JPH03170655A - Aluminum-base sliding member - Google Patents

Aluminum-base sliding member

Info

Publication number
JPH03170655A
JPH03170655A JP30742089A JP30742089A JPH03170655A JP H03170655 A JPH03170655 A JP H03170655A JP 30742089 A JP30742089 A JP 30742089A JP 30742089 A JP30742089 A JP 30742089A JP H03170655 A JPH03170655 A JP H03170655A
Authority
JP
Japan
Prior art keywords
graphite
alloy
sliding member
sprayed layer
sliding surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30742089A
Other languages
Japanese (ja)
Inventor
Kenji Shimoda
健二 下田
Shinji Kato
慎治 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP30742089A priority Critical patent/JPH03170655A/en
Publication of JPH03170655A publication Critical patent/JPH03170655A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an Al-base sliding member excellent in wear resistance and seizure resistance by forming an Al thermally sprayed layer in which fine graphite powder is dispersed and which has specific percentage of pores on the sliding surface of a sliding member made of Al alloy. CONSTITUTION:Plasma spraying is applied to the sliding surface of a sliding member made of Al-base alloy, such as Al-Si alloy, by using a pulverized powder mixture of Al alloy and graphite as a raw material, by which in Al alloy thermally sprayed layer which contains fine-grained graphite of 10-50mum average grain size by 0.4-1.0wt.% and in which porosity is regulated to 3-10% is formed on the sliding surface. Since graphite functions as a solid lubricant and also superior retentive property of lubricating oil is provided owing to the presence of many pores in the sliding surface in the above thermally sprayed layer, the sliding member made of Al-base alloy excellent in the wear resistance, seizure resistance, etc., of the sliding surface can be produced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はアルミニウム基摺動部材に係り、特に耐摩耗性
、耐焼付き性を向上させたアルミニウム(,1!)を基
本とする摺動部材に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an aluminum-based sliding member, and particularly to an aluminum-based sliding member with improved wear resistance and seizure resistance. It is related to.

〔従来の技術〕[Conventional technology]

従来、アルミニウムー珪素(Aj!−St)合金等のA
l系材料の耐摩耗性、耐焼付き性向上を目的として黒鉛
や二硫化モリブデン(Host)等の固体潤滑剤を添加
し、複合化させている.その方法としては第lに黒鉛等
にメッキし、鋳造したり、又第2にA7!粉末と黒鉛粉
末とを混合し、圧粉、焼結、熱間押出しする方法が知ら
れている(日本金属学会誌第52巻第2号(1988)
 pl63−pl70)。
Conventionally, A of aluminum-silicon (Aj!-St) alloy, etc.
In order to improve the wear resistance and seizure resistance of l-based materials, solid lubricants such as graphite and molybdenum disulfide (Host) are added and compounded. The first method is to plate it with graphite or the like and cast it, and the second method is to use A7! A method is known in which powder and graphite powder are mixed, compacted, sintered, and hot extruded (Journal of the Japan Institute of Metals, Vol. 52, No. 2 (1988)).
pl63-pl70).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の第1の方法では製品全体に黒鉛粒子を分散させる
ことになり、特に必要な表面部だけに、黒鉛を分散させ
ることは困難である.そこで、その対策としては必要な
表面部だけに溶射することが考えられるが、同方法にお
いては耐摩耗性は向上するが耐焼付き性については問題
がある。又、第2の方法による熱間押出しでAIlと黒
鉛を複合化する場合、細かい黒鉛を均一に分散させるこ
とは困難で(黒鉛同志が凝着してしまう.)あり、かつ
、油を保持する気孔を均一に分布させることも、焼結条
件を変えてもかなり難しい。
In the first method described above, graphite particles are dispersed throughout the product, and it is particularly difficult to disperse graphite only on the necessary surface area. As a countermeasure to this problem, thermal spraying may be applied only to the necessary surface areas, but although this method improves wear resistance, there is a problem with seizure resistance. In addition, when compounding Al and graphite by hot extrusion using the second method, it is difficult to uniformly disperse fine graphite (the graphite pieces stick together), and it is difficult to retain oil. It is also quite difficult to distribute the pores uniformly even if the sintering conditions are changed.

本発明は耐摩耗性及び耐焼付き性を向上させた/l基摺
動部材を提供することを目的とする。
An object of the present invention is to provide a /l-based sliding member with improved wear resistance and seizure resistance.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題は本発明によれば、アルミニウム基材料からな
る摺動部材の摺動面に、10〜50A=111の平均ね
径を有し且つ0. 4〜1. 0重量%の黒鉛と、残部
アルミニウム基材料とからなり、気孔率が3〜lO%で
ある溶射層を設けてなることを特徴とするアルミニウム
基摺動部材によって解決される。
According to the present invention, the above-mentioned problem is solved by having a sliding surface of a sliding member made of an aluminum base material having an average thread diameter of 10 to 50A=111 and 0. 4-1. The problem is solved by an aluminum-based sliding member characterized in that it is made of 0% by weight of graphite and the remainder is an aluminum-based material, and is provided with a sprayed layer having a porosity of 3 to 10%.

〔作 用〕[For production]

本発明によれば摺動部にのみ特に溶射層を設ければよく
、溶射層のマトリックスとしては基地の摺動部材材料に
頚似したAI.基材料とし密着性を確保し、しかも所定
の微細粒径の黒鉛を特定量添加することで耐焼付き性を
向上させるものである。
According to the present invention, it is only necessary to provide a thermally sprayed layer only on the sliding part, and the matrix of the thermally sprayed layer is an AI. The adhesive is used as a base material to ensure adhesion, and the seizure resistance is improved by adding a specific amount of graphite with a predetermined fine particle size.

本摺動部材の摺動部を溶射層としその溶射層に所定の気
孔を設けることによって気孔での保油性を高め潤滑性も
確保できる。
By forming the sliding portion of the sliding member into a thermally sprayed layer and providing predetermined pores in the thermally sprayed layer, the pores can enhance oil retention and ensure lubricity.

本発明で使用されるアルごニウム基材料はAl,A l
 − S i合金、等が有効に用いられる。
The argonium-based material used in the present invention is Al, Al
- Si alloys, etc. are effectively used.

〔実施例〕〔Example〕

以下本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

AN系自動車部品の耐焼付き性を向上させるため、低コ
ストで且つ所定部分のみを処理できる溶射を実施し、A
ffi基摺動部材を製造した。
In order to improve the seizure resistance of AN-based automotive parts, we carried out thermal spraying, which is low cost and can treat only designated areas.
An ffi-based sliding member was manufactured.

まず材料としては素材がAfg材料であるため溶射層の
密着性(特に黒鉛粒子とAfとのぬれ性及び熱膨張係数
)を考慮し、Af系合金、具体的には耐摩耗性の高い一
般的な材料であるA!!.−Si合金と黒鉛を粉砕、混
合し、そのお}末を用いてAf基材料に対してプラズマ
溶射を行い、その溶射皮膜の耐焼付き性を評価した。ま
ず、原料粉末戒分としては、第1表に示すような組合せ
の成分について行いこれらの各戒分の組合せを混ワ)機
により30分間混粉した。
First of all, since the material is Afg material, we took into account the adhesion of the sprayed layer (especially the wettability between graphite particles and Af and the coefficient of thermal expansion). A is a material! ! .. -Si alloy and graphite were crushed and mixed, and the resulting powder was subjected to plasma spraying on an Af-based material, and the seizure resistance of the sprayed coating was evaluated. First, as raw material powder ingredients, combinations of ingredients as shown in Table 1 were used, and the combinations of these ingredients were mixed in a mixing machine for 30 minutes.

第  1  表 なおAj!−Si合金粉末の平均粒径は70Jtm一定
とした。又、A l − S i と黒鉛との混合比は
7:3(体積%)とした。これらの混合粉末のプラズマ
溶射条件を第2表に示す。
Table 1 Nao Aj! The average particle size of the -Si alloy powder was kept constant at 70 Jtm. Further, the mixing ratio of Al-S i and graphite was 7:3 (volume %). Table 2 shows the plasma spraying conditions for these mixed powders.

第2表 この溶射条件にて、機械試験所式円筒テストビースの端
面に厚さ1鴫に溶射し、その後、エメリペーバ#100
0にて研摩を行い、溶射層を下にした円筒テストピース
を立てて上方から荷重をかけ該テストビースの支持台を
回転させる焼付きテストを実施した。その焼付きテスト
の条件を第3表に示す. 第 3 表 焼付きテスト結果を第1図に示す。又、黒鉛の分布状態
特に黒鉛粒径30μ及び100,!III1の場合の金
属組織写真を第2図及び第3図にそれぞれ示す。
Table 2 Under these spraying conditions, the end face of a mechanical laboratory type cylindrical test bead was sprayed to a thickness of 1 layer, and then Emery Paver #100 was sprayed.
A seizure test was conducted in which a cylindrical test piece with the sprayed layer facing down was stood up, a load was applied from above, and the support of the test bead was rotated. Table 3 shows the conditions for the burn-in test. 3. Figure 1 shows the results of the surface burn-in test. Also, the distribution state of graphite, especially the graphite particle size of 30μ and 100μ,! The metal structure photographs of III1 are shown in FIGS. 2 and 3, respectively.

この結果より黒鉛平均粒径が10p〜50taのものを
,1Mと複合化させた場合のみにおいて、耐焼付き性を
向上させることがわかった。この時の溶射層の気孔率は
約5%であった。ここで、黒鉛平均粒径が10m未満の
ものについては、溶射時のプラズマの高熱により燃焼し
てしまい溶射層中に、ほとんど残存していなかったため
効果が現われなかったと思われるゆ又、平均粒径が5o
nを越え、特に100mになると次のような現象が起こ
る。すなわち、焼付きにおける黒鉛の役割りとしては、
生成された凝着層を破壊させること及び黒鉛自体の自己
潤滑性が挙げられる。ここで、焼付き試験後の溶射層の
表面状態を第4図(a)及び(b)に示す。第4図(a
)は黒鉛が大の場合、第4図(b)は黒鉛粒が微細な場
合の凝着状況を示す。黒鉛粒径の大小によらず、黒鉛の
上には、凝着層が被覆されていないことがわかる。しか
し、黒鉛粒径の大きいものの回りの凝着層面積は、小さ
い黒鉛のそれに比べ大きいことがわかる。この凝着層は
、やがて脱落するがこのように、黒鉛部で脱落する凝着
層が大きい程、相手材との間に入った場合アグレッシブ
(攻撃的)摩耗となり、ついには焼付きに至ると考えら
れる。すなわち、A1に黒鉛を複合化させる場合は黒鉛
粒径を小さくし、凝着層を細かくすることが必要である
。しかし、あまり粒径の小さな黒鉛では先に述べたよう
に溶射中に燃焼し、CO2ガスになってしまい、溶射層
中に残らない。
From this result, it was found that seizure resistance was improved only when graphite having an average particle size of 10p to 50ta was combined with 1M. The porosity of the sprayed layer at this time was about 5%. Here, graphite with an average particle size of less than 10 m was burnt by the high heat of the plasma during thermal spraying, and almost no effect remained in the sprayed layer, so it seems that the effect did not appear. is 5o
When the distance exceeds n, especially 100 m, the following phenomenon occurs. In other words, the role of graphite in seizure is as follows:
Destruction of the generated adhesive layer and self-lubricating properties of graphite itself are mentioned. Here, the surface condition of the sprayed layer after the seizure test is shown in FIGS. 4(a) and 4(b). Figure 4 (a
) shows the adhesion state when the graphite particles are large, and FIG. 4(b) shows the adhesion state when the graphite particles are fine. It can be seen that no adhesive layer is coated on the graphite, regardless of the size of the graphite particles. However, it can be seen that the area of the adhesive layer around large graphite particles is larger than that of small graphite particles. This adhesive layer will eventually fall off, but the larger the adhesive layer that falls off from the graphite part, the more aggressive the wear will be if it gets between it and the mating material, which will eventually lead to seizure. Conceivable. That is, when compounding graphite into A1, it is necessary to reduce the graphite particle size and make the adhesive layer fine. However, as mentioned above, if the particle size of graphite is too small, it will burn during thermal spraying and become CO2 gas, which will not remain in the thermal spray layer.

そこで次に、溶射層中に含まれる黒鉛量について検討し
た。平均粒径10−の黒鉛について、/112Si と
の配合比(体積%)を第4表の如く変化させ、・溶射の
テストを実施した.溶射条件は前述の第2表と同じであ
る。
Next, we investigated the amount of graphite contained in the sprayed layer. For graphite with an average particle size of 10 -, the blending ratio (volume %) with /112Si was varied as shown in Table 4, and thermal spraying tests were conducted. The thermal spraying conditions are the same as in Table 2 above.

第 4 表(配合比:体積%) * バラツキ大 A:溶射層中の黒鉛量(重量%) それぞれの溶射層中の黒鉛量を測定した結果を第4表の
最下欄に示した。
Table 4 (Blending ratio: Volume %) * Large variation A: Amount of graphite in the sprayed layer (% by weight) The results of measuring the amount of graphite in each sprayed layer are shown in the bottom column of Table 4.

このテストでは黒鉛の配合比が70体積%以上になると
混合粉末の流動性が悪化し均一に黒鉛が分散された溶射
層は得られなかった、(又90%黒鉛の場合はほとんど
溶射材が流れず溶射が不可能となった。)この理由は微
綱な黒鉛粒子がAl粒子の間に入りANの流動を抑制さ
せたり、また比重差が大きいため粉末の供給時に分離す
ることが考えられる。次にそれぞれの溶射層について焼
付きテストを実施した。その結果を第5図に示す。第5
図から、黒鉛量は0.4(重量%)未満では効果が見ら
れず、0.4(重量%)以上必要なことが分った。ただ
し、前述の熔射性を考えるとAfと微細粒の黒鉛の混合
粉末における溶、射においては0.4〜1.0(重量%
)の黒鉛の含有が適当である。
In this test, when the blending ratio of graphite exceeded 70% by volume, the fluidity of the mixed powder deteriorated and a sprayed layer with evenly dispersed graphite could not be obtained (also, in the case of 90% graphite, most of the sprayed material flowed (Thermal spraying became impossible.) The reason for this is thought to be that the fine graphite particles get between the Al particles and suppress the flow of AN, or that the difference in specific gravity is large and they separate when the powder is supplied. Next, a seizure test was conducted for each sprayed layer. The results are shown in FIG. Fifth
From the figure, it was found that if the amount of graphite was less than 0.4 (wt%), no effect was observed, and that 0.4 (wt%) or more was required. However, considering the above-mentioned meltability, when melting or spraying a mixed powder of Af and fine graphite particles, the
) graphite content is appropriate.

なお、Ai合金を純Alに変えた場合には、更に、Af
自体のせん断しやすさ(軟かさ)も重なって、,11−
12Siの場合よりも耐焼付き性が高くなった。この場
合にも黒鉛粒径の影響は同じ傾向であった(第1図)。
Furthermore, if the Al alloy is changed to pure Al, Af
Due to its ease of shearing (softness), ,11-
The seizure resistance was higher than that of 12Si. In this case as well, the influence of graphite particle size had the same tendency (Figure 1).

一方、Siiiが12%を超えるAf合金では、硬いS
t粒がアグレッシブ摩耗を促進するため、耐焼付き性は
低下してしまう。
On the other hand, in Af alloys with Siii exceeding 12%, hard S
Since the T-grain promotes aggressive wear, the seizure resistance decreases.

また更に溶射層の気孔率についても検討した。Furthermore, the porosity of the sprayed layer was also investigated.

