of the light emitting sources is driven by first and second alternating current signals having at least two different frequencies, and the reflected light intensity of the light reflected in the blood among the light from each light emitting source is converted into an electric signal. converting the electrical signal; separating the electric signal into signals containing frequency components of the first and second alternating current signals to extract first and second reflected light intensity signals; and extracting first and second reflected light intensity signals; 2. A method for measuring oxygen saturation, comprising: calculating the oxygen saturation of hemoglobin in the blood based on the reflected light intensity signal of step 2.
(2)それぞれ異なる波長の光を出力する発光源を備え
、前記発光源よりの光を血液中に照射し、その反射光強
度をもとに血液中のヘモグロビンの酸素飽和度を測定す
る酸素飽和度測定装置であつて、 少なくとも2つの周波数の異なる第1と第2の交流信号
により前記発光源のそれぞれを発光駆動する発光手段と
、 前記発光源よりの光のうち血液中で反射された光の反射
光強度を電気信号に変換する変換手段と、 前記電気信号を前記第1と第2の交流信号の周波数成分
を含む信号にそれぞれ分離して、第1と第2の反射光強
度信号を出力する出力手段と、前記第1と第2の反射光
強度信号をもとに前記血液中のヘモグロビンの酸素飽和
度を演算する演算手段と、 を有することを特徴とする酸素飽和度の測定装置。
(2) Oxygen saturation, which is equipped with light emitting sources that output light of different wavelengths, irradiates the blood with light from the light emitting sources, and measures the oxygen saturation of hemoglobin in the blood based on the intensity of the reflected light. a light emitting means for driving each of the light emitting sources to emit light using first and second alternating current signals having at least two different frequencies; and light reflected in the blood out of the light from the light emitting sources. converting means for converting reflected light intensity into an electrical signal; and converting the electrical signal into signals containing frequency components of the first and second alternating current signals to generate first and second reflected light intensity signals. An apparatus for measuring oxygen saturation, comprising: an output means for outputting, and a calculation means for calculating the oxygen saturation of hemoglobin in the blood based on the first and second reflected light intensity signals. .
(3)前記出力手段は前記第1及び第2の交流信号の周
波数成分のそれぞれに同期して復調する第1及び第2の
同期復調手段と、前記第1及び第2の同期復調手段の出
力の低周波成分のみを取出す低域フィルタ手段とを備え
ることを特徴とする請求項第2項に記載の酸素飽和度の
測定装置。
(3) The output means includes first and second synchronous demodulation means that demodulate frequency components of the first and second AC signals in synchronization with each other, and outputs of the first and second synchronous demodulation means. 3. The oxygen saturation measuring device according to claim 2, further comprising a low-pass filter means for extracting only low frequency components of the oxygen saturation level.
JP1308939A 1989-11-30 1989-11-30 Method and apparatus for measuring oxygen saturation Expired - Fee Related JPH0823562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1308939A JPH0823562B2 (en) 1989-11-30 1989-11-30 Method and apparatus for measuring oxygen saturation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1308939A JPH0823562B2 (en) 1989-11-30 1989-11-30 Method and apparatus for measuring oxygen saturation

Publications (2)

Publication Number Publication Date
JPH03170866A true JPH03170866A (en) 1991-07-24
JPH0823562B2 JPH0823562B2 (en) 1996-03-06

Family

ID=17987086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1308939A Expired - Fee Related JPH0823562B2 (en) 1989-11-30 1989-11-30 Method and apparatus for measuring oxygen saturation

Country Status (1)

