JPH03170336A - Preparation of conductive metal oxide - Google Patents

Preparation of conductive metal oxide

Info

Publication number
JPH03170336A
JPH03170336A JP30612689A JP30612689A JPH03170336A JP H03170336 A JPH03170336 A JP H03170336A JP 30612689 A JP30612689 A JP 30612689A JP 30612689 A JP30612689 A JP 30612689A JP H03170336 A JPH03170336 A JP H03170336A
Authority
JP
Japan
Prior art keywords
metal oxide
conductive metal
chromium
mxv1
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30612689A
Other languages
Japanese (ja)
Other versions
JP2854350B2 (en
Inventor
Satoru Maruyama
哲 丸山
Hironobu Sawada
澤田 博信
Hiroshi Watanabe
浩 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP1306126A priority Critical patent/JP2854350B2/en
Publication of JPH03170336A publication Critical patent/JPH03170336A/en
Application granted granted Critical
Publication of JP2854350B2 publication Critical patent/JP2854350B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G37/00Compounds of chromium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Thermistors And Varistors (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To prepare a conductive metal oxide exhibiting a metal semiconductor transition increasing resistance with the raising of temperature near the ordinary temperature by hydrolyzing a mixture of a V alkoxide and a specific element alcoholate, reducing the hydrolyzate and subsequently sintering the product. CONSTITUTION:A mixture of a V alkoxide (e.g. vanadyl ethoxide) and an alkoholate (e.g. chromium ethoxyethylate) of an element M (M is Cr, Ar or a rare earth element) is hydrolyzed with water to prepare (MxV1-x)2O5 ((x) is 0.001-0.5). The (MxV1-x)2O5 is reduced in a H2 atmosphere, and the prepared (MxV1-x)2O3 is ground so as to give a diameter of the secondary particles of 0.5-1.0mum, molded and subsequently sintered in a H2 atmosphere at 1400-1450 deg.C.

Description

【発明の詳細な説明】 (産業上の利用分野〉 本発明は、3価のバナジウム酸化物のバナジウムの一部
をクロム,アルミニウムあるいは希土類元素で置換した
組威を有し、常温付近で温度上昇に伴ない抵抗か増大す
る金属半導体転移を示す導電性金属酸化物を製造する方
法に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention has a structure in which a part of the vanadium in trivalent vanadium oxide is replaced with chromium, aluminum, or a rare earth element, and the temperature rises near room temperature. The present invention relates to a method for producing a conductive metal oxide that exhibits a metal-semiconductor transition whose resistance increases as the resistance increases.

(従来の技術とその問題点) 酸化バナジウムには、v203、vO、V.O5等が存
在するか、この中でv203は、160K付近で絶縁体
金属転移を、室温付近で金属半導体転移を示す。
(Prior art and its problems) Vanadium oxide includes v203, vO, V. Of these, v203 exhibits an insulator-metal transition near 160K and a metal-semiconductor transition near room temperature.

特にこの室温付近の金属半導体転移は、V20:I中に
添加元素としてCr. AIあるいは希土類元素を用い
ることにより明瞭に現われる。この転移を利用してこの
導電性金属酸化物を大電流用の限流素子として用いる試
みが今までになされて来た。
In particular, this metal-semiconductor transition near room temperature is caused by the addition of Cr as an added element in V20:I. This becomes clear when AI or rare earth elements are used. Attempts have been made to utilize this transition to use this conductive metal oxide as a current limiting element for large currents.

前記の酸化物は(れ■l−)20:l  (Mは荊記C
r等の添加元素)で表現され、第1図に示すように、単
結晶を材料とすれば、常温付近における温度上昇に伴な
う抵抗変化率が数百倍の材料か得られる一方、従来の焼
結法による焼結体の場合は百倍程度が限度であり、単結
晶を材料とした限流素子を製造することが望まれる。な
お第1図の単結晶に関するデータは、Kuwamoto
らによる測定データである.  (Physical 
Review B22 P2625(1980))。
The above oxide is (Re■l-)20:l (M is Jingji C
(additional elements such as In the case of a sintered body produced by the sintering method, the limit is about 100 times, and it is desirable to manufacture a current limiting element using a single crystal material. The data regarding the single crystal in Figure 1 is available from Kuwamoto
This is the measurement data by et al. (Physical
Review B22 P2625 (1980)).

