JPH0317057B2 - - Google Patents

Info

Publication number
JPH0317057B2
JPH0317057B2 JP5917484A JP5917484A JPH0317057B2 JP H0317057 B2 JPH0317057 B2 JP H0317057B2 JP 5917484 A JP5917484 A JP 5917484A JP 5917484 A JP5917484 A JP 5917484A JP H0317057 B2 JPH0317057 B2 JP H0317057B2
Authority
JP
Japan
Prior art keywords
refrigerant
conduit
inner tank
cryostat
radiation shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5917484A
Other languages
Japanese (ja)
Other versions
JPS60202278A (en
Inventor
Hideo Misawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP5917484A priority Critical patent/JPS60202278A/en
Publication of JPS60202278A publication Critical patent/JPS60202278A/en
Publication of JPH0317057B2 publication Critical patent/JPH0317057B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

【発明の詳細な説明】 〔発明の対象〕 本発明は、超電導磁石を収納しているクライオ
スタツトの液槽をおおつているふく射シールド板
の冷却装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] The present invention relates to a cooling device for a radiation shield plate covering a liquid tank of a cryostat housing a superconducting magnet.

〔本発明の利用分野〕[Field of application of the present invention]

本発明は、磁気浮上列車の超電導磁石を収納し
ているクライオスタツト、あるいはスキツド等を
収納しているクライオスタツト等に利用される。
INDUSTRIAL APPLICATION This invention is utilized for the cryostat which houses the superconducting magnet of a magnetic levitation train, or the cryostat which houses skids, etc.

〔従来技術〕[Prior art]

本発明に関する従来技術を第1図に示す。冷媒
供給装置10の冷媒内槽1内の冷媒板5(例えば
液体窒素等)は、導管3を通つて、ポンプ2によ
つて昇圧され、導管4内を流れ、クライオスタツ
ト20のふく射シールド板21に固着せしめてあ
る導管22内を流れると、真空槽24からふく射
シールド板21に侵入するふく射熱と、支持材2
8を伝わつて侵入する伝導熱によつて、蒸発し、
気体となつて導管23を通つて、大気に放出され
る。このようにして、超電導磁石25が収納され
ている液体ヘリウム26が入つている内槽27に
は、直接、真空槽24からふく射熱や伝導熱が入
らないようにせしめて、液体ヘリウム26の蒸発
量を少なくしている。
A prior art related to the present invention is shown in FIG. The refrigerant plate 5 (for example, liquid nitrogen) in the refrigerant inner tank 1 of the refrigerant supply device 10 passes through the conduit 3 , is pressurized by the pump 2 , flows through the conduit 4 , and reaches the radiation shield plate 21 of the cryostat 20 . When flowing through the conduit 22 fixed to the support material 2, radiation heat enters the radiation shield plate 21 from the vacuum chamber 24 and
Evaporates due to conductive heat that penetrates through 8,
It is discharged as a gas through conduit 23 to the atmosphere. In this way, the inner tank 27 containing the liquid helium 26 in which the superconducting magnet 25 is housed is prevented from directly receiving radiant heat or conduction heat from the vacuum tank 24, thereby reducing the amount of evaporation of the liquid helium 26. is decreasing.

〔従来技術の問題点及びその技術的分析〕[Problems with conventional technology and their technical analysis]

この従来のふく射シールド板の冷却装置は、冷
媒内槽1内の冷媒液がなくなるたびに、外部より
補給しなければならないという欠点がある。かか
る欠点は、真空槽24からふく射シールド板21
に侵入したふく射熱によつて蒸発した冷媒液5
が、導管23を通つて大気に放出されるためであ
る。
This conventional radiation shield plate cooling device has a drawback that every time the refrigerant liquid in the refrigerant inner tank 1 runs out, it must be replenished from the outside. Such a drawback is that the radiation shield plate 21 from the vacuum chamber 24
Refrigerant liquid 5 evaporated by the radiant heat that entered the
is released into the atmosphere through the conduit 23.

〔技術的課題〕[Technical issues]

そこで、本発明は、クライオスタツトのふく射
シールド板を冷却している冷媒液が、クライオス
タツトの真空槽105より侵入するふく射熱と、
支持材106を伝わつて侵入する伝導熱によつて
蒸発しても、冷媒供給装置50に冷媒液を供給す
る必要がないようにすることを技術的課題とす
る。
Therefore, the present invention prevents the radiation heat entering from the vacuum chamber 105 of the cryostat from the refrigerant liquid cooling the radiation shield plate of the cryostat.
A technical problem is to eliminate the need to supply refrigerant liquid to the refrigerant supply device 50 even if the refrigerant liquid evaporates due to the conductive heat that penetrates through the support material 106.