Country Link
JP (1) JPH0823562B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009000424A (en) * 2007-06-25 2009-01-08 Hitachi Medical Corp Biological light measurement apparatus
US7684842B2 (en) 2006-09-29 2010-03-23 Nellcor Puritan Bennett Llc System and method for preventing sensor misuse
US8219170B2 (en) 2006-09-20 2012-07-10 Nellcor Puritan Bennett Llc System and method for practicing spectrophotometry using light emitting nanostructure devices
US8265724B2 (en) 2007-03-09 2012-09-11 Nellcor Puritan Bennett Llc Cancellation of light shunting
US8280469B2 (en) 2007-03-09 2012-10-02 Nellcor Puritan Bennett Llc Method for detection of aberrant tissue spectra
US8315685B2 (en) 2006-09-27 2012-11-20 Nellcor Puritan Bennett Llc Flexible medical sensor enclosure
US8521246B2 (en) 2010-07-29 2013-08-27 Covidien Lp Cable cross talk suppression
US8818473B2 (en) 2010-11-30 2014-08-26 Covidien Lp Organic light emitting diodes and photodetectors
US9833146B2 (en) 2012-04-17 2017-12-05 Covidien Lp Surgical system and method of use of the same
US9895068B2 (en) 2008-06-30 2018-02-20 Covidien Lp Pulse oximeter with wait-time indication
US10076276B2 (en) 2008-02-19 2018-09-18 Covidien Lp Methods and systems for alerting practitioners to physiological conditions
US11344233B2 (en) 2017-03-31 2022-05-31 Tetsuo Ikeda Hemoglobin quantification device, hemoglobin quantification method, hemoglobin quantification program, and surgical assistance device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4969391A (en) * 1972-09-15 1974-07-04
JPS61276541A (en) * 1985-02-28 1986-12-06 ザ ビ−オ−シ− グル−プ インコ−ポレ−テツド Oxymeter
JPS62251661A (en) * 1986-04-25 1987-11-02 Setsuo Takatani Method for measuring degree of oxygen saturation of hemoglobin and reflected light sensor used therein
JPS6392335A (en) * 1986-10-06 1988-04-22 コ−リン電子株式会社 Method and apparatus for monitoring oxygen saturation degree in blood
JPS6429739A (en) * 1987-07-24 1989-01-31 Terumo Corp Hemoglobin concentration measuring instrument
JPH021216A (en) * 1987-10-08 1990-01-05 Critikon Inc Blood quantity meter system for sphygmus oxygen meter
JPH0386152A (en) * 1989-08-31 1991-04-11 Minolta Camera Co Ltd Oxymeter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4969391A (en) * 1972-09-15 1974-07-04
JPS61276541A (en) * 1985-02-28 1986-12-06 ザ ビ−オ−シ− グル−プ インコ−ポレ−テツド Oxymeter
JPS62251661A (en) * 1986-04-25 1987-11-02 Setsuo Takatani Method for measuring degree of oxygen saturation of hemoglobin and reflected light sensor used therein
JPS6392335A (en) * 1986-10-06 1988-04-22 コ−リン電子株式会社 Method and apparatus for monitoring oxygen saturation degree in blood
JPS6429739A (en) * 1987-07-24 1989-01-31 Terumo Corp Hemoglobin concentration measuring instrument
JPH021216A (en) * 1987-10-08 1990-01-05 Critikon Inc Blood quantity meter system for sphygmus oxygen meter
JPH0386152A (en) * 1989-08-31 1991-04-11 Minolta Camera Co Ltd Oxymeter

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8219170B2 (en) 2006-09-20 2012-07-10 Nellcor Puritan Bennett Llc System and method for practicing spectrophotometry using light emitting nanostructure devices
US8315685B2 (en) 2006-09-27 2012-11-20 Nellcor Puritan Bennett Llc Flexible medical sensor enclosure
US7684842B2 (en) 2006-09-29 2010-03-23 Nellcor Puritan Bennett Llc System and method for preventing sensor misuse
US8265724B2 (en) 2007-03-09 2012-09-11 Nellcor Puritan Bennett Llc Cancellation of light shunting
US8280469B2 (en) 2007-03-09 2012-10-02 Nellcor Puritan Bennett Llc Method for detection of aberrant tissue spectra
JP2009000424A (en) * 2007-06-25 2009-01-08 Hitachi Medical Corp Biological light measurement apparatus
US10076276B2 (en) 2008-02-19 2018-09-18 Covidien Lp Methods and systems for alerting practitioners to physiological conditions
US9895068B2 (en) 2008-06-30 2018-02-20 Covidien Lp Pulse oximeter with wait-time indication
US8521246B2 (en) 2010-07-29 2013-08-27 Covidien Lp Cable cross talk suppression
US8818473B2 (en) 2010-11-30 2014-08-26 Covidien Lp Organic light emitting diodes and photodetectors
US9833146B2 (en) 2012-04-17 2017-12-05 Covidien Lp Surgical system and method of use of the same
US11344233B2 (en) 2017-03-31 2022-05-31 Tetsuo Ikeda Hemoglobin quantification device, hemoglobin quantification method, hemoglobin quantification program, and surgical assistance device

Also Published As

Publication number Publication date
JPH0823562B2 (en) 1996-03-06

Similar Documents

Publication Publication Date Title
KR960010977B1 (en) Pulse oximeter plethysmograph system
JP4454854B2 (en) Signal demodulation method and apparatus in pulse measurement system
US4807630A (en) Apparatus and method for use in pulse oximeters
CA1324818C (en) Blood constituent monitoring apparatus and methods with frequency division multiplexing
US10433738B2 (en) Method and apparatus for optical sensing of tissue variation at increased accuracy
JP3116255B2 (en) Pulse oximeter
JPH03170866A (en) Method and apparatus for measuring degree of saturation of oxygen
US5919134A (en) Method and apparatus for demodulating signals in a pulse oximetry system
US7062307B2 (en) Oversampling pulse oximeter
JPH06169902A (en) Pulse type non-invasion type oxymeter and technology for measuring it
JPH0371133B2 (en)
CN107709989B (en) Adjustable optical receiver
JP2004194908A (en) Blood measuring device
JP3710570B2 (en) Medical monitoring method
US20130324818A1 (en) Non-interfering physiological sensor system
EP0761159A2 (en) Apparatus for medical monitoring, in particular pulse oximeter
JP2008180597A (en) Light detection device and optical measurement unit
JPH1133017A (en) Optical heterodyne method spectroscopic analyser
JPS63149578A (en) Apparatus for measuring characteristic of photo detector
SU1684599A1 (en) Device for measuring light spot displacement
RU2054884C1 (en) Photoplethysmograph
SU628616A1 (en) Arrangement for measuring amplitude-frequency characteristics of communication channels
SU809272A2 (en) Fire alarm
JPH0838480A (en) Living body measuring device
JP2009000424A (en) Biological light measurement apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees