JPH0316973B2 - - Google Patents

Info

Publication number
JPH0316973B2
JPH0316973B2 JP18505484A JP18505484A JPH0316973B2 JP H0316973 B2 JPH0316973 B2 JP H0316973B2 JP 18505484 A JP18505484 A JP 18505484A JP 18505484 A JP18505484 A JP 18505484A JP H0316973 B2 JPH0316973 B2 JP H0316973B2
Authority
JP
Japan
Prior art keywords
vinyl chloride
heat
polymerization
weight
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18505484A
Other languages
Japanese (ja)
Other versions
JPS6161825A (en
Inventor
Tooru Yokota
Yojin Inoe
Ryozo Tanizawa
Hideyuki Aso
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP18505484A priority Critical patent/JPS6161825A/en
Publication of JPS6161825A publication Critical patent/JPS6161825A/en
Publication of JPH0316973B2 publication Critical patent/JPH0316973B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は熱収縮性成形品に関するものであり、
特には塩化ビニルと重合性の不飽和シリコーン化
合物との共重合体を成形用樹脂として用いること
により、熱収縮率がすぐれており、塩化ビニル樹
脂の諸特性と共にゴム弾性を併せもつ、かつガス
高透過性を有する熱収縮性成形品の提供を目的と
する。 (従来の技術) 塩化ビニル樹脂製の熱収縮性フイルム、チユー
ブ等は、透明性、光沢性にすぐれており、ヒート
シールが可能であり、耐薬品性、耐水性、印刷性
もよいので、食品から機械部品に至るまでの各種
物品の包装材として、またキヤツプシール、ラベ
ル等にも応用されている。 これらの熱収縮性フイルム、チユーブはTダイ
法、インフレーシヨン法等の方法で成形して得た
フイルム、チユーブをその融点付近の温度(約95
〜105℃)に加熱し、一軸または二軸延伸加工し
たものである。使用に当つてはたとえばラベルの
場合該延伸加工されたチユーブを目的物にかぶ
せ、シユリンクトンネルを使用する方法等により
熱風を短時間(125℃×6秒)あてるか、あるい
は温水シヤワーをあびせることにより収縮させ
る。 しかしながら、塩化ビニル樹脂からつくられた
熱収縮性成形品は、熱収縮率が低いのが欠点であ
る。熱収縮率を向上させるためには延伸加工時の
延伸倍率を大きくすることが考えられるが、この
延伸倍率を大きくすると実際の熱収縮時における
もどりが悪くなるため、結局熱収縮率の改善(向
上)には限界がある。なお、熱収縮時の加熱処理
条件を強くすれば(加熱処理時間の延長等)収縮
率は高くなるが、このような方策はコスト高をま
ねくのみならず、包装材自体あるいは包装内部の
商品に変質をもたらすおそれがあり望ましくな
い。また高温短時間の熱処理方法の場合にも高温
に加熱されるため分子鎖にゆるみを生じ熱収縮に
必要な残留応力が減り熱収縮率が頭打ちとなつて
しまう。温度を高くしすぎれば収縮フイルムとし
て働かず、フイルムが伸びて包装が不良になり、
シワができて商品価値が低下する。すなわち熱収
縮条件がかなりクリテイカルである。したがつ
て、熱収縮条件があまり厳格でなく、作業範囲の
広い熱収縮フイルムの開発が望まれている。 (発明の構成) 本発明者らは従来のかかる技術的課題にかんが
み鋭意研究した結果、塩化ビニルと重合性の不飽
和シリコーン化合物とを共重合させて得られる塩
化ビニル系共重合体を用いることにより、塩化ビ
ニル樹脂が持つ透明性、光沢性、ヒートシール
性、耐薬品性、耐水性、印刷性の諸特性に加え
て、ゴム弾性およびガス高透過性を併せつ熱収縮
率のきわめてすぐれた熱収縮性成形品が得られる
ことを見出し本発明を完成した。 すなわち本発明は、塩化ビニル単量体50〜99重
量部、重合性の不飽和シリコーン化合物1〜50重
量部および他の重合性単量体0〜30重量部を共重
合させて得られる塩化ビニル系共重合体樹脂を成
形、延伸加工してなる熱収縮性成形品に関する。 以下本発明を詳しく説明する。 本発明において、塩化ビニル単量体と共重合さ
れる重合性の不飽和シリコーン化合物としては次
のものが例示される。ただし、以下の記載におい
てMeはメチル基、Phはフエニル基、Viはビニル
基をそれぞれ示す。 シロキサン(1): Vi−Si〔OSiMe33 シロキサン(11): R−Si〔(OSiMe2oOSiMe33 R:前記と同様、n:正の整数 必要に応じ使用される他の重合性単量体として
は、αオレフイン、ビニルエーテル、アクリル酸
エステル、ビニルエステル、メタクリル酸エステ
ル、マレイン酸エステル、フマル酸エステル、ア
リルエステル、アリルエーテル、スチレン、アク
リロニトリル、塩化ビニリデンなどが例示され
る。 以上述べた各単量体の共重合は、ラジカル重合
開始剤の存在下に共重合させる方法により行わ
れ、このために使用される重合開始剤としては、
従来塩化ビニルあるいは塩化ビニルを主体とする
単量体混合物の重合(懸濁重合、乳化重合、溶液
重合、塊状重合等)に使用されている重合触媒で
あればいずれでもよく、たとえば有機過酸化物系
触媒、アゾ化合物触媒、レドツクス系触媒などか
ら選択使用される。 重合反応は懸濁重合、乳化重合、溶液重合、塊
状重合等の方法により行うことができる。たとえ
ば懸濁重合法で行う場合は塩化ビニルを有機過酸
化物等の重合開始剤を用いて懸濁重合させる通常
の方法に準じればよく、重合温度および重合時間
はおおむね重合温度30〜120℃、重合時間1〜30
時間とすればよい。なお、重合性の不飽和シリコ
ール化合物および必要に応じ使用される他の単量
体成分の重合器への仕込みは、これを全量当初か
ら仕込む方法あるいは重合率50%に達するまでに
逐次添加する方法(数回に分けて添加するかもし
くは連続添加する方法)等いずれでもよい。 本発明の方法により、塩化ビニル単量体50〜99
重量部に対し、重合性の不飽和シリコーン化合物
1〜50重量部、および他の重合性単量体0〜30重
量部の割合で共重合させることにより、塩化ビニ
ル樹脂が本来有している物理的、化学的性質とシ
リコーン化合物の共重合により付加された性質を
兼ね備えた塩化ビニル系共重合体樹脂が得られ
る。 このようにして製造した塩化ビニル系共重合体
樹脂に、通常塩化ビニル樹脂に配合されている可
塑剤、安定剤、滑剤、充填剤、着色剤等を必要量
加えてコンパウンドとしたのち、フイルム、シー
ト、チユーブ等目的とする成形を行う。成形は塩
化ビニル樹脂で実施されている成形手段たとえば
Tダイ法、インフレーシヨン法、カレンダー法等
