JP2006328473A - Method for producing non-heat treated high strength bolt - Google Patents

Method for producing non-heat treated high strength bolt Download PDF

Info

Publication number
JP2006328473A
JP2006328473A JP2005153350A JP2005153350A JP2006328473A JP 2006328473 A JP2006328473 A JP 2006328473A JP 2005153350 A JP2005153350 A JP 2005153350A JP 2005153350 A JP2005153350 A JP 2005153350A JP 2006328473 A JP2006328473 A JP 2006328473A
Authority
JP
Japan
Prior art keywords
bolt
load
ratio
area reduction
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005153350A
Other languages
Japanese (ja)
Other versions
JP4667961B2 (en
Inventor
Takeshi Seguchi
剛 瀬口
Manabu Kubota
学 久保田
Toshizo Tarui
敏三 樽井
Hajime Saito
肇 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Toyota Motor Corp
Original Assignee
Nippon Steel Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Toyota Motor Corp filed Critical Nippon Steel Corp
Priority to JP2005153350A priority Critical patent/JP4667961B2/en
Publication of JP2006328473A publication Critical patent/JP2006328473A/en
Application granted granted Critical
Publication of JP4667961B2 publication Critical patent/JP4667961B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a non-heat treated high strength bolt with which the relaxation of this bolt is improved and the suitable low temperature toughness as this bolt is obtained. <P>SOLUTION: At first, a steel material having the prescribed components for producing the non-heat treated high strength bolt, is melted (S10), and successively, this steel material is rolled into a wire rod, and a patenting treatment is applied. Further, the cross section is drawn to make the prescribed steel wire (S12). Thereafter, a press-forming is applied into the bolt-shape by deciding a reduction of area from the diameter of the steel wire to the cross section having effective diameter (S14). Then, the tensile stress is loaded in the axial direction of the formed bolt. This loading is applied with the tensile stress having not more than the elastic limit of the bolt material (S16). Then, under this loading or after separating from this loading, the prescribed heat treatment is applied (S18-S24). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は非調質高強度ボルトの製造方法に係り、特にリラクセーション特性に優れる非調質の高強度ボルトの製造方法に関する。   The present invention relates to a method for manufacturing a non-tempered high-strength bolt, and more particularly to a method for manufacturing a non-tempered high-strength bolt excellent in relaxation characteristics.

近年、建築物の大規模化や構造物の耐震性向上、あるいは自動車等の車両の燃費性能向上を意図した部品の軽量化の要望に伴い、例えば1300MPa以上の引張強度を有する高強度ボルトの需要が高まってきている。一般的な高強度ボルト用鋼には、中炭素合金鋼、例えばSCM435、SCM440、SCr440等が使用され、焼き入れ焼戻しの調質によって必要な強度を確保しており、これらから製造されたボルトは調質ボルトと呼ばれる。しかしながら、一般的高強度ボルトでは、引張強度が約1200MPaを越えるといわゆる遅れ破壊が発生する危険が知られている。   In recent years, demand for high-strength bolts having a tensile strength of 1300 MPa or more, for example, in response to demands for weight reduction of parts intended to increase the scale of buildings, improve the earthquake resistance of structures, or improve the fuel efficiency of vehicles such as automobiles. Is growing. Common high-strength bolt steel uses medium carbon alloy steel, such as SCM435, SCM440, SCr440, etc., and the required strength is ensured by tempering by quenching and tempering. Called temper bolt. However, in general high-strength bolts, there is a known risk of so-called delayed fracture when the tensile strength exceeds about 1200 MPa.

遅れ破壊は、その発生要因が複雑に絡み合っており、一概にその原因を特定するのは困難である。遅れ破壊を左右する要因としては、水素が関係するといわれる他、焼戻し温度、組織、材料硬さ、結晶粒度、各種合金元素等の関与が一応認められているが、遅れ破壊を防止するための有効な手段が確立されている訳でなく、試行錯誤的に種々の方法が提案されているのが現状である。   The cause of delayed fracture is intricately intertwined, and it is difficult to generally identify the cause. Factors that influence delayed fracture are said to be related to hydrogen, and tempering temperature, structure, material hardness, grain size, and various alloying elements have been recognized for some time. Effective methods have not been established, and various methods have been proposed by trial and error.

例えば、特許文献1では、調質ボルト鋼において、遅れ破壊現象を改善するために合金組成を緻密に定めている。そこでは、C,Si,Mn,P,S,Cr,Mo,Al,Ti,Nの単独組成比率のほか、複数の元素の間における制限条件が示され、また、これらの元素以外に、Ni,V等の元素の添加も有効であることが述べられている。特許文献2及び特許文献3には、パーライト主体の組織を有する鋼線を強伸線加工することで高強度を得ることが開示されている。   For example, in patent document 1, in tempered bolt steel, in order to improve a delayed fracture phenomenon, the alloy composition is defined precisely. There, in addition to the single composition ratio of C, Si, Mn, P, S, Cr, Mo, Al, Ti, and N, limiting conditions among a plurality of elements are shown, and besides these elements, Ni It is stated that addition of elements such as, V is also effective. Patent Documents 2 and 3 disclose that high strength is obtained by performing a strong wire drawing process on a steel wire having a pearlite-based structure.

また、上記のように遅れ破壊現象の抑制に配慮する他に、使用中に締付力の低下、すなわちボルトの緩みを招くいわゆるリラクセーション現象(応力緩和)が生じることがある。例えば、150℃で引張のままで放置すると、30%もの荷重低下が生じることがある。   In addition to taking into account the suppression of the delayed fracture phenomenon as described above, a so-called relaxation phenomenon (stress relaxation) may occur during use that causes a reduction in tightening force, that is, loosening of the bolt. For example, when left standing at 150 ° C., the load may be reduced by 30%.

特許文献4には、パテンティング処理(微細パーライト化処理)により、パーライト組織を80%以上有する鋼材を強伸線加工し、冷間圧造によりボルト形状に成形したものについて、ブルーイング処理(歪み時効処理)を施すことで、遅れ破壊特性とリラクセーション特性が改善されることが開示されている。   In Patent Document 4, a steel material having a pearlite structure of 80% or more is drawn by a patenting process (fine pearlite process) and formed into a bolt shape by cold heading. It is disclosed that the delayed fracture characteristics and relaxation characteristics are improved by applying the treatment.

特許文献5には、リラクセーション現象の原因として、鋼製ボルトにはその製造プロセスにおいて引き抜き等の塑性加工を経ているため、その結晶格子内に多数の可動転位が導入されることを指摘する。すなわち、ボルトの締め付け等の引張応力下では、ねじ込み部にこれらの転位の移動が起って伸びが生じ、その伸びに起因して応力緩和が生じると述べている。そして、特許文献4の鋼製ボルトのブルーイング処理に触れ、この処理方法では、いまだリラクセーション特性の改善が十分でないとしている。そして、ボルト保持具にボルトをネジこみ、弾性限界を越える軸線方向の引っ張り応力を負荷し、その被負荷領域を200℃から300℃の間の熱処理を行うことでリラクセーション特性が改善されることが開示されている。   Patent Document 5 points out that as a cause of the relaxation phenomenon, a steel bolt is subjected to plastic working such as drawing in the manufacturing process, so that a large number of movable dislocations are introduced into the crystal lattice. That is, under tensile stress such as tightening of bolts, it is stated that these dislocations move in the threaded portion to cause elongation, and stress relaxation occurs due to the elongation. And it touches on the blueing process of the steel volt | bolt of patent document 4, and this process method still says that the improvement of a relaxation characteristic is not enough. Then, the relaxation characteristics can be improved by screwing the bolt into the bolt holder, applying a tensile stress in the axial direction exceeding the elastic limit, and performing a heat treatment between 200 ° C. and 300 ° C. It is disclosed.

特許第2614659号公報Japanese Patent No. 2614659 特開平11−315349号公報JP 11-315349 A 特開2001−294981号公報JP 2001-294881 A 特開2001−348618号公報JP 2001-348618 A 特開2004−116624号公報JP 2004-116624 A

上記のように、高強度ボルトの使用環境においては、遅れ破壊現象とリラクセーション現象に対する課題が知られているが、特許文献1から3の内容ではリラクセーション特性が改善されない。また、特許文献4に開示される単なるブルーイング熱処理のみではいまだリラクセーション特性の改善が十分でないことが特許文献5に述べられている。特許文献5の方法は有望であるが、本願発明者等が実験を行ったところ、この方法では低温下において靭性が低下することが判明した。例えばシャルピー衝撃試験を行うと、低温下の実験結果がよくない。したがって特許文献5の方法による高強度ボルトは、常温下では所定の性能を有していても、寒冷地等の低温下における衝撃特性の低下が懸念される。   As described above, in the environment where high-strength bolts are used, problems with delayed fracture and relaxation phenomena are known. However, the contents of Patent Documents 1 to 3 do not improve the relaxation characteristics. Further, Patent Document 5 states that the improvement of the relaxation characteristics is not yet sufficient only by the simple bluing heat treatment disclosed in Patent Document 4. Although the method of Patent Document 5 is promising, the inventors of the present application conducted experiments and found that this method reduces toughness at low temperatures. For example, when a Charpy impact test is performed, the experimental results at low temperatures are not good. Therefore, even if the high-strength bolt according to the method of Patent Document 5 has a predetermined performance at room temperature, there is a concern that the impact characteristics may be lowered at a low temperature such as in a cold region.

本発明の目的は、非調質高強度ボルトにおいてリラクセーション特性を改善し、適当な低温靭性を有することを可能とする高強度ボルトの製造方法を提供することである。   An object of the present invention is to provide a method for producing a high-strength bolt that improves relaxation characteristics and has appropriate low-temperature toughness in a non-tempered high-strength bolt.

本発明に係る非調質高強度ボルトの製造方法は、非調質高強度ボルトにおけるリラクセーション特性と低温靭性の改善を行う実験の中で見出した事実に基づいて、それを製造方法としたものである。その実験は、ボルト成形後に弾性限界以下の引張応力をボルトに与え、そのもとで熱処理を行うものであるが、ボルト成形における線材断面積の減少率である減面率に対応して、適切な引張応力を与えて熱処理すると、リラクセーション特性を改善し、適当な低温靭性を有することを見出した。以下は、これらの実験結果を非調質高強度ボルトの製造方法としたものである。   The manufacturing method of the non-tempered high strength bolt according to the present invention is based on the facts found in the experiment to improve the relaxation characteristics and low temperature toughness of the non-tempered high strength bolt. is there. The experiment is to apply a tensile stress below the elastic limit to the bolt after bolt forming, and then heat-treat in that condition, but it is appropriate for the area reduction rate, which is the reduction rate of the wire cross-sectional area in bolt forming. The present inventors have found that when heat treatment is performed with an appropriate tensile stress, the relaxation properties are improved and suitable low temperature toughness is obtained. In the following, these experimental results are used as a method for producing a non-tempered high strength bolt.

本発明に係る非調質高強度ボルトの製造方法は、質量%での成分比において、0.7%以上1.0%以下のCと、0.1%以上1.0%以下のSiと、0.15%以上1.2%以下のMnとを含有し、Pを0.03%以下に、及びSを0.03%以下に制限した鋼材を圧延しパテンティング処理し伸線処理して鋼線とする工程と、鋼線を所定の減面率でボルトの形状に成形する成形工程と、成形されたボルトに軸線方向の引張応力を負荷する工程であって、引張応力の弾性限界応力に対する負荷荷重比と、減面率との関係において、負荷荷重比が0で減面率が5%、及び負荷荷重比が0で減面率が60%、及び負荷荷重比が1で減面率が60%、及び負荷荷重比が1で減面率が3%、及び負荷荷重比が0.5で減面率が3%の負荷条件で囲まれる負荷条件範囲で引張応力を負荷する荷重負荷工程と、荷重負荷後のボルトを50℃以上450℃以下で熱処理する熱処理工程と、を含むことを特徴とする。   The method for producing a non-tempered high-strength bolt according to the present invention comprises a component ratio in mass% of 0.7% to 1.0% C, 0.1% to 1.0% Si, The steel material containing 0.15% or more and 1.2% or less Mn, P limited to 0.03% or less, and S limited to 0.03% or less is rolled, patented, and drawn. A steel wire, a forming step of forming the steel wire into a bolt shape with a predetermined reduction in area, and a step of applying tensile stress in the axial direction to the formed bolt, the elastic limit of tensile stress In the relationship between the load ratio against stress and the area reduction ratio, the load ratio is 0, the area reduction ratio is 5%, the load ratio is 0, the area reduction ratio is 60%, and the load ratio is 1. Surrounded by load conditions with an area ratio of 60%, a load ratio of 1 and a reduction in area of 3%, a load ratio of 0.5 and an area reduction of 3% That is a load loading step for loading the tensile stress in the range of load conditions, the heat treatment step of heat-treating the bolts after loading the load at 50 ° C. or higher 450 ° C. or less, comprising a.

また、成形工程は、熱処理工程後のボルトが1300Mpa以上の引張強度を有するように減面率と熱処理とを設定することが好ましい。   Moreover, it is preferable that a shaping | molding process sets an area reduction rate and heat processing so that the volt | bolt after a heat treatment process may have the tensile strength of 1300 Mpa or more.

本発明に係る非調質高強度ボルトの製造方法によれば、リラクセーション特性を改善し、適当な低温靭性を有することが可能となる。   According to the method for producing a non-tempered high-strength bolt according to the present invention, it is possible to improve relaxation characteristics and to have appropriate low-temperature toughness.

以下に図面を用いて本発明に係る実施の形態に付き詳細に説明する。図1は、非調質高強度ボルトの製造方法の手順を示すフローチャートである。非調質高強度ボルトの製造のために、最初に所定成分の鋼を溶製する(S10)。次にこの鋼材を圧延して線材とし、パテンティング処理(微細パーライト化処理)を行い、次いでさらに断面積を絞って所定の鋼線とする(S12)。その後、鋼線の直径の断面積からボルトの有効径の断面積までの面積の減少率である減面率を定めてボルトの形状に圧造して成形する(S14)。そして成形されたボルトを、軸方向に引張応力を負荷する。この荷重負荷は、ボルト材料の弾性限界以下の引張応力で行う。すなわち(負荷荷重/弾性限界荷重)=負荷荷重比として、負荷荷重比を1以下として行う(S16)。そして荷重負荷後のボルトに所定の熱処理を行う。すなわち、この荷重負荷の下で所定の熱処理を行い(S18)、これらの工程が終われば適当に冷却し除荷(S20)する。あるいは、荷重負荷の後除荷し(S22)、その後熱処理を行う(S24)。これにより、非調質高強度ボルトが得られる。   Embodiments according to the present invention will be described below in detail with reference to the drawings. FIG. 1 is a flowchart showing a procedure of a method for manufacturing a non-tempered high strength bolt. In order to manufacture a non-tempered high-strength bolt, first, steel of a predetermined component is melted (S10). Next, this steel material is rolled into a wire material, subjected to a patenting process (fine pearlite process), and then further reduced in cross-sectional area to obtain a predetermined steel wire (S12). After that, a reduction rate, which is a reduction rate of the area from the cross-sectional area of the diameter of the steel wire to the cross-sectional area of the effective diameter of the bolt, is determined and formed into a bolt shape (S14). Then, the formed bolt is subjected to a tensile stress in the axial direction. This load is applied with a tensile stress below the elastic limit of the bolt material. That is, (load load / elastic limit load) = load load ratio, and the load load ratio is set to 1 or less (S16). Then, a predetermined heat treatment is performed on the bolt after loading. That is, a predetermined heat treatment is performed under this load (S18), and when these steps are completed, the product is appropriately cooled and unloaded (S20). Alternatively, unloading is performed after load application (S22), and then heat treatment is performed (S24). Thereby, a non-tempered high strength bolt is obtained.

以下にこれらの各工程における処理条件について順次説明し、次にそのように定めた処理条件の範囲における各種実施例と、その周辺条件の比較例について、リラクセーション特性、低温靭性等の試験結果を述べる。   In the following, the processing conditions in each of these steps will be described in order, and then the test results such as relaxation characteristics, low temperature toughness, etc. will be described for various examples within the range of processing conditions determined as such and comparative examples of the surrounding conditions. .

S10における鋼の各構成元素の所定成分は、鋼材に要求される各特性のバランス等の観点から以下のように定める。この鋼材において、成分比の範囲を定める元素は、CとSiとMnで、成分比を一定以下に抑制する元素はP及びSである。これら以外に、鋼材に含まれるものとして、脱酸元素であるAl、N、あるいはO、Cu、Cr等の不純物があるが、それらの成分は、例えば、鋼材製造の一般的基準を用いて定めることができる。なお、成分比は質量%で示す。   Predetermined components of each constituent element of steel in S10 are determined as follows from the viewpoint of balance of properties required for steel materials. In this steel material, the elements that determine the range of the component ratio are C, Si, and Mn, and the elements that suppress the component ratio to a certain level are P and S. In addition to these, there are impurities such as deoxidizing elements such as Al, N, O, Cu, and Cr as contained in the steel material, and their components are determined using, for example, general standards for steel material production. be able to. In addition, a component ratio is shown by the mass%.

C:0.7%以上1.0%以下 耐遅れ破壊特性に優れた高強度ボルトを得るためには、パーライトの伸線組織を作る必要がある。Cが0.7%未満ではパーライトの分率が少なく、1.0%を超えると初析セメンタイトの分率が大きくなり、脆性が増す。したがってCの成分は0.7%以上1.0%以下とする。   C: 0.7% or more and 1.0% or less In order to obtain a high-strength bolt excellent in delayed fracture resistance, it is necessary to create a pearlite wire drawing structure. If C is less than 0.7%, the fraction of pearlite is small, and if it exceeds 1.0%, the fraction of pro-eutectoid cementite increases and brittleness increases. Therefore, the component of C is 0.7% or more and 1.0% or less.