一般に溶射層中には多数の気孔が存在し、潤滑性を向上
させると言われている.そこで、今回のAf+黒鉛の溶
射層についても気孔の影響を明らかにした。すなわち、
ガス流量、溶射距離等の溶射条件により、気孔率を変化
させた溶射層において焼付きテストを実施した。その結
果を第6図に示す。第6図から3〜10%の気孔率で、
耐焼付き性を向上できることがわかった。気孔率が3%
未満では油だまりの効果が発揮されず又10%を越える
と,11粒子間の結合が弱くなり、摺動中に脱落し、ア
グレッシブ的摩耗を示し、焼付き荷重は低下した。
Generally, there are many pores in the sprayed layer, which are said to improve lubricity. Therefore, we also clarified the influence of pores on the sprayed layer of Af + graphite. That is,
Seizure tests were conducted on sprayed layers with varying porosity depending on spraying conditions such as gas flow rate and spraying distance. The results are shown in FIG. From Figure 6, with a porosity of 3 to 10%,
It was found that seizure resistance could be improved. Porosity is 3%
If it is less than 10%, the effect of the oil pool is not exhibited, and if it exceeds 10%, the bonds between the 11 particles become weak and fall off during sliding, resulting in aggressive wear and a decrease in seizure load.

耐焼付き性が必要な部品としてAN合金のシフトフォー
クを選び、その爪部に第5表に示した材料を施し、シン
クロ耐久評価(焼付き発生までのサイクル数)を実施し
た。
An AN alloy shift fork was selected as a component requiring seizure resistance, and the material shown in Table 5 was applied to the pawl portion, and a synchro durability evaluation (number of cycles until seizure occurred) was performed.

第5表 得られたシンクロ耐久評価の結果を第7図に示す。Table 5 The results of the synchro durability evaluation obtained are shown in FIG.

第7図から明らかに本発明品は、比較材としての無処理
材、μ(摩擦係数)が低い樹脂材料(ナイロン)あるい
は従来例である熱間押出し品よりも耐焼付き性に優れて
いることが確認された。また溶射層の剥離は全く確認さ
れなかった。なお熱間押出し品に分布する黒鉛は大きな
塊状となっており、表面の気孔率も約1%と少なかった
It is clear from FIG. 7 that the product of the present invention has superior seizure resistance to the untreated material, the resin material (nylon) with low μ (coefficient of friction), or the conventional hot extruded product as comparative materials. was confirmed. Moreover, no peeling of the sprayed layer was observed. Note that the graphite distributed in the hot extruded product was in the form of large lumps, and the surface porosity was as low as about 1%.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば高周速、高面圧の摺
動部材の耐焼付き性を大幅に向上さ−せ・ることができ
しかも母材と溶射材との密着性及び油保持性も良好であ
った。
As explained above, according to the present invention, it is possible to significantly improve the seizure resistance of sliding members with high circumferential speeds and high surface pressures, and to improve the adhesion between the base material and the sprayed material and the oil retention. The properties were also good.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は純A1と/!1/!−12Siの材料を用いて
それぞれ黒鉛粒径と耐焼付き性との関係を示す図であり
、 第2図及び第3図は第1図における黒鉛粒径30μ及び
100−のそれぞれの金属Mi織写真であり、第4図(
a)及び(b)はそれぞれ黒鉛粒が大及び微細の場合の
凝着状況を示す金属組織写真であり、 第5図は溶射層中の黒鉛ffi(重量%)と焼付き荷重
(kg)との関係を示す図であり、第6図は溶射層の気
孔率(%)と焼付き荷重(kg)との関係を示す図であ
り、 第7図は焼付き発生までのサイクル数を本発明材と比較
材とで調査した結果を示す図である。
Figure 1 shows pure A1 and /! 1/! -12Si material is used to show the relationship between graphite particle size and seizure resistance, respectively. Figures 2 and 3 are photographs of metal Mi weave with graphite particle sizes of 30μ and 100μ in Figure 1, respectively. , and Fig. 4 (
a) and (b) are metallographic photographs showing the adhesion state when the graphite grains are large and fine, respectively, and Figure 5 shows the graphite ffi (wt%) in the sprayed layer and the seizure load (kg). FIG. 6 is a diagram showing the relationship between the porosity (%) of the sprayed layer and the seizure load (kg), and FIG. 7 is a diagram showing the relationship between the porosity (%) of the sprayed layer and the seizure load (kg). FIG. 3 is a diagram showing the results of an investigation using wood and comparative material.

