JPH0316998A - Optical part and production thereof - Google Patents

Optical part and production thereof

Info

Publication number
JPH0316998A
JPH0316998A JP1149622A JP14962289A JPH0316998A JP H0316998 A JPH0316998 A JP H0316998A JP 1149622 A JP1149622 A JP 1149622A JP 14962289 A JP14962289 A JP 14962289A JP H0316998 A JPH0316998 A JP H0316998A
Authority
JP
Japan
Prior art keywords
diamond
substrate
manufacturing
film
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1149622A
Other languages
Japanese (ja)
Inventor
Yutaka Kaneko
豊 金子
Hideo Nakazawa
秀夫 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1149622A priority Critical patent/JPH0316998A/en
Publication of JPH0316998A publication Critical patent/JPH0316998A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain a molded article of three-dimensional shape having variable film thickness of diamond by making position correlation between a base substrate and a plasma zone relatively variable during formation of diamond film by vapor-phase synthesis. CONSTITUTION:Diamond of any shape is obtained by changing position correlation between a base substrate and a plasma zone by horizontal movement, rotation, vertical movement, inclination, etc., of substrate during formation of diamond film by vapor-phase synthesis such as thermal filament CVD method, microwave plasma CVD method.

Description

【発明の詳細な説明】 (2) 〔産業上の利用分野〕 本発明は、気相合成ダイヤモンドからなる光学部品およ
びその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (2) [Field of Industrial Application] The present invention relates to an optical component made of vapor-phase synthetic diamond and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

従来のダイヤモンド膜の3次冗或形は、日経メカニカル
,工988.4..4.,の50頁から55頁に論じら
れているように、成形には熱フィラメントCVD法を採
用し、ベース基板には必要としている部品形状に成形し
た単結品シリコンを用い、基板をゆっくり回転させなが
らダイヤモンド合成を行っていた。さらに、ダイヤモン
ド膜のクラック防止のために熱応力を取除くための熱処
理が行われていた。
The conventional three-dimensional redundant diamond film is published by Nikkei Mechanical, Engineering 988.4. .. 4. As discussed on pages 50 to 55 of , the hot filament CVD method is used for molding, the base substrate is made of single-piece silicon molded into the required part shape, and the substrate is slowly rotated. At the same time, he was conducting diamond synthesis. Furthermore, heat treatment was performed to remove thermal stress in order to prevent cracks in the diamond film.

〔発明が解決しようとするi′1!!題〕従来技術とし
て熱フィラメントCVD法があった。しかし、複雑な形
状の戒形体を均一に或形するにはベースになる基板を予
め設けなければならない問題があり、レンズのような曲
面を得るにはシリコンのような難削材をーっずっ精度良
く加工しなければならないので時間がかがり、製造コス
(3) トも高く、大量生産に向いていない。さらに、基板形状
が軸対称な凸凹面を有するものから、非軸対称な非球面
などの複雑な形状を有するものを得ようとする場合、そ
の製造コストは極めて高くなるという問題があった。
[i′1 that the invention attempts to solve! ! [Problem] There is a hot filament CVD method as a conventional technique. However, in order to uniformly shape a complex shaped object, a base substrate must be prepared in advance, and in order to obtain a curved surface like a lens, a difficult-to-cut material such as silicon must be used all the time. Since it must be processed with high precision, it is time consuming and has a high manufacturing cost (3), making it unsuitable for mass production. Furthermore, when attempting to obtain a substrate having a complex shape such as an axisymmetric aspherical surface from one having an axially symmetric uneven surface, the manufacturing cost becomes extremely high.

また、3次元形状のような複雑なベース基板になるにつ
れてベース基板の表面積は大きくなり、所定の厚さに形
或後、基板とベース基板表面に気相戒長により堆積した
ダイヤモンド膜との間に熱応力が残留しやすくなる。こ
れにより、ダイヤモンド膜はクラツクが入ったり歪んだ
りして製品の歩留りが低下していた。よって、ダイヤモ
ンド膜が所定の厚さに戊長ずると何回にも分けて熱処理
を行い、熱応力を完全に取除く作業が必要となり、これ
には多大の時間を費やすので作業効率を低下させるとい
う問題があった。
In addition, as the base substrate becomes more complex, such as a three-dimensional shape, the surface area of the base substrate increases, and after forming the base substrate to a predetermined thickness, the gap between the substrate and the diamond film deposited on the surface of the base substrate by vapor phase deposition increases. thermal stress tends to remain. As a result, the diamond film was cracked or distorted, resulting in a decrease in product yield. Therefore, when the diamond film is elongated to a predetermined thickness, it is necessary to perform heat treatment several times to completely remove the thermal stress, which takes a lot of time and reduces work efficiency. There was a problem.

よって、本発明の目的は如何なるダイヤモンド気相合成
方法においても3次元形状のダイヤモンド1漠が戒形で
き、製品の歩留り向上のためのダイヤモンド製造方法を
提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a diamond manufacturing method that can form a single three-dimensional diamond in any diamond vapor phase synthesis method and improves the yield of the product.

(4) 〔課題を解決するための手段〕 本発明は上記目的を達或するために、ダイヤモンド膜形
戒中にベース基板とプラズマ域との間の位置関係を相対
的に可蛮することにより、基板表面に形威されるダイヤ
モンド膜の厚さが可変され3次元形状の成形体を得よう
とするものである。
(4) [Means for Solving the Problems] In order to achieve the above-mentioned object, the present invention provides a method for achieving the above object by relatively controlling the positional relationship between the base substrate and the plasma region during the formation of a diamond film. In this method, the thickness of the diamond film formed on the surface of the substrate can be varied to obtain a three-dimensional shaped body.

〔作用〕[Effect]

熱フィラメントCVD法によって得られるダイヤモンド
膜はベース基板とプラズマ域との間の相対位置によりそ
の形或状態が変化する。すなわち、プラズマ域中心に設
置された基板表鞠ではダイヤモンド膜が形威しやすく、
基板がプラズマ域中心から遠ざかるにしたがってダイヤ
モンド朕形或に要する時間が大きくなる。
The shape or state of a diamond film obtained by hot filament CVD changes depending on the relative position between the base substrate and the plasma region. In other words, on the surface of the substrate placed in the center of the plasma region, the diamond film is more likely to form.
The time required to form a diamond shape increases as the substrate moves away from the center of the plasma region.

このように、本発明はプラズマの統計的分布の現象に着
目し、ダイヤモンド膜形成中、ベース基板とプラズマ域
との間の相対位置を任意に変化させ、ダイヤモンド膜の
厚さを可変し3次元形状の戒形体を得ようとするもので
ある。
In this way, the present invention focuses on the phenomenon of statistical distribution of plasma, and during the formation of a diamond film, the relative position between the base substrate and the plasma region is arbitrarily changed, and the thickness of the diamond film is varied. This is an attempt to obtain a prescriptive form of shape.

上述の方法を用いると、プラズマの形或分布に(5) 注目しているため、従来のように熱フィラメントCVD
法以外のマイクロ波プラズマCVD法やレーザCVD法
のような気相合成法でも可能となる。
When using the above method, the plasma shape or distribution (5) is focused on, so hot filament CVD is
It is also possible to use other vapor phase synthesis methods such as microwave plasma CVD and laser CVD.

さらに、ベース基板の成形加工を行うことなく、気相合
成ダイヤモンドからなる3次元戒形体が歩留り良く得ら
れ、大幅なコストダウンの効果は大きい。
Furthermore, a three-dimensional shaped body made of vapor phase synthesized diamond can be obtained at a high yield without performing any molding process on the base substrate, resulting in a significant cost reduction effect.

〔実施例〕 以下、図面にしたがって本発明における実施例について
説明する。
[Examples] Examples of the present invention will be described below with reference to the drawings.

第]−図は本発明のダイヤモンド製造装置の概略図、第
2図は本発明のダイヤモンド製造方法の説明図を示す。
FIG. 2 is a schematic diagram of the diamond manufacturing apparatus of the present invention, and FIG. 2 is an explanatory diagram of the diamond manufacturing method of the present invention.

第1図に示すように、真空排気装置lによって真空排気
を行い、IXI:O−I5Paの圧力に達した径50m
nの石英製反応管2内にメタン(CH4)ガスと水素(
H2)ガスの混合ガスを流す。その後、反応管2内の圧
力が5.3 k P a  に設定できるとマグネ1−
ロン3から発振されたマイクロ波を導入し、ノ厚さ5 
lffI1,径25mmのシリコン基仮4周囲に(6) プラズマ5を発生させる。すると、メタンガスおよび水
素ガスの混合ガスが分解され基板4表面にダイヤモンド
6が生成する。
As shown in FIG.
Methane (CH4) gas and hydrogen (
H2) Flow a gas mixture. After that, when the pressure inside the reaction tube 2 can be set to 5.3 kPa, the magnet 1-
Microwaves oscillated from Ron 3 are introduced, and the thickness of
(6) Plasma 5 is generated around lffI1, silicon-based temporary 4 with a diameter of 25 mm. Then, the mixed gas of methane gas and hydrogen gas is decomposed and diamonds 6 are generated on the surface of the substrate 4.

基板4はアルミナ(AQxOs)製管7に支持された径
30mmの石英皿8に載せて、導波管9と反応管2が交
わる中心に位置させた。基板4はりニアモータ10によ
って水平方向に移動することができ、真空用ステップモ
ータl工によって回転することもできる。
The substrate 4 was placed on a 30 mm diameter quartz plate 8 supported by an alumina (AQxOs) tube 7 and positioned at the center where the waveguide 9 and the reaction tube 2 intersect. The substrate 4 can be moved in the horizontal direction by a linear motor 10, and can also be rotated by a vacuum step motor.

第2図Aの左図に示すように、プラズマ5域中異に基板
4中心が位置し、真空用ステップモータエ1によって0
.2ppm の回転数で回転している状態でダイヤモン
ド合成を行うと、同図Aの右図に示すように基板4中心
の表面とダイヤモンド6膜が形成できる。次に第2図B
の左図に示すように、リニアモータ10によって基扱4
を紙面の向かって右方向へ移動させる。すると、回図B
の右図のような形状を有するダイヤモンド6腺が形成で
きる。さらに第2図Cの左図に示すように、て右方向へ
移動させ、プラズマ5域中心に基板4端部が位置してい
る状態でダイヤモンド合成を行う。その結果、同図Cの
右図のように、中心部が凹となるダイヤモンド6膜が形
成できる。
As shown in the left diagram of FIG. 2A, the center of the substrate 4 is located in the middle of the plasma region 5, and the vacuum step motor
.. When diamond synthesis is performed while rotating at a rotation speed of 2 ppm, a diamond 6 film can be formed on the surface of the center of the substrate 4 as shown in the right figure of Figure A. Next, Figure 2B
As shown in the left figure, the linear motor 10 handles the base 4
Move to the right on the page. Then, rotation diagram B
Diamond 6 glands having the shape shown in the figure on the right can be formed. Further, as shown in the left diagram of FIG. 2C, the substrate is moved to the right, and diamond synthesis is performed in a state where the end of the substrate 4 is located at the center of the plasma region 5. As a result, a diamond 6 film having a concave center can be formed as shown in the right diagram of FIG.

しかし、このようにして得られたダイヤモンド6膜表面
は凹凸である。そこで、レンズとして実用化するために
ダイヤモンド6膜表面の平滑化を行う。平滑化法として
は、水素ガスプラズマ雰囲気中で850℃に加熱された
純鉄製研磨板上を摺動させて、ダイヤモンド6膜が鏡面
になるまで研磨するもので、上記研磨板は基板4の回転
軸と同軸上にあり且つ凸面形状を有する。
However, the surface of the diamond 6 film thus obtained is uneven. Therefore, in order to put it into practical use as a lens, the surface of the diamond 6 film was smoothed. The smoothing method involves polishing the diamond 6 film until it becomes a mirror surface by sliding it on a pure iron polishing plate heated to 850°C in a hydrogen gas plasma atmosphere. It is coaxial with the axis and has a convex shape.

最後に、基板4をフツ酸で溶解除去すれば気相合成ダイ
ヤモンド6からなる凹面を有するレンズが出来上がる。
Finally, by dissolving and removing the substrate 4 with hydrofluoric acid, a lens having a concave surface made of vapor-phase synthetic diamond 6 is completed.

さらに、上記平滑化法によってダイヤモンド6膜の裏面
および側面を研磨することにより、レンズの形状精度が
良くなり機器への組込みが簡単になる。
Furthermore, by polishing the back and side surfaces of the diamond 6 film using the above-mentioned smoothing method, the shape accuracy of the lens is improved and it can be easily incorporated into equipment.

以上のように、回転している基板4を水平方向に移動す
ることによって、基板4とプラズマ5域(8) との位置関係が可変され、基板4表面に)4:.威する
ダイヤモンド6の膜厚が変化するので3次元形状の戒形
体が得られる。なお、これらは光学レンズ,光学ミラー
,光学窓をはしめとする光学部品として実用化できる。
As described above, by moving the rotating substrate 4 in the horizontal direction, the positional relationship between the substrate 4 and the plasma region 5 (8) is changed, and the plasma region 4:. Since the film thickness of the diamond 6 is changed, a three-dimensional shaped body can be obtained. Note that these can be put to practical use as optical components such as optical lenses, optical mirrors, and optical windows.

第3図は本発明のダイヤモンド製造装置の概酪図、第4
図は本発明のダイヤモンド製造方法の説明図を示す。
Fig. 3 is a schematic diagram of the diamond manufacturing apparatus of the present invention;
The figure shows an explanatory diagram of the diamond manufacturing method of the present invention.

第3図に示すように、基板4はリニアモータ10比よっ
て上下方向に移動することができ、通常のステップモー
タ12によって回転することもできる。
As shown in FIG. 3, the substrate 4 can be moved up and down by a linear motor 10, and can also be rotated by a normal step motor 12.

第4図Aの左図に示すように、プラズマ5域内に基板4
が位置して、ステップモータl2によって0.1ppm
 の回転数で回転している状態でダイヤモンド合成を行
.うど、同図Aの右図に示すように基板4表面全域にわ
たってダイヤモンド6膜が形成できる。次に第4図Bの
左図のように、リニアモータ10によって基板4を下方
向に移動させると、同図Bの右図のように中心部が凸と
なる(9) ダイヤモンド6膜が形威できる。
As shown in the left diagram of FIG. 4A, the substrate 4 is located within the plasma 5 area.
is located, 0.1ppm by step motor l2
Perform diamond synthesis while rotating at a rotation speed of . As shown in the right figure of Figure A, a diamond 6 film can be formed over the entire surface of the substrate 4. Next, as shown in the left diagram in Figure 4B, when the substrate 4 is moved downward by the linear motor 10, the center becomes convex as shown in the right diagram in Figure 4B (9).The diamond 6 film is shaped. It can be powerful.

次に、前述した平滑化法を用いて鏡面研磨加工を施す。Next, mirror polishing is performed using the smoothing method described above.

研磨板と基板4のそれぞれの回転軸は同軸上に配置し、
上記研磨板は凹面形状を有する。
The rotation axes of the polishing plate and the substrate 4 are arranged coaxially,
The polishing plate has a concave shape.

研磨加工後、基板4をフツ酸で溶解除去すれば気相合成
ダイヤモンド6からなる凸面を有するレンズが出来上が
る。
After polishing, the substrate 4 is dissolved and removed with hydrofluoric acid, and a lens having a convex surface made of vapor-phase synthetic diamond 6 is completed.

第5図は本発明のダイヤモンド製造方法の説明図、第6
図は上記方法によって基板4表面に形威されたダイヤモ
ンド6膜の断面図を示す。
FIG. 5 is an explanatory diagram of the diamond manufacturing method of the present invention, and FIG.
The figure shows a cross-sectional view of the diamond 6 film formed on the surface of the substrate 4 by the above method.