により行われる。 上記フイルム、チユーブ等の延伸加工は、それ
らフイルム、チユーブを軟化点付近の温度に加熱
した状態でテンターあるいはロール延伸により約
1.5〜5倍に延伸しその状態で冷却する方法によ
り行われ、熱収縮性成形品が得られる。なお、こ
の延伸加工はフイルム成形の場合にブロー比ある
いはフイルムの引き取り速度等を調整する方法で
行うこともできる。 本発明の製造方法により得られる熱収縮性の成
形品(フイルム、チユーブ等)は、従来の塩化ビ
ニル樹脂製のものに比べてより高い熱収縮率をも
ち、より高い耐熱性があり(より高い温度での熱
収縮が可能)、ゴム弾性を併せもつているため、
包装に使用した場合に内容物との密着性がきわめ
てすぐれている。また、先に例示した重合性の不
飽和シリコーン化合物が共重合されているため、
塩化ビニル樹脂のフイルムにくらべ酸素ガス、二
酸化炭素ガス等のガス透過性が高く、特に生鮮食
料品の包装材料として好適とされる。 次に本発明の実施例をあげる。 実施例 1 共重合体1:塩化ビニル95重量%、 シロキサン(6)4.7重量%、 シロキサン(7)0.3重量% からなる共重合体(平均重合度約700) 共重合体2:塩化ビニル90重量%、 シロキサン(6)9重量%、 シロキサン(7)1重量% からなる共重合体(平均重合度約700) 上記各共重合体ならびに比較として市販の塩化
ビニル樹脂(平均重合度約700)を使用して下記
の配合処方でTダイ法により厚さ50μmのフイル
ムをそれぞれ製造し、これらについてロール延伸
法によりロール温度100℃として2倍または3倍
に一軸延伸加工した。 (配合処方) 重合体(樹脂) 100重量部 すず系安定剤 2.5 〃 滑 剤 1.2 〃 可塑剤(DOP) 3.0 〃 延伸加工前のフイルムについて降伏強度(Kg/
cm2)、伸び率(%)を測定すると共に延伸加工
(2倍、3倍)したフイルムの熱収縮率(%)を
測定した。結果はそれぞれ第1表に示すとおりで
あつた。
(Industrial Application Field) The present invention relates to a heat-shrinkable molded product,
In particular, by using a copolymer of vinyl chloride and a polymerizable unsaturated silicone compound as a molding resin, it has excellent heat shrinkage, has rubber elasticity as well as the properties of vinyl chloride resin, and has a high gas resistance. The purpose is to provide a heat-shrinkable molded product with transparency. (Prior art) Heat-shrinkable films, tubes, etc. made of vinyl chloride resin have excellent transparency and gloss, can be heat-sealed, and have good chemical resistance, water resistance, and printability, so they are suitable for food products. It is used as a packaging material for various products ranging from products to machine parts, as well as cap stickers, labels, etc. These heat-shrinkable films and tubes are obtained by forming films and tubes using methods such as the T-die method and the inflation method, and are heated to temperatures around their melting points (approximately 95
~105°C) and uniaxially or biaxially stretched. To use it, for example, in the case of a label, place the stretched tube over the object and apply hot air for a short period of time (125°C x 6 seconds) using a shrink tunnel, or use a hot water shower. This causes contraction. However, heat-shrinkable molded products made from vinyl chloride resin have a drawback of low heat-shrinkage rate. In order to improve the heat shrinkage rate, it may be possible to increase the draw ratio during stretching, but increasing this draw ratio will result in poor recovery during actual heat shrinkage. ) has its limits. Although the shrinkage rate can be increased by increasing the heat treatment conditions during heat shrinkage (e.g. by extending the heat treatment time), such measures not only result in higher costs, but also damage to the packaging material itself or the product inside the package. This is undesirable as it may cause deterioration. Furthermore, in the case of a heat treatment method that requires high temperatures and short periods of time, the molecular chains are loosened due to high temperature heating, which reduces the residual stress necessary for heat shrinkage and causes the heat shrinkage rate to reach a plateau. If the temperature is too high, it will not work as a shrink film, and the film will stretch, resulting in poor packaging.