Claims (1)

【特許請求の範囲】[Claims] 1.アルミニウム基材料からなる摺動部材の摺動面に、
10〜50μmの平均粒径を有し且つ0.4〜1.0重
量%の黒鉛と、残部アルミニウム基材料とからなり、気
孔率が3〜10%である溶射層を設けてなることを特徴
とするアルミニウム基摺動部材。
1. On the sliding surface of a sliding member made of aluminum-based material,
It is characterized by having a thermal sprayed layer having an average particle size of 10 to 50 μm, consisting of 0.4 to 1.0% by weight of graphite, and the balance being an aluminum-based material, and having a porosity of 3 to 10%. Aluminum-based sliding member.
JP30742089A 1989-11-29 1989-11-29 Aluminum-base sliding member Pending JPH03170655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30742089A JPH03170655A (en) 1989-11-29 1989-11-29 Aluminum-base sliding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30742089A JPH03170655A (en) 1989-11-29 1989-11-29 Aluminum-base sliding member

Publications (1)

Publication Number Publication Date
JPH03170655A true JPH03170655A (en) 1991-07-24

Family

ID=17968843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30742089A Pending JPH03170655A (en) 1989-11-29 1989-11-29 Aluminum-base sliding member

Country Status (1)

Country Link
JP (1) JPH03170655A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007078237A (en) * 2005-09-13 2007-03-29 Kobe Steel Ltd Heat transfer pipe for lng vaporizer and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007078237A (en) * 2005-09-13 2007-03-29 Kobe Steel Ltd Heat transfer pipe for lng vaporizer and its manufacturing method

Similar Documents

Publication Publication Date Title
US4334926A (en) Bearing material
US4383970A (en) Process for preparation of graphite-containing aluminum alloys
US5824923A (en) Sintered friction material, composite copper alloy powder used therefor and manufacturing method thereof
US3877884A (en) Dispersion strengthened aluminum bearing material
GB2131457A (en) Engine cylinder liners based on aluminium alloys and intermetallic compounds
US4650644A (en) Engine liners having a base of aluminum alloys and of silicon grains graded in size and processes for obtaining them
KR100347125B1 (en) Swash-Plate of Swash-Plate Type Compressor
US6361877B1 (en) Thermal spray material comprising Al-Si alloy powder and a structure having a coating of the same
JPH03170655A (en) Aluminum-base sliding member
WO2017222538A1 (en) Iron-based systems for friction applications
KR100316558B1 (en) Aluminum alloy-based sliding material
JPS6121307B2 (en)
JPH05156388A (en) Double-layered sintered sliding member and its manufacture
JPS5881946A (en) Al type sintered bearing alloy and preparation thereof
JP3753981B2 (en) Aluminum alloy sprayed layer and sliding material with excellent sliding properties
Asif et al. Wear characteristic of Al-based metal matrix composites used for heavy duty brake pad applications
JPH06145845A (en) Sintered friction material
US6024806A (en) A1-base alloy having excellent high-temperature strength
JPS58113368A (en) Sliding member
JP3048143B1 (en) Thermal spray layer with excellent sliding properties
JPH0499836A (en) Sintered copper series sliding material
JPS5854189B2 (en) thermal spray powder material
JP2825834B2 (en) Graphite dispersed self-lubricating alloy
JP2005015874A (en) Self-lubricity composite powder and method for manufacturing the same
JP3294209B2 (en) Aluminum alloy sprayed layer and sliding material with excellent sliding characteristics