しかし、前記クロム等で一部置換したハナジウム酸化物
の単結晶としては、せいぜい直径40程度のサイズの小
さいものしか得ることがてきないため、比較的大型の限
流素子を得る場合は、やむをえず焼結体の形で限流素子
材料を得ているのが現状である。すなわち、従来は、ま
ずv203とCr203を所定の比で湿式混合し、乾燥
した後、粉砕し、威形して焼威するという工程により焼
結体を得ていた。また、このような製造工程においで、
前記百倍程度の抵抗変化率を得るため、焼結温度を15
00℃以上に上げなければならなかった。しかし、焼結
温度が高くなると,バナジウムの蒸発という問題がある
ので、あまり焼結温度を上げることもできず、従っで、
抵抗変化率を上げることが困難であった。
However, since single crystals of hanadium oxide partially substituted with chromium etc. can only be obtained as small as 40 mm in diameter at most, it is unavoidable to obtain a relatively large current limiting element. Currently, current limiting element materials are obtained in the form of sintered bodies. That is, conventionally, a sintered body was obtained by first wet-mixing V203 and Cr203 in a predetermined ratio, drying, crushing, shaping, and burning. In addition, in this manufacturing process,
In order to obtain a resistance change rate of about 100 times, the sintering temperature was set to 15%.
The temperature had to be raised to over 00°C. However, if the sintering temperature becomes high, there is a problem of vanadium evaporation, so it is not possible to raise the sintering temperature too much.
It was difficult to increase the resistance change rate.

上述のように、従来の焼結体の場合には、単結晶に比較
しで、抵抗変化率が小さい理由は次のように考えられる
。室温程度における金属半導体転移は水における水と氷
の転移と同様な一次転移であり、これは必ず体積変化を
伴ない、ヒステリシスを伴なうものである。従っで、抵
抗の変化もバルク全体が同時に起こるのではなく、部分
的に起こるため、見かけ上抵抗変化も小さくなるのであ
る。従っで、抵抗変化率を大きくするには、焼結体の各
部がなるべく均一な特性すなわち均一な組成であること
か望ましいと考えられる。
As mentioned above, the reason why the rate of change in resistance is smaller in the case of a conventional sintered body than in a single crystal is considered to be as follows. The metal-semiconductor transition at around room temperature is a first-order transition similar to the water-ice transition in water, and this is always accompanied by a volume change and hysteresis. Therefore, the change in resistance does not occur in the entire bulk at the same time, but only in parts, so that the change in resistance appears to be small. Therefore, in order to increase the rate of change in resistance, it is considered desirable that each part of the sintered body have as uniform characteristics as possible, that is, a uniform composition.

焼結体等を作成する際に組威の均一性を得る手法としで
、例えばシュウ酸塩のPHを調節して沈殿を生じさせる
共沈法や、金属イオンを含む溶液を瞬時に蒸発させて金
属粉末を得るスプレーパイロリシス法かあるが、充分な
結果か得られていない。
When creating sintered bodies, etc., there are methods to obtain uniformity of composition, such as the coprecipitation method in which the pH of oxalate is adjusted to produce a precipitate, and the method in which a solution containing metal ions is instantaneously evaporated. There is a spray pyrolysis method to obtain metal powder, but satisfactory results have not been obtained.