Si:0.1%以上1%以下 Siは固溶強化能のきわめて優れた元素であり、高強度ボルトを得るためには0.1%以上は必要である。一方Siはセメンタイトの活量を上げるので、セメンタイトの析出を抑制する作用がある。すなわち、Si量が多すぎると、後述するS18の熱処理において固溶Cの析出を抑制するため、短時間で強度を上げることが困難となる。特に、Siを1%を超えて添加すると、著しくCの析出が遅延するので、Siの成分は0.1%以上1%以下とする。   Si: 0.1% or more and 1% or less Si is an element excellent in solid solution strengthening ability, and 0.1% or more is necessary to obtain a high-strength bolt. On the other hand, since Si increases the activity of cementite, it has an action of suppressing precipitation of cementite. That is, if the amount of Si is too large, it is difficult to increase the strength in a short time because precipitation of solute C is suppressed in the heat treatment of S18 described later. In particular, if Si is added in excess of 1%, precipitation of C is remarkably delayed, so the Si component is 0.1% or more and 1% or less.

Mn:0.15%以上1.2%以下 Mnはまず、不純物として含有するSによる熱間脆性を抑制する作用があり、圧延によって大量生産する鋼材にとって不可欠な元素である。その効果を発揮するには0.15%以上が必要である。一方、1.2%を超える添加は鋼材の焼入性を上げ過ぎ、安定的にパーライト主体の組織を生成するためには好ましくない。したがってMnの成分は0.15%以上1.2%以下とする。   Mn: 0.15% or more and 1.2% or less First, Mn has an effect of suppressing hot brittleness due to S contained as an impurity, and is an indispensable element for steel products that are mass-produced by rolling. In order to exhibit the effect, 0.15% or more is necessary. On the other hand, the addition exceeding 1.2% is not preferable for excessively improving the hardenability of the steel material and stably generating a pearlite-based structure. Therefore, the Mn component is set to 0.15% or more and 1.2% or less.

P:0.03%以下 Pは結晶粒界に偏析し、粒界の結合強度を低下させ、遅れ破壊特性を誘引する好ましくない元素である。Pが0.03%を超えると、耐遅れ破壊特性の劣化が著しいので、Pの成分は0.03%以下とする。   P: 0.03% or less P is an undesirable element that segregates at grain boundaries, lowers the bond strength of the grain boundaries, and induces delayed fracture characteristics. If P exceeds 0.03%, the delayed fracture resistance is significantly deteriorated, so the component of P is set to 0.03% or less.

S:0.03%以下 SもPと同様に粒界に偏析し、粒界の結合強度を低下させる元素であり、かつ圧延中に熱間脆性を起こす有害元素である。Sが0.03%を超えると、耐遅れ破壊特性の劣化が著しいので、Sの成分は0.03%以下とする。   S: 0.03% or less S, like P, is an element that segregates at grain boundaries and lowers the bond strength at the grain boundaries, and is a harmful element that causes hot brittleness during rolling. If S exceeds 0.03%, the delayed fracture resistance is significantly deteriorated, so the S component is 0.03% or less.

次にS18の熱処理の温度範囲について説明する。この熱処理は、S16における引張応力負荷によって導入された転位が、ボルトの実使用の締め付け後に移動しないように、つまり耐リラクセーション特性を向上させるために行うものであって、冶金的にはCの析出によって転位をピン止めするためのものである。したがって、転位密度とCの拡散速度が関係してくる。この処理温度が450℃を超すとCの拡散が速過ぎて、ピン止め力のあるC析出形態を安定的に形成することが困難となる。またこの処理温度が50℃未満ではCの拡散が遅すぎるため、工業的に使うには不都合である。以上の見地から、S18の熱処理の温度範囲は、50℃以上450℃以下とする。   Next, the temperature range of the heat treatment in S18 will be described. This heat treatment is performed in order to prevent the dislocations introduced by the tensile stress load in S16 from moving after tightening in actual use of the bolt, that is, to improve relaxation resistance. To pin the dislocation. Therefore, the dislocation density and the C diffusion rate are related. If the treatment temperature exceeds 450 ° C., the diffusion of C is too fast, and it becomes difficult to stably form a C precipitation form having a pinning force. Further, if the treatment temperature is less than 50 ° C., the diffusion of C is too slow, which is inconvenient for industrial use. From the above viewpoint, the temperature range of the heat treatment of S18 is set to 50 ° C. or more and 450 ° C. or less.

次に、S14のボルト成形における減面率と、S16におけるこれに応じた負荷荷重比の荷重負荷の条件との関係について説明する。この相互に関係する処理条件は、S10の鋼材からS12を経て得られる鋼線を元に、リラクセーション特性と遅れ破壊特性の改善を行うための処理条件であるので、実験によって定めた。実験は、S10に関連して説明した鋼材の成分比を代表するものとして図2に示す成分比の鋼材、すなわち質量%で、0.83%のC、0.23%のSi、0.76%のMn、0.008%のP、0.003%のSを成分比で含む鋼材を用いた。そして、これをS12の工程に対応して、任意の線径の線材に圧延し、パテンティング処理を行い、適当な減面率で所定の線径の鋼線とした。   Next, the relationship between the area reduction rate in the bolt forming of S14 and the load condition of the load ratio corresponding to this in S16 will be described. The processing conditions related to each other are the processing conditions for improving the relaxation characteristics and the delayed fracture characteristics based on the steel wire obtained from the steel material of S10 through S12, and thus were determined by experiments. The experiment is representative of the component ratio of the steel material described in connection with S10, and the steel material having the component ratio shown in FIG. 2, that is, mass%, 0.83% C, 0.23% Si, 0.76 A steel material containing a component ratio of% Mn, 0.008% P, and 0.003% S was used. And corresponding to the process of S12, this was rolled into a wire with an arbitrary wire diameter, and a patenting process was performed to obtain a steel wire with a predetermined wire diameter with an appropriate reduction in area.

この鋼線を圧造によりボルトの形状に成形するが、その際、種々の減面率の下でそれぞれ複数のボルトを作成した。ここはS14の工程に対応する。各減面率の複数のボルトは、そのまま引張試験を行うものと、S16の工程に対応し、種々の負荷荷重比で軸線方向の荷重を負荷し、その後S18の代表条件としての200℃30分の熱処理を行うもの、さらにそれらの処理後に引張試験、リラクセーション試験を行うもの、さらにボルトの形状を切り出して低温シャルピー衝撃を行うもの、等に振り分けられる。   The steel wire was formed into a bolt shape by forging. At that time, a plurality of bolts were created under various surface reduction rates. This corresponds to the process of S14. A plurality of bolts of each area reduction rate are subjected to a tensile test as they are, and correspond to the process of S16, and load in the axial direction is applied at various load ratios, and then 200 ° C for 30 minutes as a representative condition of S18 To those subjected to the heat treatment, those subjected to the tensile test and relaxation test after those treatments, and those subjected to low-temperature Charpy impact by cutting out the shape of the bolt.

S16の工程に対応して軸線方向の荷重を負荷する方法は、適当なジグを用いてボルトを引張試験機等の引張装置にかける引張法を用いてもよく、あるいは適当なねじ込みジグを用いてボルトを回転締付によってねじ込む回転締付法を用いてもよい。負荷荷重比は、予め同じ特性のボルトを用いて弾性限界を求めて、それに対応する荷重に基づいて計算する。   The method of applying an axial load corresponding to the process of S16 may use a tension method in which a bolt is applied to a tension device such as a tensile tester using an appropriate jig, or an appropriate screw jig. A rotary fastening method in which a bolt is screwed by rotational fastening may be used. The load / load ratio is calculated based on the load corresponding to the elastic limit obtained in advance using bolts having the same characteristics.

図3は、弾性限界を説明する図である。引張法で荷重を負荷する場合は、試験ボルトを引張試験機にかけ、図3(a)に示すような応力−歪線図、あるいは荷重−伸び線図を求め、直線領域から外れる点Aを弾性限度とし、それに対応する荷重を基準に負荷荷重比=(負荷荷重/弾性限界に対応する荷重)を計算する。回転締付法で荷重を負荷する場合は、例えばナットランナーを用いて、ボルトの回転角と、回転に要するトルクを求めて、図3(b)に示すトルク−回転角度線図を求め、直線領域から外れる点Bを弾性限度とし、それに対応するトルクを基準に負荷荷重比=(負荷トルク/弾性限界に対応するトルク)を計算する。   FIG. 3 is a diagram illustrating the elastic limit. When a load is applied by the tensile method, a test bolt is applied to a tensile tester to obtain a stress-strain diagram or a load-elongation diagram as shown in FIG. The load is set as the limit, and the load ratio = (load corresponding to load / elastic limit) is calculated based on the corresponding load. When a load is applied by the rotation tightening method, for example, using a nut runner, the rotation angle of the bolt and the torque required for the rotation are obtained, the torque-rotation angle diagram shown in FIG. The point B out of the region is set as the elastic limit, and the load / load ratio = (load torque / torque corresponding to the elastic limit) is calculated based on the corresponding torque.

評価方法のうち、引張試験は引張強度を求めた。また、リラクセーション試験は、常温下でボルトの弾性限度に相当する荷重を負荷として与え、ボルトの両端のつかみ間隔長さを一定としてそのまま24時間保持し、その前後の荷重の減少率を測定することで行った。また、低温シャルピー試験は、寒冷地を想定し、−30℃で行った。これらの試験結果における判定基準のために、市販されている高強度ボルトで引張強度が1100MPaのものを準備し、それについて同様の条件で引張試験、常温リラクセーション試験、低温シャルピー試験を行った。   Among the evaluation methods, the tensile test determined the tensile strength. In the relaxation test, a load corresponding to the elastic limit of the bolt is applied as a load at room temperature, and the holding interval length at both ends of the bolt is kept as it is for 24 hours, and the rate of decrease in load before and after that is measured. I went there. Further, the low temperature Charpy test was performed at −30 ° C. assuming a cold region. For the judgment criteria in these test results, a commercially available high-strength bolt having a tensile strength of 1100 MPa was prepared, and a tensile test, a room temperature relaxation test, and a low-temperature Charpy test were performed under the same conditions.

種々の減面率でボルトを成形し、それらに種々の負荷荷重比で荷重を負荷し、除荷後、200℃30分の熱処理を行ったものについての常温リラクセーション試験を行った結果を図4に示す。図4は、横軸にボルト圧造時の減面率を横軸にとり、軸線方向の弾性限に対する引張応力、すなわち負荷荷重比を縦軸に取り、各ボルトの対応する条件の位置において、その試験結果の評価を○又は×で示したものである。試験結果の評価は、常温リラクセーション試験の上記の条件における荷重減少率を、判定基準である市販1100MPaボルトの荷重減少率と比較し、判定基準より優れる荷重減少率のものに○を、劣る荷重減少率のものに×を付して行った。   Figure 4 shows the results of a room temperature relaxation test performed on bolts formed with various area reduction ratios, loaded with various load ratios, and subjected to heat treatment at 200 ° C for 30 minutes after unloading. Shown in Fig. 4 shows the reduction ratio during bolt forging on the horizontal axis, the tensile stress against the elastic limit in the axial direction, that is, the load ratio on the vertical axis, and the test at the position of the corresponding condition of each bolt. The evaluation of the result is shown by ○ or ×. The evaluation of the test results was made by comparing the load reduction rate under the above conditions of the room temperature relaxation test with the load reduction rate of the commercial 1100 MPa bolt, which is the criterion, and ◯ for the load reduction rate superior to the criterion, and inferior load reduction The rate was marked with an x.

同様に、低温シャルピー試験を行った結果を図5に示す。横軸、縦軸の意味は図4と同じである。試験結果の評価は、判定基準である市販1100MPaボルトの吸収エネルギの40%を判定レベルとし、それより高い吸収エネルギの結果のものに○を、それより低い吸収エネルギの結果のものに×を付して行った。   Similarly, the result of the low-temperature Charpy test is shown in FIG. The meanings of the horizontal and vertical axes are the same as in FIG. The evaluation of the test result is based on 40% of the absorbed energy of 1100 MPa bolt, which is the standard for judgment, as the judgment level, ○ for the result of higher absorption energy, and × for the result of lower absorption energy. I went there.

なお、図4、図5で示す各種条件のボルトについての引張試験の結果は、いずれのボルトも1700MPa以上の引張強度を有していた。また、ボルト圧造時の減面率を60%を超えて設定することは可能ではあるが、加工時の変形抵抗が増し、金型への負担が大きくなり、量産には不向きであった。   In addition, as a result of the tensile test about the bolt of various conditions shown in FIG. 4, FIG. 5, all the bolts had a tensile strength of 1700 MPa or more. In addition, although it is possible to set the area reduction ratio during bolt forging to exceed 60%, the deformation resistance during processing increases and the burden on the mold increases, making it unsuitable for mass production.

図4、図5の結果から、常温リラクセーション特性もよく、低温靭性を表す低温シャルピー特性も適当である範囲は、図6で「本発明範囲」10として示される処理条件範囲であることがわかる。すなわち、負荷荷重比と、減面率との関係において、負荷荷重比が0で減面率が5%、及び負荷荷重比が0で減面率が60%、及び負荷荷重比が1で減面率が60%、及び負荷荷重比が1で減面率が3%、及び負荷荷重比が0.5で減面率が3%の負荷条件で囲まれる処理条件範囲であれば、高強度ボルトにおいてリラクセーション特性が改善し、適当な低温靭性を有することが可能となる。   From the results of FIGS. 4 and 5, it can be seen that the range in which the room temperature relaxation characteristics are good and the low temperature Charpy characteristics representing low temperature toughness are also suitable is the processing condition range shown as “invention range” 10 in FIG. 6. That is, in the relationship between the load ratio and the area reduction ratio, the load ratio is 0, the area reduction ratio is 5%, the load ratio is 0, the area reduction ratio is 60%, and the load ratio is 1. High strength if the processing condition range is 60%, the load ratio is 1, the area reduction is 3%, and the load ratio is 0.5 and the area reduction is 3%. The relaxation characteristics of the bolt are improved, and appropriate low temperature toughness can be obtained.

以上のように、軸線方向に負荷する引張荷重が弾性限度以下であっても、1100MPa級の市販ボルトと同等以上の耐リラクセーション特性が得られることについての理由は今のところ確実にはつかめていない。しかしながら、図4から図6に示されるように、ボルト成形時の減面率と関係することから、ボルト成形時に増殖される転位群と、弾性限度以下の負荷応力によって生成・移動する転位、かつその転位をピン止めする鉄炭化物との間に起こる物理冶金現象が、耐リラクセーション特性の向上に寄与しているものと推定することができる。   As described above, even if the tensile load applied in the axial direction is less than the elastic limit, the reason why the anti-relaxation characteristic equivalent to or better than that of a commercial bolt of 1100 MPa class can be obtained has not been grasped at present. . However, as shown in FIG. 4 to FIG. 6, since it is related to the area reduction ratio at the time of bolt forming, the dislocation group propagated at the time of bolt forming, the dislocation generated and moved by the load stress below the elastic limit, and It can be presumed that the physical metallurgy phenomenon that occurs between the iron carbides that pin the dislocations contributes to the improvement of the relaxation resistance.

以下に、8つの実施例と、5つの比較例について、主にS10における鋼材の成分比を変更し、加えてS14のボルト成形時の減面率、S16の負荷荷重比、S18の熱処理条件を組み合わせて変更して得られた各ボルトについての試験評価結果について述べる。   In the following, for the eight examples and the five comparative examples, the component ratio of the steel material in S10 is mainly changed. In addition, the area reduction rate during bolt forming in S14, the load ratio in S16, and the heat treatment conditions in S18 are as follows. The test evaluation results for each bolt obtained by changing the combination will be described.

図7は、実施例と比較例との実験に用いた5種類の鋼材の成分比を示す図である。これら鋼番AからEは、いずれもS10で説明した各構成元素の成分比の範囲に入っている。これらの種々の化学組成の鋼を溶製し(S10)、種々の線材に圧延し、パテンティング処理し、種々の減面率で伸線し、鋼線を作成した(S12)。この鋼線からボルトを成形する際、鋼線直径とボルトの有効径までの面積の減少率である減面率を種々の大きさの水準に作り分けられたボルトを作成した(S14に相当)。これらのボルトに対し引張試験を行い、弾性限度を求めた。またこれらのボルトに対して、軸線方向に種々の大きさの引張応力を施し(S16に相当)、種々の温度にて熱処理を行った(S18)。引張応力の負荷の方法は、上記の引張法又は回転締付法で行った。   FIG. 7 is a diagram showing component ratios of five types of steel materials used in the experiments of the example and the comparative example. These steel numbers A to E are all within the range of the component ratio of each constituent element described in S10. Steels with these various chemical compositions were melted (S10), rolled into various wire rods, patented, and drawn with various surface reduction rates to create steel wires (S12). When forming bolts from this steel wire, bolts were created in which the surface area reduction rate, which is the rate of reduction of the area from the steel wire diameter to the effective diameter of the bolt, was made in various sizes (corresponding to S14). . Tensile tests were performed on these bolts to determine the elastic limit. These bolts were subjected to various tensile stresses in the axial direction (corresponding to S16), and heat-treated at various temperatures (S18). The tensile stress was applied by the above-described tension method or rotary fastening method.

このようにして作製したボルトに対し、引張試験とリラクセーション試験及びシャルピー試験を行った。これらの試験の内容は、図4、図5に関連して説明したものと同じである。これらの処理条件、試験結果をまとめたのが図8である。リラクセーション試験及びシャルピー試験の評価の方法は、図4、図5に関連して説明したものと同じである。   The bolts thus produced were subjected to a tensile test, a relaxation test, and a Charpy test. The contents of these tests are the same as those described with reference to FIGS. FIG. 8 summarizes these processing conditions and test results. The evaluation methods for the relaxation test and the Charpy test are the same as those described with reference to FIGS.