〔技術的手段〕[Technical means]

上記技術的課題を解決するために講じた技術的
手段は、冷凍機51に冷媒ガスを液化せしめる凝
縮変換器52を設け、該凝縮熱交換器52を冷媒
内槽53内に配置し、前記冷媒内槽53にポンプ
55の吸込み口56を連通し、該ポンプ55の吐
出口57に導管58を連通させ、該導管58をク
ライオスタツト100内に設けた導管101に連
通し、該導管101を該導管102に連通させ、
さらに該導管102の一端を冷媒内槽53の凝縮
熱交換器52近傍に配設し該導管101を液体ヘ
リウム等の冷媒104が充填されている内槽11
2をおおつているふく射シールド板103に固着
せしめ、該冷媒内槽53に液体窒素等の冷媒液5
4を充填することである。
The technical means taken to solve the above technical problem is that a refrigerator 51 is provided with a condensing converter 52 that liquefies refrigerant gas, the condensing heat exchanger 52 is disposed inside a refrigerant inner tank 53, and the refrigerant gas is The suction port 56 of the pump 55 is communicated with the inner tank 53, the conduit 58 is communicated with the discharge port 57 of the pump 55, the conduit 58 is communicated with a conduit 101 provided in the cryostat 100, and the conduit 101 is connected with the conduit 101 provided in the cryostat 100. communicated with the conduit 102;
Further, one end of the conduit 102 is disposed near the condensing heat exchanger 52 of the refrigerant inner tank 53, and the conduit 101 is connected to the inner tank 10 filled with a refrigerant 104 such as liquid helium.
The refrigerant liquid 5 such as liquid nitrogen is fixed to the radiation shield plate 103 covering the refrigerant inner tank 53.
4.

〔技術的手段の作用〕[Effect of technical means]

上記技術的手段は、次のように作用する。すな
わち、冷媒内槽53内の液体窒素等の冷媒液54
は、ポンプ55によつて昇圧され、導管58を通
つてクライオスタツト100内の導管101に流
入すると、真空槽105からふく射シールド板1
03に侵入するふく射熱と、支持材106を伝わ
つて侵入する伝導熱によつて蒸発し、ふく射シー
ルド板103の温度をほぼ冷媒液54の液化温度
にせしめ、液体ヘリウム等の冷媒104が充填し
ている低槽112は、直接真空槽105から熱が
侵入しないようになる。導管101で蒸発した冷
媒は、導管102を通つて凝縮熱交換器52に流
入し、冷凍機51で発生している冷媒液54の液
化温度より低い冷凍によつて液化され、液体とな
つて冷媒内槽53に再びもどる。この結果、冷媒
液54は外部より供給する必要がなくなる。
The above technical means works as follows. That is, the refrigerant liquid 54 such as liquid nitrogen in the refrigerant inner tank 53
When the pressure is increased by the pump 55 and flows into the conduit 101 in the cryostat 100 through the conduit 58, the radiation shield plate 1 is discharged from the vacuum chamber 105.
The radiation shield plate 103 is evaporated by the radiation heat that penetrates into the cooling medium 03 and the conductive heat that penetrates through the supporting material 106, and the temperature of the radiation shield plate 103 is brought to approximately the liquefaction temperature of the refrigerant liquid 54, and the refrigerant 104 such as liquid helium is filled. Heat does not directly intrude into the low chamber 112 from the vacuum chamber 105. The refrigerant evaporated in the conduit 101 flows into the condensing heat exchanger 52 through the conduit 102, and is liquefied by freezing at a temperature lower than the liquefaction temperature of the refrigerant liquid 54 generated in the refrigerator 51. Return to the inner tank 53 again. As a result, there is no need to supply the refrigerant liquid 54 from outside.

〔本発明によつて生じた特有の効果〕[Special effects produced by the present invention]

本発明は、次の特有の効果を生じる。すなわ
ち、冷凍機51が運転されている間は、冷媒液5
4の蒸発した冷媒ガスが、冷凍機51の凝縮熱交
換機52で常時液化されているので、冷媒内槽5
3の冷媒液54の量は少なくてすみ、冷媒液54
の重量も小さくなり、冷媒内槽53も小型軽量と
なり、その結果、真空槽105も小型軽量とな
る。
The present invention produces the following unique effects. That is, while the refrigerator 51 is operating, the refrigerant liquid 5
Since the evaporated refrigerant gas of No. 4 is constantly liquefied in the condensing heat exchanger 52 of the refrigerator 51, the refrigerant inner tank 5
The amount of refrigerant liquid 54 in No. 3 is small, and the amount of refrigerant liquid 54
The weight of the refrigerant inner tank 53 also becomes smaller and lighter, and as a result, the vacuum chamber 105 also becomes smaller and lighter.

〔実施例〕〔Example〕

本発明の技術的手段について、第2図に基いて
説明する。50は冷媒供給装置、51は冷凍機、
52は凝縮熱交換器、53は冷媒内槽、54は冷
媒液、55はポンプ、56は吸込み口、57は吐
出口、そして58は導管である。
The technical means of the present invention will be explained based on FIG. 2. 50 is a refrigerant supply device, 51 is a refrigerator,
52 is a condensing heat exchanger, 53 is a refrigerant inner tank, 54 is a refrigerant liquid, 55 is a pump, 56 is a suction port, 57 is a discharge port, and 58 is a conduit.

また、100はクライオスタツト、101,1
02は導管、103はふく射シールド板、104
は冷媒液、105は真空槽、106は支持材、1
07は超電導磁石、そして112は内槽である。
Also, 100 is a cryostat, 101,1
02 is a conduit, 103 is a radiation shield plate, 104
1 is a refrigerant liquid, 105 is a vacuum chamber, 106 is a support material, 1
07 is a superconducting magnet, and 112 is an inner tank.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のクライオスタツトの回路図、そ
して第2図は本発明の一実施例に係るクライオス
タツトの回路図である。 51……冷凍機、52……凝縮熱交換器、53
……冷媒内槽、55……ポンプ、56……吸込み
口、57……吐出口、58……導管、100……
クライオスタツト、101,102……導管、1
03……ふく射シールド板、112……内槽。
FIG. 1 is a circuit diagram of a conventional cryostat, and FIG. 2 is a circuit diagram of a cryostat according to an embodiment of the present invention. 51... Refrigerator, 52... Condensing heat exchanger, 53
... Refrigerant inner tank, 55 ... Pump, 56 ... Suction port, 57 ... Discharge port, 58 ... Conduit, 100 ...
Cryostat, 101, 102... Conduit, 1
03... Radiation shield plate, 112... Inner tank.

Claims (1)

【特許請求の範囲】 1 冷凍機に凝縮熱交換器を設け、 該凝縮熱交換器を冷媒内槽内に配置し、 該冷媒内槽にポンプの吸込み口を連通させ、 該ポンプの吐出口に第1導管を連通し、 クライオスタツト内に配設されたふく射シール
ド板に第2導管を固着させ、 前記第1導管と該第2導管とを接続し、 該第2導管の一端を前記冷媒内槽の前記凝縮熱
交換器近傍に配設し、 前記冷媒内槽に冷媒を充填してなる クライオスタツト用ふく射シールド装置。
[Claims] 1. A refrigerating machine is provided with a condensing heat exchanger, the condensing heat exchanger is disposed in a refrigerant inner tank, a suction port of a pump is communicated with the refrigerant inner tank, and a discharge port of the pump is connected to the refrigerant inner tank. communicating the first conduit, fixing the second conduit to a radiation shield plate disposed within the cryostat, connecting the first conduit and the second conduit, and inserting one end of the second conduit into the refrigerant. A radiation shield device for a cryostat, which is arranged near the condensing heat exchanger in a tank, and the refrigerant inner tank is filled with a refrigerant.
JP5917484A 1984-03-26 1984-03-26 Cooling device of radiation shielding plate for cryostat Granted JPS60202278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5917484A JPS60202278A (en) 1984-03-26 1984-03-26 Cooling device of radiation shielding plate for cryostat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5917484A JPS60202278A (en) 1984-03-26 1984-03-26 Cooling device of radiation shielding plate for cryostat

Publications (2)

Publication Number Publication Date
JPS60202278A JPS60202278A (en) 1985-10-12
JPH0317057B2 true JPH0317057B2 (en) 1991-03-07

Family

ID=13105757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5917484A Granted JPS60202278A (en) 1984-03-26 1984-03-26 Cooling device of radiation shielding plate for cryostat

Country Status (1)

Country Link
JP (1) JPS60202278A (en)

Also Published As

Publication number Publication date
JPS60202278A (en) 1985-10-12

Similar Documents

Publication Publication Date Title
US3485054A (en) Rapid pump-down vacuum chambers incorporating cryopumps
US3611746A (en) Cryostat for cooling vacuum-housed radiation detector
US20060064989A1 (en) Superconducting magnet system with refrigerator
GB2178836A (en) Cryogenic apparatus
US4209657A (en) Apparatus for immersion-cooling superconductor
US5144810A (en) Multi-stage cold accumulation type refrigerator and cooling device including the same
EP1785680B1 (en) Cooling apparatus
CA2158520A1 (en) Mechanical cooling system
GB1153374A (en) Cryogenic Refrigeration System.
JPH0621755B2 (en) Dilution cryostat
US5251456A (en) Multi-stage cold accumulation type refrigerator and cooling device including the same
JPH0317057B2 (en)
US3313117A (en) Dense gas helium refrigerator
JPS6290910A (en) Cryogenic device
JPH1026427A (en) Cooler
US3407615A (en) Low temperature heat exchanger
US3302417A (en) Coupling arrangement between cryogenic refrigerator and heat load
JPH0416028B2 (en)
US3552135A (en) Fluid cooling arrangement employing liquified gas
GB2149901A (en) Low temperature containers
US4364235A (en) Helium-cooled cold surface, especially for a cryopump
RU2011129C1 (en) Magnetic suspension vehicle cryostat
JPS58112305A (en) Superconductive magnet device
JPS63297983A (en) Cryogenic cold reserving device
JP3370154B2 (en) Cooling system