Wrinkles occur and the product value decreases. In other words, the heat shrinkage conditions are quite critical. Therefore, it is desired to develop a heat-shrinkable film that has less strict heat-shrinkage conditions and can be used in a wider range of work. (Structure of the Invention) As a result of intensive research in view of such conventional technical problems, the present inventors have discovered that a vinyl chloride-based copolymer obtained by copolymerizing vinyl chloride and a polymerizable unsaturated silicone compound is used. In addition to the transparency, gloss, heat sealability, chemical resistance, water resistance, and printability properties of vinyl chloride resin, it also has rubber elasticity and high gas permeability, and has an extremely high heat shrinkage rate. The present invention was completed by discovering that a heat-shrinkable molded article can be obtained. That is, the present invention provides vinyl chloride obtained by copolymerizing 50 to 99 parts by weight of a vinyl chloride monomer, 1 to 50 parts by weight of a polymerizable unsaturated silicone compound, and 0 to 30 parts by weight of another polymerizable monomer. The present invention relates to a heat-shrinkable molded product formed by molding and stretching a copolymer resin. The present invention will be explained in detail below. In the present invention, the following are exemplified as the polymerizable unsaturated silicone compound copolymerized with the vinyl chloride monomer. However, in the following description, Me represents a methyl group, Ph represents a phenyl group, and Vi represents a vinyl group. Siloxane (1): Vi−Si〔OSiMe 33 Siloxane (11): R-Si [(OSiMe 2 ) o OSiMe 3 ] 3 R: Same as above, n: Positive integer Other polymerizable monomers that may be used as necessary include α-olefin, vinyl ether, acrylic ester, vinyl ester, methacrylic ester, maleic ester, fumaric ester, allyl ester, allyl ether, styrene, acrylonitrile, Examples include vinylidene chloride. The copolymerization of the monomers described above is carried out in the presence of a radical polymerization initiator, and the polymerization initiators used for this purpose include:
Any polymerization catalyst conventionally used for the polymerization of vinyl chloride or a monomer mixture mainly composed of vinyl chloride (suspension polymerization, emulsion polymerization, solution polymerization, bulk polymerization, etc.) may be used, such as organic peroxides. The catalyst is selected from among a type catalyst, an azo compound catalyst, a redox type catalyst, etc. The polymerization reaction can be carried out by methods such as suspension polymerization, emulsion polymerization, solution polymerization, and bulk polymerization. For example, when performing suspension polymerization, it is sufficient to follow the usual method of suspension polymerizing vinyl chloride using a polymerization initiator such as an organic peroxide, and the polymerization temperature and time are approximately 30 to 120℃. , polymerization time 1-30