(発明か解決すべき課題) このように、従来技術によれば、単結晶では大型の限流
素子を得ることか困難であり、一方従来の焼結法によれ
ば、大きな抵抗変化率が得られないのか現状であり、こ
れらに代わる方法も見い出されていない。
(Invention or Problem to be Solved) As described above, according to the conventional technology, it is difficult to obtain a large current limiting element with a single crystal, while with the conventional sintering method, it is difficult to obtain a large resistance change rate. Currently, there is no way to replace them, and no alternative method has been found.

本発明は、このような問題点を解決し、室温付近におけ
る抵抗変化率が大きく、かつ充分なサイズの(M.V,
−.)203  ( Mは前記添加元素)なる導電性金
属酸化物が得られる製造方法を提供することを目的とす
る。
The present invention solves these problems and has a large resistance change rate near room temperature and a sufficient size (M.V.
−. ) 203 (M is the above-mentioned additive element).

(課題を解決するための手段) 上記の目的を達成するため、本発明による導電性金属酸
化物の製造方法は、ハナシウムのアルコキシドとクロム
等の添加元素のア′ルコレートとの混合物を加水分解し
て(MXV+−)205を得、該(M−Vx−x)20
sを還元して(Mxv+−x)Jiを得、これを焼結す
ることを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, the method for producing a conductive metal oxide according to the present invention involves hydrolyzing a mixture of an alkoxide of hanasium and an alcoholate of an additive element such as chromium. (MXV+-)205 was obtained, and the (M-Vx-x)20
It is characterized in that (Mxv+-x)Ji is obtained by reducing s, and this is sintered.

(作用) 本発明の方法においで、(MXVl−)20Sを得る工
程はソルゲル法の一種であり、これにより添加元素をバ
ナジウム酸化物中に均一に添加できる。より詳しくは、
v205はゲル状をなすとき、層状構造をなすため、添
加元素がその層間に位置することが考えられる。その結
果としで、C『等の添加元素とV.O5か原子オーダー
で規則的に存在し、かつ混合されていると推定される。
(Function) In the method of the present invention, the step of obtaining (MXVl-)20S is a type of sol-gel method, whereby the additive element can be uniformly added to the vanadium oxide. For more details,
When v205 forms a gel, it forms a layered structure, so it is thought that the additive element is located between the layers. As a result, additive elements such as C' and V. It is estimated that O5 exists regularly on the atomic order and is mixed.

さらに本発明によれば、加水分解後に従来法に比べて粒
子の微細化ができる。
Furthermore, according to the present invention, particles can be made finer than conventional methods after hydrolysis.

従って,本発明により得られる導電性金属酸化物は、焼
結体でありながら単結晶と同様の大きな抵抗変化率を示
し、焼結温度も低くなる。
Therefore, although the conductive metal oxide obtained by the present invention is a sintered body, it exhibits a large resistance change rate similar to that of a single crystal, and the sintering temperature is also low.

(実施例) 室温で液体であるバナジルエトキシド( vo(oc2
us)3) とクロムエトキシエチレート{ CrCO
C2H.01:t)z }をバナシウムとクロムが所定
の比となるように含ませた濃度1モル/kgのトルエン
溶液を室温でエタノール溶液に混合し、その後ロータリ
ーエバボレーターを用いてトルエンを蒸発させて溶媒は
エタノールのみとした。この溶液を攪拌しなから純水を
滴下し、加水分解を行なった。この加水分解によりCr
を含むv20,.・3H20が沈澱として生成する。
(Example) Vanadyl ethoxide (vo(oc2) which is a liquid at room temperature
us) 3) and chromium ethoxyethylate { CrCO
C2H. A toluene solution with a concentration of 1 mol/kg containing vanadium and chromium in a predetermined ratio is mixed with an ethanol solution at room temperature, and then the toluene is evaporated using a rotary evaporator to remove the solvent. Only ethanol was used. While stirring this solution, pure water was added dropwise to perform hydrolysis. Through this hydrolysis, Cr
v20, .・3H20 is formed as a precipitate.