図8において、試番1〜8は本実施例で、いずれも優れた耐リラクセーション特性と、低温靭性を兼ね備える非調質高強度ボルトが得られた。試番9〜13は比較例である。試番9は、軸線方向の引張応力について弾性限度を超える応力としたため、低温靭性が劣化した例である。試番10は、ボルト圧造時の減面率がゼロで、かつ軸線方向の引張応力を負荷しなかったため、耐リラクセーション特性が劣化した例である。試番11は、ボルト圧造時の減面率と軸線方向の負荷応力比が図6で示す「本発明範囲」10として示される処理条件範囲の外の条件であるため、耐リラクセーション特性が劣化した例である。試番12は、鋼材の組成がS10に関連して説明した各構成元素の成分比の範囲外であるC量を含む鋼番Eを用いたため、初析セメンタイト量が多くなり、脆化したため低温靭性が劣化した例である。試番13は、S18に関連して説明した熱処理温度範囲の外の熱処理条件を用いたため、耐リラクセーション特性が劣化した例である。   In FIG. 8, trial numbers 1 to 8 are in this example, and non-tempered high-strength bolts having both excellent relaxation resistance and low-temperature toughness were obtained. Test numbers 9 to 13 are comparative examples. Test No. 9 is an example in which the low-temperature toughness deteriorates because the tensile stress in the axial direction is set to a stress exceeding the elastic limit. Test No. 10 is an example in which the relaxation resistance characteristics deteriorated because the area reduction rate during bolt forging was zero and no tensile stress was applied in the axial direction. In Test No. 11, since the area reduction ratio and the axial load stress ratio at the time of bolt forging are conditions outside the processing condition range shown as “invention range” 10 shown in FIG. 6, the relaxation resistance characteristics deteriorated. It is an example. Test No. 12 uses steel No. E that contains C in which the composition of the steel material is outside the range of the component ratio of each constituent element described in relation to S10, so that the amount of proeutectoid cementite increases and embrittlement causes low temperature. This is an example in which toughness has deteriorated. Test number 13 is an example in which the relaxation resistance characteristics deteriorated because the heat treatment conditions outside the heat treatment temperature range described in connection with S18 were used.

本発明に係る実施の形態における非調質高強度ボルトの製造方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the manufacturing method of the non-tempered high strength bolt in embodiment which concerns on this invention. 本発明に係る実施の形態において、鋼材の代表的成分比を示す図である。In embodiment which concerns on this invention, it is a figure which shows the typical component ratio of steel materials. 弾性限界を説明する図である。It is a figure explaining an elastic limit. 本発明に係る実施の形態において、種々の処理条件の下での常温リラクセーション試験を行った結果を示す図である。In embodiment which concerns on this invention, it is a figure which shows the result of having performed the normal temperature relaxation test under various process conditions. 本発明に係る実施の形態において、種々の処理条件の下での低温シャルピー試験を行った結果を示す図である。In embodiment which concerns on this invention, it is a figure which shows the result of having performed the low-temperature Charpy test under various process conditions. 本発明に係る実施の形態において、減面率と負荷荷重比との関係で適切な処理条件範囲を示す図である。In embodiment which concerns on this invention, it is a figure which shows an appropriate process condition range by the relationship between a surface-reduction rate and a load ratio. 実施例と比較例に用いた種々の鋼材の成分比を示す図である。It is a figure which shows the component ratio of the various steel materials used for the Example and the comparative example. 実施例と比較例の内容をまとめた図である。It is the figure which summarized the content of the Example and the comparative example.

符号の説明Explanation of symbols

10 処理条件範囲。   10 Processing condition range.

Claims (2)

質量%での成分比において、0.7%以上1.0%以下のCと、0.1%以上1.0%以下のSiと、0.15%以上1.2%以下のMnとを含有し、Pを0.03%以下に、及びSを0.03%以下に制限した鋼材を圧延しパテンティング処理し伸線処理して鋼線とする工程と、
鋼線を所定の減面率でボルトの形状に成形する成形工程と、
成形されたボルトに軸線方向の引張応力を負荷する工程であって、引張応力の弾性限界応力に対する負荷荷重比と、減面率との関係において、負荷荷重比が0で減面率が5%、及び負荷荷重比が0で減面率が60%、及び負荷荷重比が1で減面率が60%、及び負荷荷重比が1で減面率が3%、及び負荷荷重比が0.5で減面率が3%の負荷条件で囲まれる負荷条件範囲で引張応力を負荷する荷重負荷工程と、
荷重負荷後のボルトを50℃以上450℃以下で熱処理する熱処理工程と、
を含むことを特徴とする非調質高強度ボルトの製造方法。
In a component ratio in mass%, 0.7% or more and 1.0% or less of C, 0.1% or more and 1.0% or less of Si, and 0.15% or more and 1.2% or less of Mn A step of rolling a steel material containing P, 0.03% or less and S limited to 0.03% or less, patenting and drawing to form a steel wire;
A forming step of forming a steel wire into a bolt shape at a predetermined area reduction rate;
This is a process of applying an axial tensile stress to the formed bolt. The relationship between the load ratio of the tensile stress to the elastic limit stress and the area reduction ratio is 0 and the area reduction ratio is 5%. , And the load ratio is 0 and the area reduction ratio is 60%, the load ratio is 1 and the area reduction ratio is 60%, the load ratio is 1, the area reduction ratio is 3%, and the load ratio is 0. A load loading step of applying a tensile stress in a load condition range surrounded by a load condition of 5% in area reduction rate of 5;
A heat treatment step of heat-treating the loaded bolt at 50 ° C. or higher and 450 ° C. or lower;
A method for producing a non-tempered high-strength bolt, comprising:
請求項1に記載の非調質高強度ボルトの製造方法において、
成形工程は、1300Mpa以上の引張強度を有するように減面率と熱処理とを設定することを特徴とする非調質高強度ボルトの製造方法。

In the manufacturing method of the non-tempered high strength bolt according to claim 1,
The forming step includes setting the area reduction rate and the heat treatment so as to have a tensile strength of 1300 Mpa or more.