You can call it time. In addition, the polymerizable unsaturated silicone compound and other monomer components used as necessary can be charged into the polymerization vessel by charging the entire amount from the beginning or by adding sequentially until the polymerization rate reaches 50%. (Addition in several parts or continuous addition) may be used. By the method of the present invention, vinyl chloride monomer 50-99
By copolymerizing at a ratio of 1 to 50 parts by weight of a polymerizable unsaturated silicone compound and 0 to 30 parts by weight of other polymerizable monomers, the inherent physical properties of vinyl chloride resin can be improved. A vinyl chloride copolymer resin having both physical and chemical properties and properties added by copolymerizing a silicone compound can be obtained. After adding necessary amounts of plasticizers, stabilizers, lubricants, fillers, colorants, etc., which are usually added to vinyl chloride resins, to the vinyl chloride copolymer resin produced in this way to form a compound, a film, Forming into sheets, tubes, etc. The molding is carried out by a molding method used for vinyl chloride resin, such as a T-die method, an inflation method, or a calender method. The above-mentioned films, tubes, etc. are stretched by tenter or roll stretching while heating the films and tubes to a temperature near their softening point.
A heat-shrinkable molded article is obtained by stretching the stretching 1.5 to 5 times and cooling it in that state. Note that this stretching process can also be carried out by adjusting the blowing ratio, film take-up speed, etc. in the case of film forming. The heat-shrinkable molded products (films, tubes, etc.) obtained by the production method of the present invention have a higher heat shrinkage rate and higher heat resistance (higher heat shrinkable at high temperatures) and has rubber elasticity,
When used in packaging, it has excellent adhesion to the contents. In addition, since the polymerizable unsaturated silicone compound exemplified above is copolymerized,
It has higher gas permeability to oxygen gas, carbon dioxide gas, etc. than vinyl chloride resin films, and is particularly suitable as a packaging material for fresh foods. Next, examples of the present invention will be given. Example 1 Copolymer 1: Copolymer consisting of 95% by weight of vinyl chloride, 4.7% by weight of siloxane (6), and 0.3% by weight of siloxane (7) (average degree of polymerization about 700) Copolymer 2: 90% by weight of vinyl chloride %, siloxane (6) 9% by weight, siloxane (7) 1% by weight (average degree of polymerization approximately 700) Each of the above copolymers and a commercially available vinyl chloride resin (average degree of polymerization approximately 700) were used as a comparison. Films with a thickness of 50 μm were produced using the following formulation using the T-die method, and these films were uniaxially stretched to double or triple the size using a roll stretching method at a roll temperature of 100°C. (Blend formula) Polymer (resin) 100 parts by weight Tin-based stabilizer 2.5 〃 Lubricant 1.2 〃 Plasticizer (DOP) 3.0 〃 Yield strength (Kg/
cm 2 ) and elongation rate (%), and the heat shrinkage rate (%) of the stretched (2 times, 3 times) film. The results were as shown in Table 1.

【表】 実施例 2 実施例1で製造した3種のフイルム(厚さいず
れも50μm)について、ロール延伸法によりロー
ル温度100℃として3倍に一軸延伸加工し、次に
このものを100℃5分間加熱することにより、収
縮させた。 上記加熱収縮をさせた各フイルムについて、30
℃の温度で酸素ガスおよび二酸化炭素ガスの透過
度を測定した。結果は第2表に示すとおりであつ
た。
[Table] Example 2 The three types of films produced in Example 1 (all 50 μm in thickness) were uniaxially stretched three times using the roll stretching method at a roll temperature of 100°C, and then stretched at 100°C for 50 minutes. Shrinkage was achieved by heating for minutes. For each film subjected to the above heat shrinkage, 30
The permeability of oxygen gas and carbon dioxide gas was measured at a temperature of °C. The results were as shown in Table 2.

【表】 実施例 3 実施例1で製造した3種のフイルム(厚さいず
れも50μm)について、ロール延伸法によりロー
ル温度100℃として3倍に一軸延伸加工し、熱収
縮性フイルムとした。 このようにして得た熱収縮性フイルムを使用し
て体積1相当のプラスチツク容器の包装をシユ
リンク包装機のシユリンクトンネルを用いて行つ
た。シユリンクトンネル通過時間を10秒とし、ト
ンネル内設定温度130℃としたところいずれも包
装は可能であつたが、140℃では塩化ビニル樹脂
フイルムの場合にシワ、タルミが生じた。共重合
体1および2ではトンネル内設定温度を160℃と
しても包装が良好に行われた。 実施例 4 実施例1で製造した3種のフイルムについて、
延伸ロール温度100℃として5倍に延伸する加工
を試みたところ、塩化ビニル樹脂の場合には破断
してしまつたが、共重合体1および2については
第3表に示すとおりの収縮率を示す延伸フイルム
が得られた。
[Table] Example 3 The three types of films produced in Example 1 (each having a thickness of 50 μm) were uniaxially stretched three times using a roll stretching method at a roll temperature of 100° C. to form heat-shrinkable films. Using the thus obtained heat-shrinkable film, a plastic container having a volume equivalent to 1 volume was packaged using the shrink tunnel of a shrink packaging machine. When the passing time through the Sylink tunnel was 10 seconds and the temperature inside the tunnel was set at 130°C, packaging was possible in both cases, but at 140°C, wrinkles and sagging occurred in the case of vinyl chloride resin film. Copolymers 1 and 2 were packaged well even when the tunnel temperature was set at 160°C. Example 4 Regarding the three types of films produced in Example 1,
When we attempted to stretch the resin 5 times at a stretching roll temperature of 100°C, it broke in the case of vinyl chloride resin, but copolymers 1 and 2 showed shrinkage rates as shown in Table 3. A stretched film was obtained.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 塩化ビニル単量体50〜99重量部、重合性の不
飽和シリコーン化合物1〜50重量部および他の重
合性単量体0〜30重量部を共重合させて得られる
塩化ビニル系共重合体樹脂を成形、延伸加工して
なる熱収縮性成形品。
1 Vinyl chloride copolymer obtained by copolymerizing 50 to 99 parts by weight of vinyl chloride monomer, 1 to 50 parts by weight of a polymerizable unsaturated silicone compound, and 0 to 30 parts by weight of other polymerizable monomers. A heat-shrinkable molded product made by molding and stretching resin.
JP18505484A 1984-09-04 1984-09-04 Heat-shrinkable molding Granted JPS6161825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18505484A JPS6161825A (en) 1984-09-04 1984-09-04 Heat-shrinkable molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18505484A JPS6161825A (en) 1984-09-04 1984-09-04 Heat-shrinkable molding

Publications (2)

Publication Number Publication Date
JPS6161825A JPS6161825A (en) 1986-03-29
JPH0316973B2 true JPH0316973B2 (en) 1991-03-06

Family

ID=16163993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18505484A Granted JPS6161825A (en) 1984-09-04 1984-09-04 Heat-shrinkable molding

Country Status (1)

Country Link
JP (1) JPS6161825A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007023933A1 (en) 2007-05-23 2008-12-04 Wacker Chemie Ag Siliconized vinyl chloride copolymers

Also Published As

Publication number Publication date
JPS6161825A (en) 1986-03-29

Similar Documents

Publication Publication Date Title
US3954913A (en) Stabilized nitrile polymers
US2958672A (en) Curing process for high molecular weight polymers involving the use of free radical generators and free radical acceptors and product thereof
JPH08239520A (en) Thermoplastic seal and packaging film
JP2010507719A (en) Improved bubble stability
KR100424209B1 (en) METHOD FOR PREPARING STYRENE POLYMER, STYRENE POLYMER, STYRENE RESIN COMPOSITION, AND PRODUCTION THEREOF
US3520953A (en) Vinyl chloride resin composition
ES438750A1 (en) Process for preparing impact resistant styrene polymers
US4144289A (en) Vinylidene chloride resin compositions containing chlorinated ethylene/acrylate or methacrylate copolymer
JPH0316973B2 (en)
JPS54133542A (en) Packaging material made of vinylidene chloride copolymer resin
US2568659A (en) Interpolymers of an alkyl acrylate, a haloalkyl vinyl compound, and a divinyl aryl hydrocarbon
US3832335A (en) Barrier polymers having high heat distortion temperatures
US2723970A (en) Interpolymers of a difluorodichloroethylene, a 1, 3-butadiene hydrocarbon and an alkyl acrylate
KR880005177A (en) Films of rubbery latex, products made from this film, and methods for making the films
US3509236A (en) Molding compositions comprising vinylidene chloride
CN109456718A (en) A kind of high fastness, washing and the superior adhesive of feel and preparation method thereof
JPH0452129A (en) Polystyrene heat-shrinkable film
JPH0255218B2 (en)
JP2615164B2 (en) Vinyl chloride multi-component copolymer resin
US4006211A (en) Method for improving impact strength in high nitrile polymers by stretching and heat setting
JPH0510383B2 (en)
US3088937A (en) Copolymerization of vinylidene chloride-vinyl chloride
JP4078256B2 (en) Acrylic copolymer, coating agent using the same, and shrink film
JPS6241097B2 (en)
JP2613860B2 (en) High nitrile polymer composition, molded article and method for producing the same