なお、この化合物は、リバージュらの報告(Mater
ial Reseach Bulltin Vol.1
6 p669 (1981))によると層状化合物をな
しているが、このことは本発明者もX線回折により確認
した。また、前記沈澱物においで、添加元素のクロムの
正確な位置の判断はできないが,この種の化合物が(M
.Vl−.)20,のブロンズ構造をとりやすいことか
ら、ハナジウムと酸素が形威する層間にクロムが局在し
た構造をとっていると考えられる。
Note that this compound is based on the report by Rivage et al. (Mater
ial Research Bulletin Vol. 1
6 p669 (1981)), it forms a layered compound, which the present inventor also confirmed by X-ray diffraction. In addition, although it is not possible to determine the exact location of the added element chromium in the precipitate, this type of compound (M
.. Vl-. ) 20, it is thought that it has a structure in which chromium is localized between layers of hanadium and oxygen.

次に前記沈澱のみを取り出すため、200℃で脱水後、
H2雰囲気でかつ6 0 0 ’Cの温度て3時間還元
し、(II:r++V+−x)atll+を生成させ(
この実施例の場合、X=0.005とした)、ボールミ
ルで乾式粉砕し、2次粒子径としで、0.57hm〜1
.OILmの粉体な得た。
Next, in order to take out only the precipitate, after dehydration at 200°C,
Reduction in H2 atmosphere and temperature of 600'C for 3 hours produces (II:r++V+-x)atll+ (
In the case of this example,
.. A powder of OILm was obtained.

この粉体な原料とし、有機バインダーを混合後,成形し
、1400℃〜l 4 5 0 ’Cて5時間、H2雰
囲気中で焼成し、直径20mtaのディスクタイプの焼
結体を得た。焼威したサンプルについては、直流4端子
法で抵抗を測定した。その結果を第1図に示す。
This powder raw material was mixed with an organic binder, molded, and fired in an H2 atmosphere at 1400°C to 1450'C for 5 hours to obtain a disk-type sintered body with a diameter of 20 mta. The resistance of the burnt sample was measured using the DC 4-terminal method. The results are shown in FIG.

第1図から分るように,本発明の方法による場合、抵抗
変化率は単結晶の場合に比較しても遜色がなく、ほぼ同
様の抵抗変化率が得られ、従来の焼結法による焼結体に
比較し、抵抗変化率がはるかに大となった。また、焼結
温度も従来の15009C以上に比較し、1400℃〜
1450℃程度と低くしてもよい。この理由は、2次粒
子径はほぼ従来と同してあるが、1次粒子径か小さくな
ったためである。
As can be seen from Figure 1, when using the method of the present invention, the rate of change in resistance is comparable to that of single crystals, and almost the same rate of change in resistance can be obtained. The rate of change in resistance was much greater than that of solids. In addition, the sintering temperature is 1400℃~1400℃ compared to the conventional 15009℃ or higher.
The temperature may be as low as about 1450°C. The reason for this is that although the secondary particle size is almost the same as in the conventional case, the primary particle size has become smaller.

また、単結晶はせいぜい直径が4IIII程度のものし
か作威できないのが現状であるが、本発明による場合に
は、20+am以上のものを容易に作或することができ
る。
Furthermore, although it is currently possible to produce a single crystal with a diameter of about 4III at most, in the case of the present invention, it is possible to easily produce a single crystal with a diameter of 20+am or more.

以上本発明を実施例により説明したが、本発明は、ハナ
ジウムの原料としで、前記以外に、バナシルブトキシド
、ハナジルプロボキシド、バナジルメトキシド等の他の
アルコキシドを用いることができ、また、クロムの原料
としで、クロムエトキシプロピレート、クロムエトキシ
ブチレート、クロムエトキシメチレート等の他のアルキ
レートを用いることかできる。
The present invention has been described above with reference to Examples, but in the present invention, in addition to the above, other alkoxides such as vanadyl butoxide, hanadyl propoxide, vanadyl methoxide, etc. can be used as the raw material for hanadium, and Other alkylates such as chromium ethoxypropylate, chromium ethoxybutyrate, and chromium ethoxymethylate can be used as raw materials for chromium.

また、クロムの代わりに、アルミニウムや希土類元素を
用いても、表1に示すように、同様の結果を得ることが
できる。
Further, as shown in Table 1, similar results can be obtained even if aluminum or rare earth elements are used instead of chromium.

(以下余白) 表 ■ 抵抗変化:R(最大値)/R(QC) また、本発明における添加物の添加量の好適範囲は金属
酸化物を(M,L−X)2(hて表現した場合、x=o
.ooi−o.sである。0.001以下であると添加
による抵抗変化率向上効果が現われず、0.5を超えて
も抵抗変化率が劣化する。
(Leaving space below) Table ■ Resistance change: R (maximum value) / R (QC) In addition, the preferred range of the amount of additive in the present invention is expressed as (M, L-X) 2 (h) for the metal oxide. If x=o
.. ooi-o. It is s. If it is less than 0.001, the effect of improving the resistance change rate by addition will not appear, and if it exceeds 0.5, the resistance change rate will deteriorate.

(発明の効果〉 本発明によれば、v203のバナジウムの=一部をCr
, AIあるいは希土類元素によって置換した金属酸化
物を得るため、原料としで、バナジルアルコキシド、添
加物のアルコレートを用い、これらの溶液を加水分解し
てV20=,の一部を添加元素で均一に置換した微細な
粉末を得、これを還元してv203の一部を添加元素で
置換した微細な原料粉末を得、焼結することにより,目
的酸化物を得る方法であるから、焼結体であるにも拘ら
ず、単結晶と同様の大きな抵抗変化率を有し、しかも単
結晶としては得られない大きなサイズの材料を得ること
かでき、室温付近で抵抗が変化する大型の限流素子の用
途に使用するに好適なものを提供することか可能となる
。また、本発明によれば,従来の焼l 0 結法より低い温度で焼結しても良好な特性のものが得ら
れるから,焼結時におけるバナジウムの蒸発の問題が緩
和され、目的とする組成の酸化物を容易に得ることがで
きる。
(Effect of the invention) According to the present invention, a part of the vanadium of v203 is Cr
, In order to obtain metal oxides substituted with AI or rare earth elements, vanadyl alkoxide is used as a raw material, and alcoholate is used as an additive, and these solutions are hydrolyzed to uniformly add a portion of V20 to the additive element. This is a method to obtain the target oxide by obtaining a substituted fine powder, reducing it to obtain a fine raw material powder in which a part of v203 is substituted with an additive element, and sintering it. Despite this, it is possible to obtain a material with a large resistance change rate similar to that of a single crystal, and a large size that cannot be obtained as a single crystal. It becomes possible to provide products suitable for various purposes. Furthermore, according to the present invention, good properties can be obtained even when sintered at a lower temperature than the conventional sintering method, which alleviates the problem of vanadium evaporation during sintering and achieves the desired oxides of the following compositions can be easily obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明法、従来の焼結法により得られた金属酸
化物と、単結晶の金属酸化物の温度に対する抵抗変化を
比較して示す図である。
FIG. 1 is a diagram showing a comparison of resistance changes with respect to temperature of metal oxides obtained by the method of the present invention, a conventional sintering method, and a single crystal metal oxide.

Claims (1)

【特許請求の範囲】[Claims]  (M_XV_1_−_X)_2O_3(ただしMはC
r、Al、希土類元素で、X=0.001〜0.5)な
る導電性金属酸化物を製造する方法であって、バナジウ
ムのアルコキシドと前記元素Mのアルコレートとの混合
物を加水分解することにより(M_XV_1_−_X)
_2O_5を得、該(M_XV_1_−_X)_2O_
5を還元して(M_XV_1_−_X)_2O_3を得
、これを焼結することを特徴とする導電性金属酸化物の
製造方法。
(M_XV_1_-_X)_2O_3 (M is C
A method for producing a conductive metal oxide of r, Al, and a rare earth element (X = 0.001 to 0.5), the method comprising hydrolyzing a mixture of a vanadium alkoxide and an alcoholate of the element M. By (M_XV_1_-_X)
_2O_5 is obtained, and the (M_XV_1_-_X)_2O_
A method for producing a conductive metal oxide, the method comprising reducing 5 to obtain (M_XV_1_-_X)_2O_3 and sintering this.
JP1306126A 1989-11-25 1989-11-25 Method for producing conductive metal oxide Expired - Lifetime JP2854350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1306126A JP2854350B2 (en) 1989-11-25 1989-11-25 Method for producing conductive metal oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1306126A JP2854350B2 (en) 1989-11-25 1989-11-25 Method for producing conductive metal oxide

Publications (2)

Publication Number Publication Date
JPH03170336A true JPH03170336A (en) 1991-07-23
JP2854350B2 JP2854350B2 (en) 1999-02-03

Family

ID=17953366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1306126A Expired - Lifetime JP2854350B2 (en) 1989-11-25 1989-11-25 Method for producing conductive metal oxide

Country Status (1)

Country Link
JP (1) JP2854350B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2741612A1 (en) * 1995-11-29 1997-05-30 Cernix New aluminovanadates containing nitrogen and hydrogen and their preparation
CN117904673A (en) * 2024-03-19 2024-04-19 四川大学 Electrocatalyst and preparation and application thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2741612A1 (en) * 1995-11-29 1997-05-30 Cernix New aluminovanadates containing nitrogen and hydrogen and their preparation
CN117904673A (en) * 2024-03-19 2024-04-19 四川大学 Electrocatalyst and preparation and application thereof
CN117904673B (en) * 2024-03-19 2024-05-24 四川大学 Electrocatalyst and preparation and application thereof

Also Published As

Publication number Publication date
JP2854350B2 (en) 1999-02-03

Similar Documents

Publication Publication Date Title
JP4560149B2 (en) Transparent conductive material, transparent conductive glass and transparent conductive film
JPH0971860A (en) Target and its production
JPH04219359A (en) Electrically conductive zinc oxide sintered compact
JPH0350148A (en) Zinc oxide sintered compact, production and its application
JP2848072B2 (en) Manufacturing method of electrode for oxygen sensor
JPH03170336A (en) Preparation of conductive metal oxide
JPH05193939A (en) Indium oxide powder and production of ito sintered body
JPH0316954A (en) Oxide sintered product and preparation and use thereof
DE19832843A1 (en) Thermistor
KR100455280B1 (en) Method of preparing indium tin oxide(ITO)
JP2979648B2 (en) ITO sintered body
JPH06236710A (en) Conductive material and manufacture and manufacture thereof
JP2861659B2 (en) Method for producing dielectric porcelain composition
JP2000086336A (en) Production of positive temperature coefficient thermistor
JP2533305B2 (en) Manufacturing method of dielectric resonator material
JPH0729848B2 (en) Method for manufacturing dielectric resonator material
JP2628596B2 (en) Manufacturing method of dielectric resonator material
JP2687287B2 (en) Dielectric ceramic composition for microwave and method for producing the same
JP2687288B2 (en) Dielectric ceramic composition for microwave and method for producing the same
JPS63225403A (en) Manufacture of dielectric ceramics
JPH029760A (en) Ceramic composition having high dielectric constant
JPH08277112A (en) Transparent conductive oxide material
JPH11302074A (en) Production of compound oxide sintered body
JPH11302016A (en) Ito sputtering target suitable for film formation at low temperature, and its production
JPH02225366A (en) Production of oxide sintered compact

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071120

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081120

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091120

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101120

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101120

Year of fee payment: 12