JP2005153350A 2005-05-26 2005-05-26 Manufacturing method of non-tempered high strength bolt Expired - Fee Related JP4667961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005153350A JP4667961B2 (en) 2005-05-26 2005-05-26 Manufacturing method of non-tempered high strength bolt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005153350A JP4667961B2 (en) 2005-05-26 2005-05-26 Manufacturing method of non-tempered high strength bolt

Publications (2)

Publication Number Publication Date
JP2006328473A true JP2006328473A (en) 2006-12-07
JP4667961B2 JP4667961B2 (en) 2011-04-13

Family

ID=37550471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005153350A Expired - Fee Related JP4667961B2 (en) 2005-05-26 2005-05-26 Manufacturing method of non-tempered high strength bolt

Country Status (1)

Country Link
JP (1) JP4667961B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112010003614T5 (en) 2009-09-10 2013-03-14 Fusokiko Co., Ltd High strength screw
WO2016015092A1 (en) * 2014-07-30 2016-02-04 Integrity Engineering Solutions Pty Ltd Fasteners

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001348618A (en) * 2000-04-07 2001-12-18 Honda Motor Co Ltd Method for producing high strength bolt excellent in delayed fracture resistance and relaxation resistant characteristic
JP2002069582A (en) * 2000-09-06 2002-03-08 Nippon Steel Corp High strength rolled pc reinforcing bar, and its manufacturing method
JP2004052033A (en) * 2002-07-18 2004-02-19 Nippon Steel Corp Button headed high-strength rolled prestressed concrete steel bar and method for manufacturing the same
JP2004116624A (en) * 2002-09-25 2004-04-15 Honda Motor Co Ltd Method for improving relaxation resistance in steel bolt
JP2004307929A (en) * 2003-04-07 2004-11-04 Nippon Steel Corp Bolt having excellent hydrogen embrittlement resistance, and its production method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001348618A (en) * 2000-04-07 2001-12-18 Honda Motor Co Ltd Method for producing high strength bolt excellent in delayed fracture resistance and relaxation resistant characteristic
JP2002069582A (en) * 2000-09-06 2002-03-08 Nippon Steel Corp High strength rolled pc reinforcing bar, and its manufacturing method
JP2004052033A (en) * 2002-07-18 2004-02-19 Nippon Steel Corp Button headed high-strength rolled prestressed concrete steel bar and method for manufacturing the same
JP2004116624A (en) * 2002-09-25 2004-04-15 Honda Motor Co Ltd Method for improving relaxation resistance in steel bolt
JP2004307929A (en) * 2003-04-07 2004-11-04 Nippon Steel Corp Bolt having excellent hydrogen embrittlement resistance, and its production method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112010003614T5 (en) 2009-09-10 2013-03-14 Fusokiko Co., Ltd High strength screw
US8876451B2 (en) 2009-09-10 2014-11-04 National Institute For Materials Science High-strength bolt
DE112010003614B4 (en) * 2009-09-10 2016-11-17 Fusokiko Co., Ltd High strength screw
WO2016015092A1 (en) * 2014-07-30 2016-02-04 Integrity Engineering Solutions Pty Ltd Fasteners
US10316881B2 (en) 2014-07-30 2019-06-11 Integrity Engineering Solutions Pty Ltd Fasteners
AU2015296888B2 (en) * 2014-07-30 2019-08-01 Integrity Engineering Solutions Pty Ltd Fasteners

Also Published As

Publication number Publication date
JP4667961B2 (en) 2011-04-13

Similar Documents

Publication Publication Date Title
JP5521885B2 (en) Steel wire for machine parts with high strength and excellent hydrogen embrittlement resistance, machine parts and method for producing the same
US7763123B2 (en) Spring produced by a process comprising coiling a hard drawn steel wire excellent in fatigue strength and resistance to setting
JP3940270B2 (en) Method for producing high-strength bolts with excellent delayed fracture resistance and relaxation resistance
JP5590246B2 (en) Non-tempered machine part wire, non-tempered machine part steel wire, non-tempered machine part and manufacturing method thereof
JP5207805B2 (en) Steel parts with excellent bending fatigue strength and manufacturing method thereof
JPH0257637A (en) Manufacture of spring with high fatigue strength and steel wire for spring for use therein
JP2001294981A (en) High strength wire rod excellent in delayed fracture resistance and forgeability and/or under head toughness and its producing method
JP4667961B2 (en) Manufacturing method of non-tempered high strength bolt
JP3733229B2 (en) Manufacturing method of high strength bolt steel bar with excellent cold workability and delayed fracture resistance
JP2017101284A (en) High strength bolt superior in delayed fracture resistance and fatigue characteristics, and manufacturing method thereof
JPH0967622A (en) Production of high strength non-heat treated steel wire for bolt, excellent in cold heading property
JP4786063B2 (en) Method for producing martensitic precipitation hardened stainless steel
JPH1136041A (en) Production of steel and high strength member excellent in cold-forgability and delayed fracture characteristic
JP4976986B2 (en) Manufacturing method of steel wire with excellent low-temperature torsional characteristics
JP4976985B2 (en) Manufacturing method of wire rod and steel bar with excellent low-temperature torsional characteristics
JP2713346B2 (en) Stainless steel wire excellent in high strength properties and its manufacturing method
JPH09202921A (en) Production of wire for cold forging
JP2790303B2 (en) Method of manufacturing high fatigue strength spring and steel wire used for the method
JP6093212B2 (en) Manufacturing method of steel material excellent in cold workability or machinability
JP6059569B2 (en) Manufacturing method of steel material excellent in cold workability and machinability
JP2004002994A (en) Steel wire for hard drawn spring excellent in fatigue strength and set resistance, and hard drawn spring
JPS63206449A (en) Low-carbon steel for cold forging
JP2002241899A (en) High strength steel wire having excellent delayed fracture resistance and excellent forging property and manufacturing method therefor
JP2728084B2 (en) Manufacturing method of high strength parts
JPS61157640A (en) Manufacture of steel bar and wire rod for cold forging

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4667961

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees