JPH03170650A - Production of high strength ti alloy - Google Patents

Production of high strength ti alloy

Info

Publication number
JPH03170650A
JPH03170650A JP31003589A JP31003589A JPH03170650A JP H03170650 A JPH03170650 A JP H03170650A JP 31003589 A JP31003589 A JP 31003589A JP 31003589 A JP31003589 A JP 31003589A JP H03170650 A JPH03170650 A JP H03170650A
Authority
JP
Japan
Prior art keywords
alloy
martensitic transformation
beta
deformation
transformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31003589A
Other languages
Japanese (ja)
Inventor
Hideto Oyama
英人 大山
Yoshio Ashida
芦田 喜郎
Atsuyuki Miyamoto
宮本 淳之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP31003589A priority Critical patent/JPH03170650A/en
Publication of JPH03170650A publication Critical patent/JPH03170650A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Abstract

PURPOSE:To obtain a Ti alloy having high strength and high ductility by applying a repetition of strain induced martensitic transformation and inverse martensitic transformation to a beta Ti alloy and introducing dislocation by means of the transformations. CONSTITUTION:For example, a beta Ti alloy which has a composition consisting of, by weight, 10% V, 2% Fe, 3% Al, and the balance Ti and also has a structure consisting of two phases of alpha and beta phases in an equilibrium state at room temp. and causes retained beta phase nonequilibrium at room temp. by means of cooling from a temp. in the vicinity of the beta transformation point and also causes strain induced martensitic transformation by means of plastic working is subjected, at least two or more times, to a repetition of a process in which strain induced martensitic transformation is caused by means of cold working, such as drawing, and then inverse martensitic transformation returning to beta phase is caused by means of heat treatment, by which the Ti alloy having high-level yield strength and tensile. strength can be produced without causing deterioration in elongation percentage.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はβ型Ti合金の製造方法に関し、殊に適当な加
工と時効処理を組合せることによって、延性を損なうこ
となく高強度のTi合金を得ることのできる方法に関す
るものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for producing a β-type Ti alloy, and in particular, by combining appropriate processing and aging treatment, a high-strength Ti alloy can be produced without impairing ductility. It concerns the method by which it can be obtained.

[従来の技術] β型Tt合金は、α型Ti合金と違って冷間加工が可能
であり、しかも加工後の熱処理によって高強度を得るこ
とができるところから、航空機分野の各種機材をはじめ
、船舶や自動車等の部品材料として需要増大が期待され
ている。殊に自動車分野では、ヤング率が小さく且つ高
強度を示すという特性を生かして弁ばね等への用途拡大
が期待されており、現時点では冷間加工と時効処理の組
合せによって1 8 0 kgf/nus’を超える高
強度が得られている.こうした高強度化は、冷間加工に
よる加工硬化と時効処理時におけるα相の析出による析
出硬化によって達成されるものであるが、それに伴なっ
て延性が極端に低下し、実質部品としての使用に耐え難
いものとなる。
[Prior Art] Unlike α-type Ti alloys, β-type Tt alloys can be cold-worked, and high strength can be obtained by heat treatment after processing, so they are used in various equipment in the aircraft field, etc. Demand is expected to increase as a component material for ships, automobiles, etc. Particularly in the automobile field, it is expected that applications such as valve springs will be expanded by taking advantage of the characteristics of a small Young's modulus and high strength. A high strength exceeding ' has been obtained. Such high strength is achieved through work hardening due to cold working and precipitation hardening due to the precipitation of α phase during aging treatment, but this results in an extremely low ductility, making it difficult to use as actual parts. It becomes unbearable.

[発明が解決しようとする課題】 本発明は上記の様な事情に着目して威されたものであっ
て、その目的は、高強度でしかも優れた延性を示すTi
合金の製法を確立しようとするものである. [課題を解決するための手段] 上記課題を解決することのできた本発明法の構成は、加
工誘起マルテンサイト変態を示すβ型τi合金を使用し
、冷間加工により加工誘起マルテンサイト変態を生じさ
せた後、これを熱処理してβ相に戻す逆マルテンサイト
変態を生じさせる工程を少なくとも2回以上繰り返すと
ころに要旨を有するものである。
[Problems to be Solved by the Invention] The present invention was developed by paying attention to the above-mentioned circumstances, and its purpose is to develop Ti that exhibits high strength and excellent ductility.
The aim is to establish a manufacturing method for alloys. [Means for Solving the Problems] The structure of the method of the present invention that can solve the above problems uses a β-type τi alloy that exhibits deformation-induced martensitic transformation, and cold working causes deformation-induced martensitic transformation. The gist of this method is to repeat at least two times the step of heat-treating the martensitic material and then returning it to the β phase to cause reverse martensitic transformation.

[作用] 変形がすべりによって起こるβ型Ti合金の場合、塑性
変形によって導入される格子欠陥(転位)は極めて不均
一である。その理由については理論的に今後解明される
べきことであって未だ明らかにされていないが、結果的
には時効処理(析出硬化熱処理)の際に当該転位部分を
析出サイトとしてα相が析出するので、α相が局所的に
偏在することとなり、時効組織が極めて不均一になる。
[Operation] In the case of a β-type Ti alloy in which deformation occurs due to slip, lattice defects (dislocations) introduced by plastic deformation are extremely non-uniform. The reason for this is something that should be theoretically clarified in the future and has not yet been clarified, but as a result, α phase precipitates using the dislocation area as a precipitation site during aging treatment (precipitation hardening heat treatment). Therefore, the α phase is locally unevenly distributed, and the aged structure becomes extremely non-uniform.

その結果α相析出による析出硬化も不均一となって高強
度化が阻害されるばかりでなく、α相の析出が粗である
部分(即ち析出硬化不足の部分)に歪が集中して破壊が
起こるため延性も非常に悪いものとなる。
As a result, precipitation hardening due to α phase precipitation becomes nonuniform, which not only hinders high strength, but also causes strain to concentrate in areas where α phase precipitation is coarse (i.e., areas where precipitation hardening is insufficient), resulting in fracture. As a result, ductility is also very poor.

本発明はこうした難点を改善するもので、時効時のα相
析出サイトとなる転位が均一且つ密に導入された下部組
織を得ることができ、それによりα相を全体に亘って均
一且つ密に析出させることのできる技術を確立するもの
であり、具体的には、前述の如<Ti合金として加工誘
起マルテンサイト変態を示すβ型Ti合金を使用し、冷
間加工によって加工誘起マルテンサイト変態を生じさせ
た後、これを熱処理してβ型に戻す逆マルテンサイト変
態を生じさせる工程を、少なくとも2回以上繰り返すも
のである。
The present invention improves these difficulties, and it is possible to obtain a substructure in which dislocations, which serve as α-phase precipitation sites during aging, are uniformly and densely introduced, thereby making it possible to distribute the α-phase uniformly and densely throughout the entire body. The aim is to establish a technology capable of precipitating the precipitation, and specifically, using a β-type Ti alloy that exhibits deformation-induced martensitic transformation as a Ti alloy, as described above, and cold working to induce deformation-induced martensitic transformation. The process of generating reverse martensitic transformation, which is then heat-treated to return it to the β-type, is repeated at least twice.

ここで加工誘起マルテンサイト変態を示すβ型Ti合金
とは、室温の平衡状態においてαとβの2相からなり、
β変態点超あるいはβ変態点以下であってもその近傍か
らの冷却により室温で非平衡な残留β相を生じ、これを
塑性加工すると加工誘起マルテンサイト変態を生ずるβ
型Ti合金をいう。この様なβ型Ti合金は、通常10
%程度の冷間加工によってほぼ全体がマルテンサイト組
織となり、これを更に加工するとすべり変形を起こして
転位が不均一に導入されるが、本発明では塑性加工を加
工誘起マルテンサイト変態が生じるまでに止め、この変
態だけで転位を導入した後、その後の熱処理でβ型に戻
す逆マルテンサイト変態を生ぜしめ、これに更に塑性加
工を加えて再度加工誘起マルテンサイト変態を生じさせ
ることによって新たな転位を導入する。すべり変形によ
って導入される転位は前述の如く不均一であるが、変態
によって導入される転位は全体に亘って均一に与えられ
、この転位はその後の熱処理による逆マルテンサイト変
態によってもα相析出サイトとしてそのまま受け継がれ
る.そして上記加工誘起マルテンサイト変態により転位
を導入する工程と逆マルテンサイト変態により転位を導
入する工程を2回以上繰り返すと、順次新たな転位が均
一に導入されてα相析出サイトが蓄積され、均一且つ密
なα相析出サイトを有する下部組織を得ることができる
.このとき、1回目の塑性加工で変態があまり進行せず
転位の導入が粗であった部分では、次回の処理で優先的
にマルテンサイト変態が進行して転位が導入される。即
ち転位が粗である部分は加工硬化の度合いが小さく、転
位が密に導入された部分よりも低強度であるため、その
後の塑性加工では加工誘起マルテンサイト変態がおこり
易くなるからである.その結果、上記操作を繰り返すこ
とによって転位の導入位置は一層均一化され、α相析出
サイトを極めて均一且つ高密度に導入することが可能と
なる。
Here, the β-type Ti alloy exhibiting deformation-induced martensitic transformation consists of two phases, α and β, in an equilibrium state at room temperature.
Even if the temperature is above the β transformation point or below the β transformation point, cooling from the vicinity produces a non-equilibrium residual β phase at room temperature, and when this is plastically worked, deformation-induced martensitic transformation occurs.
Refers to type Ti alloy. Such β-type Ti alloy is usually 10
% of cold working results in almost the entire martensitic structure, and further processing causes slip deformation and dislocations are introduced unevenly. However, in the present invention, plastic working is carried out until deformation-induced martensitic transformation occurs. After stopping and introducing dislocations through this transformation alone, subsequent heat treatment causes reverse martensitic transformation to return to the β-type, and then plastic working is added to this to cause deformation-induced martensitic transformation again, thereby creating new dislocations. will be introduced. The dislocations introduced by slip deformation are non-uniform as mentioned above, but the dislocations introduced by transformation are uniformly given throughout, and these dislocations are also converted to α phase precipitation sites by reverse martensitic transformation by subsequent heat treatment. It will be inherited as is. Then, by repeating the process of introducing dislocations through deformation-induced martensitic transformation and the process of introducing dislocations through reverse martensitic transformation two or more times, new dislocations are sequentially and uniformly introduced, α-phase precipitation sites are accumulated, and uniform Moreover, a substructure with dense α-phase precipitation sites can be obtained. At this time, in the parts where transformation did not progress much in the first plastic working and dislocations were introduced roughly, martensitic transformation progresses preferentially in the next processing and dislocations are introduced. In other words, areas where dislocations are coarse have a small degree of work hardening and have lower strength than areas where dislocations are densely introduced, making it easier for work-induced martensitic transformation to occur during subsequent plastic working. As a result, by repeating the above operations, the introduction positions of dislocations become more uniform, and it becomes possible to introduce α phase precipitation sites extremely uniformly and with high density.

こうしたα相析出サイトの均一化および高密度化は、上
記の加工誘起マルテンサイト変態と逆マルテンサイト変
態を少なくとも2回繰り返すことによって有効に発揮さ
れるが、この繰り返し数を増やせば増やすほど上記の効
果は助長され、最終的に得られるTi合金の物性に反映
されてくる。
The uniformity and densification of α-phase precipitation sites can be effectively achieved by repeating the deformation-induced martensitic transformation and reverse martensitic transformation at least twice, but the more the number of repetitions increases, the more The effect is enhanced and reflected in the physical properties of the Ti alloy finally obtained.

即ちこの様にして均一且つ密に転位の導入されたTi合
金では、これを時効処理すると該転位を析出サイトとし
てα相が組織全体は亘って均一且つ密に析出する。その
結果、該Ti合金はα相析出による析出硬化が全域に亘
って均等に進行したものとなり、局部的析出硬化部と析
出硬化不足部の混在する従来材に比べると強度欠陥のな
い極めて高強度のものとなる。しかもこの合金がその後
に負荷を受けたときでも、内部歪は金属組織内に万遍な
く無数に分布して析出したα相の夫々に均等に分散され
ることになり、従来材の様な局部的応力集中による局所
的破壊が起こらなくなる結果、延性も著しく改善される
. 本発明で使用されるβ型Ti合金は、加工誘起マルテン
サイト変態を示すものであればその種類は一切問われず
、Tiにβ安定化元素である全率固溶形のMO,V,N
b,Taや共析形のFe,Cr,Mn,Co,Ni或は
中性元素であるSn,Zn等を加えた様々のβ型Ti合
金を使用することができ、またα安定化元素であるAI
を少量(3%程度)含有させると、時効処理時における
α相の析出が助長され、本発明の作用効果が一層効果的
に発揮されるので好ましい.[実施例] 加工誘起マルテンサイト変態を示すβ型Ti合金として
Ti−1 0V−2Fe−3AI合金を使用し、また比
較材としてすべり変形のみを生じ加工誘起マルテンサイ
ト変態を示さないTi−1 5V−3Cr−3Sn−3
AI合金を使用し、夫々について時効処理後の引張特性
に及ぼす繰り返し回数(加工誘起マルテンサイト変態と
逆マルテンサイト変態の繰り返し回数)の影響および冷
間加工量の影響を調べた. 尚冷間加工はいずれも引き抜き法を採用し、Ti−10
V−2Fe−3AI合金については510℃×8時間後
空冷とし、Ti−15V一3Cr−3Sn−3AI合金
については480tx8時間後空冷とした. 加工条件および得られた時効処理材の物性を第l表に一
括して示す. 第1表より次の様に考えることができる。
That is, in a Ti alloy in which dislocations are uniformly and densely introduced in this manner, when this is subjected to an aging treatment, α phase precipitates uniformly and densely over the entire structure using the dislocations as precipitation sites. As a result, the Ti alloy has undergone precipitation hardening due to alpha phase precipitation evenly over the entire area, and has extremely high strength without any strength defects compared to conventional materials that have a mixture of localized precipitation hardened areas and insufficient precipitation hardened areas. Becomes the property of Moreover, even when this alloy is subsequently subjected to a load, the internal strain will be distributed evenly within the metal structure and will be evenly dispersed in each of the precipitated α phases. As a result of no longer causing local fracture due to stress concentration, ductility is also significantly improved. The type of β-type Ti alloy used in the present invention is not particularly limited as long as it exhibits deformation-induced martensitic transformation, and the β-stabilizing elements in Ti are MO, V, and N, which are all solid solutions.
b, Ta, eutectoid Fe, Cr, Mn, Co, Ni, or neutral elements Sn, Zn, etc. can be used in various β-type Ti alloys, and α-stabilizing elements can be used. A certain AI
It is preferable to contain a small amount (approximately 3%) of α-phase because it promotes the precipitation of α phase during aging treatment and the effects of the present invention are more effectively exhibited. [Example] Ti-1 0V-2Fe-3AI alloy was used as a β-type Ti alloy that exhibits deformation-induced martensitic transformation, and Ti-1 5V, which only causes sliding deformation and does not exhibit deformation-induced martensitic transformation, was used as a comparative material. -3Cr-3Sn-3
Using AI alloys, we investigated the effects of the number of repetitions (the number of repetitions of deformation-induced martensitic transformation and reverse martensitic transformation) and the amount of cold working on the tensile properties after aging treatment. In addition, the drawing method is used for cold working, and Ti-10
The V-2Fe-3AI alloy was air-cooled at 510°C for 8 hours, and the Ti-15V-3Cr-3Sn-3AI alloy was air-cooled at 480tx for 8 hours. Table 1 shows the processing conditions and physical properties of the aged material obtained. From Table 1, it can be considered as follows.

No.1〜3は本発明の規定要件を充足する実施例であ
り、加工誘起マルテンサイト変態と逆マルテンサイト変
態を2回以上繰り返すことによって、伸び率をあまり低
下させないで高レベルの耐力および引張強さが得られて
いる。
No. Examples 1 to 3 are examples that satisfy the specified requirements of the present invention, and by repeating deformation-induced martensitic transformation and reverse martensitic transformation two or more times, a high level of proof stress and tensile strength can be achieved without significantly reducing the elongation rate. is obtained.

これらに対し、同じ加工誘起マルテンサイト変態を示す
β型Ti合金を使用した場合でも、すべり変形によって
転位を導入したもの(No.4〜6)では、冷間加工に
よる伸び率の低下が著しく、18.5%の総加工量で伸
び率は0.3%にまで低下している。また総加工量が略
同一であるものく実験No.1〜3)と耐力および引張
強さを比較すると、実験No.4〜6の方がかなり低く
なっていることが分かる.こうした違いは、本発明によ
る転位の均一且つ密な導入とそれによるα相析出の均一
化および高密化が反映されたものと思われる。また実験
No.7〜9は加工誘起マルテンサイト変態を示さずす
べり変形のみを生ずるβ型Ti合金を用いた比較例であ
り、低加工率での伸び率は良好であるものの加工率を高
めるにつれて伸び率は急激に低下してくる。しかもα相
析出サイトがすべり変形部に集中して他の部位が析出強
化不足となるため、耐力および引張強さも本発明材(N
o.1〜3)に比べるとかなり低い。
On the other hand, even when β-type Ti alloys exhibiting the same deformation-induced martensitic transformation are used, those in which dislocations are introduced by sliding deformation (Nos. 4 to 6) show a significant decrease in elongation due to cold working. The elongation rate decreased to 0.3% with a total processing amount of 18.5%. Moreover, the total machining amount was almost the same in Monoku Experiment No. Comparing the yield strength and tensile strength with Experiment No. 1 to 3), Experiment No. It can be seen that numbers 4 to 6 are considerably lower. It is thought that these differences reflect the uniform and dense introduction of dislocations and the resulting uniformity and high density of α phase precipitation according to the present invention. Also, experiment no. 7 to 9 are comparative examples using a β-type Ti alloy that does not show deformation-induced martensitic transformation and only causes sliding deformation, and although the elongation rate is good at low deformation rates, the elongation rate rapidly decreases as the deformation rate increases. decreases to . Moreover, the α-phase precipitation sites are concentrated in the sliding deformation part, and other parts are insufficiently strengthened by precipitation, so the yield strength and tensile strength of the present invention material (N
o. It is quite low compared to 1 to 3).

[発明の効果] 本発明は以上の様に構戒されており、加工銹起マルテン
サイト変態と逆マルテンサイト変態を繰り返し、変態に
より転位を導入することによりα相析出サイトを全域に
均一且つ密に形成することができ、それによりα相析出
による析出硬化を均一化して高強度化を推進すると共に
、2次加工時に生ずる応力歪もうまく分散させることが
できて延性も高めることができ、高強度で高延性のTi
合金を提供し得ることになった。
[Effects of the Invention] The present invention is structured as described above, and by repeating process-induced martensitic transformation and reverse martensitic transformation, and introducing dislocations through the transformation, α-phase precipitation sites are uniformly and densely distributed over the entire area. As a result, precipitation hardening due to alpha phase precipitation can be made uniform, promoting high strength, and the stress strain generated during secondary processing can also be well dispersed, increasing ductility and increasing the strength. Strong and ductile Ti
We were able to provide the alloy.

Claims (1)

【特許請求の範囲】[Claims]  加工誘起マルテンサイト変態を示すβ型Ti合金を使
用し、冷間加工により加工誘起マルテンサイト変態を生
じさせた後、これを熱処理してβ相に戻す逆マルテンサ
イト変態を生じさせる工程を少なくとも2回以上繰り返
すことを特徴とする高強度Ti合金の製造方法。
A β-type Ti alloy exhibiting deformation-induced martensitic transformation is used, and at least two steps are performed in which the deformation-induced martensitic transformation is caused by cold working, and then the reverse martensitic transformation is caused by heat treatment to return it to the β phase. A method for producing a high-strength Ti alloy, the method comprising repeating the process more than once.
JP31003589A 1989-11-29 1989-11-29 Production of high strength ti alloy Pending JPH03170650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31003589A JPH03170650A (en) 1989-11-29 1989-11-29 Production of high strength ti alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31003589A JPH03170650A (en) 1989-11-29 1989-11-29 Production of high strength ti alloy

Publications (1)

Publication Number Publication Date
JPH03170650A true JPH03170650A (en) 1991-07-24

Family

ID=18000375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31003589A Pending JPH03170650A (en) 1989-11-29 1989-11-29 Production of high strength ti alloy

Country Status (1)

Country Link
JP (1) JPH03170650A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5503691A (en) * 1992-05-06 1996-04-02 Mintek The aesthetic enhancement or modification of articles or components made of non-ferrous metals

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5503691A (en) * 1992-05-06 1996-04-02 Mintek The aesthetic enhancement or modification of articles or components made of non-ferrous metals

Similar Documents

Publication Publication Date Title
KR100260111B1 (en) Thermomechanical processing of metallic materials
JP2006506534A5 (en)
JPH0474856A (en) Production of beta ti alloy material having high strength and high ductility
KR100245783B1 (en) Heavy metal alloy and method for its production
US5145512A (en) Tungsten nickel iron alloys
JPH03170650A (en) Production of high strength ti alloy
JPH0565601A (en) Austenitic stainless steel having high strength and high fatigue strength and its production
JP2808675B2 (en) Fine grain bainite steel
JPH06293929A (en) Beta titanium alloy wire and its production
JPS6217125A (en) Manufacture of high strength and ductility steel material
SU1129247A1 (en) Method for thermomechanical treatment of martensite ageing steel
US3806377A (en) Process allowing cold working of soft and very soft or low alloy content steels by hardening them after forming
JPH07228919A (en) Heat treatment method for base stock for structural use
JP4046368B2 (en) Thermomechanical processing method for β-type titanium alloy
JPH0867950A (en) Martensitic stainless steel excellent in strength and toughness and its production
JPS63241150A (en) Heat treatment for titanium alloy
US3865636A (en) Method of processing steel material having high austenitic grain-coarsening temperature
JPH07300654A (en) Stainless steel strip having high strength and high toughness and its production
JP2005163126A (en) Component of age-hardening stainless steel or maraging steel, and method for producing the same
JPH01195265A (en) Manufacture of high-strength beta-type titanium alloy
JP2006328473A (en) Method for producing non-heat treated high strength bolt
JPH0660345B2 (en) Steel manufacturing method with excellent cold workability and preventing grain coarsening during carburizing and heating
JPH07258729A (en) Production of martensitic precipitation hardening type stainless steel
JPH03170652A (en) Production of ti alloy having high strength and high ductility
RU2015179C1 (en) Method of producing steel articles