第5図に示すように、基板4を傾けた状態で0.2 p
 p m の回転数で回転させてダイヤモンド合成を行
うと、第6図に示すような中心部が凸となるダイヤモン
ド6膜が形或できる。
As shown in FIG. 5, when the substrate 4 is tilted,
When diamond synthesis is performed by rotating at a rotational speed of p m , a diamond 6 film with a convex center as shown in FIG. 6 can be formed.

第7図は本発明のダイヤモンド製造装置の概略図を示す
FIG. 7 shows a schematic diagram of the diamond manufacturing apparatus of the present invention.

同図に示すように、ステップモータ12によって基板4
は回転することができる。また、マグネトロン3や導波
管9などからなるプラズマ発生装置をリニアモータ10
によって上下方向に移動さ(lO) せることにより、プラズマ5域は上下方向に移動するこ
とができる。すなわち、先述した第3図のダイヤモンド
製造装置ではプラズマ5域が固定で、基板4が上下方向
に移動できるのに対して、ここではプラズマ5域が上下
方向に移動することができるが、基板4の上下方向の位
置は固定であるという構造上異なる点はある。しかし、
作用的には同じで、第7図に示すダイヤモンド製造装置
においても任意形状のダイヤモンド6膜を得ることがで
きる。
As shown in the figure, the board 4 is moved by the step motor 12.
can be rotated. In addition, a plasma generator consisting of a magnetron 3, a waveguide 9, etc. is connected to a linear motor 10.
By moving the plasma 5 in the vertical direction by (lO), the plasma region 5 can be moved in the vertical direction. That is, in the diamond manufacturing apparatus shown in FIG. 3 mentioned above, the plasma region 5 is fixed and the substrate 4 can move in the vertical direction, whereas here, the plasma region 5 can move in the vertical direction, but the substrate 4 There is a structural difference in that the vertical position of is fixed. but,
The operation is the same, and a diamond 6 film of any shape can be obtained using the diamond manufacturing apparatus shown in FIG.

また当然のことながら、上記第7図に示したマグネトロ
ン3や導波管9などからなるプラズマ発生装置を水平方
向へ移動したり、傾けたりして、プラズマ5域も水平方
向へ移動したり、傾けたりすることができる。
Naturally, by moving or tilting the plasma generator consisting of the magnetron 3 and waveguide 9 shown in FIG. 7 in the horizontal direction, the plasma region 5 can also be moved in the horizontal direction. It can be tilted.

このように、ダイヤモンド6形或中に、基扱4かプラズ
マ5域かのどちらか一方、あるいは、基板4とプラズマ
5域の両方の位置を可変することにより気相合戒ダイヤ
モンド6からなる3次元形状の戒形体を得ることができ
る。
In this way, by changing the positions of either the substrate 4 or the plasma 5 region, or both the substrate 4 and the plasma 5 region in the diamond 6 shape, it is possible to create a three-dimensional diamond 6 made of gas-phase agai diamond 6. You can obtain the precept form of the shape.

(11) 本実施例によれば、如何なる気相合成法においても3次
元形状のダイヤモンド膜が形成できる。
(11) According to this embodiment, a three-dimensional diamond film can be formed using any vapor phase synthesis method.

また、複雑な形状を有するベースとなる基板が不要であ
る。さらに、ダイヤモンド膜にクラツクが入らず、歪ん
だりしないので製品の歩留りを著しく向上することがで
きる。
Further, a base substrate having a complicated shape is not required. Furthermore, since the diamond film does not crack or become distorted, the yield of products can be significantly improved.

〔発明の効果〕〔Effect of the invention〕

上述の如く、本発明によれば、気相合戒ダイヤモンドか
らなる光学製品の製造コストの低減と歩留り向上に大き
く貢献できる。
As described above, the present invention can greatly contribute to reducing the manufacturing cost and improving the yield of optical products made of vapor phase diamond.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のダイヤモンド製造装置の概
略図、第2図はダイヤモンド製造方法の説明図、第3図
は本発明の一実施例のダイヤモンド製造装置の概略図、
第4図はダイヤモンド製造方法の説明図、第5図は本発
明の一実施例のダイヤモンド製造方法の説明図、第6図
はダイヤモンド膜の断面図、第7図は本発明の一実施例
のダイヤモンド製造装置の概略図である。 4・・・基板、5・・・プラズマ、6・・ダイヤモンド
、(12) 10・・リニアモータ、1l・・・真空用ステップモー
タ、12・・ステップモータ。 鴇 1 図 (13) 第 2 圀 ハ ベ 4 第 2 図 B q 葆 2 口 〔 κ 第 4 口 Δ 第 4 区 8 塙 テ 国 第 b 唱 第 q 圀
FIG. 1 is a schematic diagram of a diamond manufacturing device according to an embodiment of the present invention, FIG. 2 is an explanatory diagram of a diamond manufacturing method, and FIG. 3 is a schematic diagram of a diamond manufacturing device according to an embodiment of the present invention.
FIG. 4 is an explanatory diagram of a diamond manufacturing method, FIG. 5 is an explanatory diagram of a diamond manufacturing method according to an embodiment of the present invention, FIG. 6 is a cross-sectional view of a diamond film, and FIG. 7 is an explanatory diagram of a diamond manufacturing method according to an embodiment of the present invention. FIG. 1 is a schematic diagram of a diamond manufacturing device. 4...Substrate, 5...Plasma, 6...Diamond, (12) 10...Linear motor, 1l...Step motor for vacuum, 12...Step motor. Toki 1 Diagram (13) 2nd Kuni Habe 4 2nd Diagram B q 葆2 口〔κ 4th 口Δ 4th Ward 8 Hana Te Kuni No. B Shou No. q Kun

Claims (1)

【特許請求の範囲】 1、真空排気された容器内に炭化水素と水素との混合ガ
スを流し、これをプラズマ化せしめてベースとなる基板
表面にダイヤモンドを合成する方法において、ダイヤモ
ンド形成中にベース基板とプラズマ域との位置関係を可
変して任意形状のダイヤモンド膜を得該ダイヤモンド膜
を研磨することを特徴とするダイヤモンド製造方法。 2、真空排気された容器内に炭化水素と水素との混合ガ
スを流し、これをプラズマ化せしめてベースとなる基板
表面にダイヤモンドを合成する手段と、ダイヤモンド形
成中にベース基板とプラズマ域との位置関係を可変して
任意形状のダイヤモンド膜を得る手段と、該ダイヤモン
ド膜を研磨する手段を有するダイヤモンド製造装置。 3、請求項1記載のダイヤモンド製造方法において、上
記基板を水平方向に移動することを特徴とするダイヤモ
ンド製造方法。 4、請求項1記載のダイヤモンド製造方法において、上
記基板を回転することを特徴とするダイヤモンド製造方
法。 5、請求項1記載のダイヤモンド製造方法において、上
記基板を上下方向に移動することを特徴とするダイヤモ
ンド製造方法。 6、請求項1記載のダイヤモンド製造方法において、上
記基板を傾けることを特徴とするダイヤモンド製造方法
。 7、請求項1記載のダイヤモンド製造方法において、上
記プラズマ域と基板との間で相対運動することを特徴と
するダイヤモンド製造方法。 8、請求項1記載のダイヤモンド製造方法により製造さ
れた光学レンズ。 9、請求項1記載のダイヤモンド製造方法により製造さ
れた光学ミラー。 10、請求項1記載のダイヤモンド製造方法により製造
された光学窓。
[Claims] 1. In a method for synthesizing diamond on the surface of a base substrate by flowing a mixed gas of hydrocarbon and hydrogen into an evacuated container and turning it into plasma, the base during diamond formation. 1. A method for manufacturing diamond, which comprises changing the positional relationship between a substrate and a plasma region to obtain a diamond film having an arbitrary shape and polishing the diamond film. 2. A means for synthesizing diamond on the surface of a base substrate by flowing a mixed gas of hydrocarbon and hydrogen into an evacuated container and turning it into plasma, and a method for connecting the base substrate and the plasma region during diamond formation. A diamond manufacturing apparatus comprising means for obtaining a diamond film of an arbitrary shape by varying the positional relationship, and means for polishing the diamond film. 3. The diamond manufacturing method according to claim 1, wherein the substrate is moved in a horizontal direction. 4. The diamond manufacturing method according to claim 1, wherein the substrate is rotated. 5. The diamond manufacturing method according to claim 1, wherein the substrate is moved in a vertical direction. 6. The diamond manufacturing method according to claim 1, wherein the substrate is tilted. 7. A diamond manufacturing method according to claim 1, characterized in that there is relative movement between the plasma region and the substrate. 8. An optical lens manufactured by the diamond manufacturing method according to claim 1. 9. An optical mirror manufactured by the diamond manufacturing method according to claim 1. 10. An optical window manufactured by the diamond manufacturing method according to claim 1.
JP1149622A 1989-06-14 1989-06-14 Optical part and production thereof Pending JPH0316998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1149622A JPH0316998A (en) 1989-06-14 1989-06-14 Optical part and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1149622A JPH0316998A (en) 1989-06-14 1989-06-14 Optical part and production thereof

Publications (1)

Publication Number Publication Date
JPH0316998A true JPH0316998A (en) 1991-01-24

Family

ID=15479245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1149622A Pending JPH0316998A (en) 1989-06-14 1989-06-14 Optical part and production thereof

Country Status (1)

Country Link
JP (1) JPH0316998A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0671481A1 (en) * 1994-02-14 1995-09-13 General Electric Company Apparatus and method for chemical vapor deposition of diamond
US5628824A (en) * 1995-03-16 1997-05-13 The University Of Alabama At Birmingham Research Foundation High growth rate homoepitaxial diamond film deposition at high temperatures by microwave plasma-assisted chemical vapor deposition
US5749966A (en) * 1993-05-14 1998-05-12 Modular Process Technology Corp. Process for depositing diamond and refractory materials

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5749966A (en) * 1993-05-14 1998-05-12 Modular Process Technology Corp. Process for depositing diamond and refractory materials
EP0671481A1 (en) * 1994-02-14 1995-09-13 General Electric Company Apparatus and method for chemical vapor deposition of diamond
US5628824A (en) * 1995-03-16 1997-05-13 The University Of Alabama At Birmingham Research Foundation High growth rate homoepitaxial diamond film deposition at high temperatures by microwave plasma-assisted chemical vapor deposition

Similar Documents

Publication Publication Date Title
KR100212120B1 (en) Cvd diamond workpieces and their fabrication
US20050061783A1 (en) Systems and methods for laser-assisted plasma processing
US5387447A (en) Method for producing uniform cylindrical tubes of CVD diamond
WO1997045856A1 (en) Method for treating articles with a plasma jet
JP2010147028A (en) Apparatus and method for atmospheric pressure reactive atom plasma processing for surface modification
TWI376424B (en) Articles formed by chemical vapor deposition and methods for their manufacture
JPS6411713B2 (en)
JPH0316998A (en) Optical part and production thereof
US20050196549A1 (en) Microwave enhanced CVD method and apparatus
CA2053180C (en) Method and apparatus for producing synthetic diamond structures
RU2236386C2 (en) Method of manufacturing optic fiber intermediate product
JPH0426522A (en) Production of synthetic quartz glass tube
JPH04331800A (en) Method of smoothing diamond surface, device therefor and diamond product taking advantage of the same method
JPS5826045A (en) Optical fiber manufacturing method and device
US4012217A (en) Bending silicon rods into U-shapes
US5266363A (en) Plasma processing method utilizing a microwave and a magnetic field at high pressure
US6677001B1 (en) Microwave enhanced CVD method and apparatus
US5273618A (en) Apparatus for vapor-phase synthesis of diamond and method for vapor-phase synthesis of diamond
JPH075304A (en) Manufacture of structure coated with diamond
EP0492160A1 (en) Symmetric CVD diamond articles and method of their preparation
JPH0489212A (en) Mold material for molding optical element
JP2003286041A (en) Silica plate and production method of silica plate
JPH06262525A (en) Grinding wheel and its manufacture
JP3149148B2 (en) Optical element molding method
JPH01234165A (en) Soot mixed diamond polishing grindstone