JP2615164B2 - Vinyl chloride multi-component copolymer resin - Google Patents

Vinyl chloride multi-component copolymer resin

Info

Publication number
JP2615164B2
JP2615164B2 JP29834588A JP29834588A JP2615164B2 JP 2615164 B2 JP2615164 B2 JP 2615164B2 JP 29834588 A JP29834588 A JP 29834588A JP 29834588 A JP29834588 A JP 29834588A JP 2615164 B2 JP2615164 B2 JP 2615164B2
Authority
JP
Japan
Prior art keywords
resin
vinyl chloride
parts
composition
vinylidene chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29834588A
Other languages
Japanese (ja)
Other versions
JPH02145613A (en
Inventor
和彦 日吉
Original Assignee
旭化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成工業株式会社 filed Critical 旭化成工業株式会社
Priority to JP29834588A priority Critical patent/JP2615164B2/en
Publication of JPH02145613A publication Critical patent/JPH02145613A/en
Application granted granted Critical
Publication of JP2615164B2 publication Critical patent/JP2615164B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、改良された新規な塩化ビニル系多元共重合
体樹脂に関するものである。
Description: TECHNICAL FIELD The present invention relates to an improved novel vinyl chloride-based multi-component copolymer resin.

さらに、詳しくは、本発明は、共重合成分組成分布が
実質的になく、実質的に均一な組成を有する塩化ビニル
系多元共重合体樹脂に関するものである。
More specifically, the present invention relates to a vinyl chloride-based multi-component copolymer resin having substantially no copolymer component composition distribution and having a substantially uniform composition.

〔従来の技術及び課題〕[Conventional technology and problems]

きわめて大量の塩化ビニル樹脂が様々な用途に用いら
れていることは云うをまたないが、自由な加工を行うた
めには、大量の可塑剤の添加を必要とするのが欠点であ
る。例えば、ブロー成形ボトルなどは、その含有可塑剤
のゆえに本来塩化ビニル樹脂が持っているバリヤー性を
期待しえない。
Although it is obvious that a very large amount of vinyl chloride resin is used for various applications, a disadvantage is that a large amount of a plasticizer must be added in order to perform free processing. For example, blow-molded bottles and the like cannot expect the barrier properties inherent to vinyl chloride resin due to the plasticizer contained therein.

一方では、可塑剤を低減しまたは用いずに済ますべ
く、従来から他の単量体との共重合による内部可塑化で
利用度を高めようという提案が多数されてきている。
On the other hand, in order to reduce or eliminate the use of a plasticizer, there have been many proposals to increase the utilization by internal plasticization by copolymerization with another monomer.

例えば、酢酸ビニルとの共重合体樹脂(いわゆる塩酢
ビ樹脂)は、有機溶剤に溶け易くなるので、コーティン
グ材料としてよく用いられている。しかし、そのこと
は、とりもなおさず耐溶剤性に問題が出てくることを意
味する。
For example, a copolymer resin with vinyl acetate (so-called polyvinyl chloride resin) is often used as a coating material because it is easily dissolved in an organic solvent. However, this means that a problem arises in the solvent resistance.

また、塩化ビニルと塩化ビニリデンとの共重合体樹脂
もよく知られているが、この樹脂は、塩化ビニル含量が
高々20%程度のいわゆるサラン樹脂か、逆に塩化ビニリ
デン含量が20%止まりの樹脂が専らであり、その中間の
組成のものは稀である。その理由は、従来公知の重合方
法で共重合させたのでは、平均して中間組成のものが出
来ることはなく、塩化ビニルリッチに組成の偏ったもの
から、塩化ビニリデンリッチに組成の偏ったものまで広
い組成分布をもつ、特徴のない共重合体樹脂しか得られ
なかったためである。また、どのような組成範囲におい
ても重合時間が長く、生産性のうえで、不利なものであ
る。
Also, a copolymer resin of vinyl chloride and vinylidene chloride is well known, and this resin is a so-called saran resin having a vinyl chloride content of at most about 20% or a resin having a vinylidene chloride content of only 20%. , And those with intermediate compositions are rare. The reason is that, when copolymerized by a conventionally known polymerization method, an intermediate composition cannot be formed on average, and the composition is biased toward vinylidene chloride from the one biased toward vinyl chloride. This is because only a non-characteristic copolymer resin having a wide composition distribution was obtained. Further, polymerization time is long in any composition range, which is disadvantageous in productivity.

これらの例のほかにも、様々な塩化ビニル系共重合体
樹脂があるが、その何れにおいても特長があれば、その
一方で欠点もまたあり、未だなお、さらに様々の新たな
共重合体樹脂が望まれるゆえんである。
In addition to these examples, there are various vinyl chloride-based copolymer resins, but if any of them has features, on the other hand, it also has disadvantages, and still further various new copolymer resins. Is desired.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者らは、このような状況に鑑み、就中、塩化ビ
ニリデン樹脂の特長であるバリヤー性、耐薬品性、光沢
などを出来るだけ付与し、可塑剤の低減または無可塑化
を図れる新規な塩化ビニル/塩化ビニリデン系共重合体
樹脂を開発提供せんものと鋭意研究したところ、さら
に、第3、第4の単量体を導入し、得られる樹脂が分子
量で分別した各々の分画の組成が同様に実質的に一定
で、しかも溶解度では分別出来ないもの、即ち、このこ
とは一般に共重合体の組成分布が実質的にないか、極め
て小さいことを示す。
In view of such a situation, the present inventors provide, among other things, a barrier property, a chemical resistance property, and a gloss property, which are features of vinylidene chloride resin, as much as possible. After diligent research into developing and providing vinyl chloride / vinylidene chloride copolymer resin, the composition of each fraction obtained by further introducing third and fourth monomers and separating the obtained resin by molecular weight Are also substantially constant and are indistinguishable by solubility, i.e., this generally indicates that the composition distribution of the copolymer is substantially absent or very small.

そのような組成均一の共重合体樹脂は、大幅に可塑
剤量を低減して押出成形加工が可能であって、高バリヤ
ー性の容器やフィルム・シートが得られたり、また、
低可塑剤化ペーストレジンが作成でき、その樹脂皮膜
は、可塑剤のブリードも無く優れた難燃性を示したり、
さらに、溶解性に優れていながら、一旦塗膜を形成す
ると、優れた耐溶剤性を示したり等の、現在、塩化ビニ
ル系樹脂が用いられている様々の用途分野において優れ
た性能を示す樹脂であることが分かり、本発明を完成す
るに至った。
Such a copolymer resin having a uniform composition can be extruded by drastically reducing the amount of plasticizer, and a container or film / sheet with high barrier properties can be obtained.
A low plasticizer paste resin can be made, and its resin film shows excellent flame retardancy without plasticizer bleed,
Furthermore, while having excellent solubility, once a coating film is formed, it exhibits excellent solvent resistance, etc., and exhibits excellent performance in various application fields where vinyl chloride resins are currently used. It has been found that the present invention has been completed.

即ち、本発明は; (A)塩化ビニル30〜80重量部、(B)塩化ビニリデ
ン15〜65重量部、(C)その他の単量体成分合計で5〜
55重量部、あわせて総計100重量部からなる共重合体樹
脂であって、該樹脂は、分子量で分別される各々の分画
の組成が同様に実質的に一定で、溶解度では分別するこ
とのできない共重合体であることを特徴とする、塩化ビ
ニル系多元共重合体樹脂に関するものである。
That is, the present invention provides: (A) 30 to 80 parts by weight of vinyl chloride, (B) 15 to 65 parts by weight of vinylidene chloride, and (C) 5 to 5 parts in total of other monomer components.
55 parts by weight, a total of 100 parts by weight of a copolymer resin, wherein the composition of each fraction to be separated by molecular weight is also substantially constant, and the resin is to be separated by solubility. The present invention relates to a vinyl chloride-based multi-component copolymer resin, which is a copolymer that cannot be obtained.

本発明において、塩化ビニル(A)、塩化ビニリデン
(B)と共重合しているその他の単量体(C)として
は、酢酸ビニル、プロピオン酸ビニル等の脂肪族カルボ
ン酸のビニルエステル;アクリル酸、メタクリル酸、イ
タコン酸、クロトン酸、マレイン酸、フマル酸、無水マ
レイン酸等の不飽和脂肪族カルボン酸;およびその脂肪
族アルコースエステル;スチレン、(メタ)アクリロニ
トリル、(メタ)アクリルアミドなどの共重合性二重結
合を1ケ有するオレフィン類;あるいはイソブレン、ブ
タジエン等の共重合性二重結合を2ケ有するジエン類お
よびクロロブタジエン等のそれらの塩化物;グリシジル
(メタ)アクリレート、アリルグリシジルエーテル等の
共重合性二重結合とエポキシ基を有する単量体;ジビニ
ルベンゼンや二価の脂肪族アルコールの(メタ)アクリ
ル酸エステルのように共重合性二重結合を分子内に2ケ
持つ単量体;ビニルスルホン酸、スチレンスルホン酸、
2−スルホエチルメタクリレート、3−スルホプロピル
メタクリレート、メタリルスルホン酸、2−アクリルア
ミド−2−メチルプロパンスルホン酸等およびそのNa,k
またはNH4の塩などの中から、生成する共重合体樹脂の
ガラス転移点や軟化点など加工特性を左右する特性や、
耐溶剤性、耐ブロッキング性など前記共重合体樹脂の加
工製品の実用特性などを考慮して選択される。
In the present invention, other monomers (C) copolymerized with vinyl chloride (A) and vinylidene chloride (B) include vinyl esters of aliphatic carboxylic acids such as vinyl acetate and vinyl propionate; acrylic acid And unsaturated aliphatic carboxylic acids such as methacrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid and maleic anhydride; and their aliphatic alcohol esters; styrene, (meth) acrylonitrile and (meth) acrylamide. Olefins having one polymerizable double bond; or dienes having two copolymerizable double bonds such as isoprene and butadiene and their chlorides such as chlorobutadiene; glycidyl (meth) acrylate, allyl glycidyl ether and the like Having a copolymerizable double bond and an epoxy group; divinylbenzene and divalent fats Monomers having two positions copolymerizable double bonds in the molecule as (meth) acrylic acid ester of a family alcohol; vinyl sulfonic acid, styrene sulfonic acid,
2-sulfoethyl methacrylate, 3-sulfopropyl methacrylate, methallyl sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid, etc. and their Na, k
Or, among the salts of NH 4 and the like, properties that affect processing characteristics such as a glass transition point and a softening point of a generated copolymer resin,
The selection is made in consideration of practical properties of the processed product of the copolymer resin such as solvent resistance and blocking resistance.

一般に、共重合、例えばラジカル共重合によって得ら
れる樹脂は、組成に分布のある共重合体からなってい
る。それは、共重合反応において、各々の単量体に固有
の反応性比があり、反応器に或る比率で単量体を仕込み
反応させても、重合の進行とともに時々刻々生成する重
合体の組成は、単量体仕込み比率とは一致しない。一部
の単量体が重合し、残りの単量体組成が変わり、すると
次にできる重合体の組成が変わり、よって残りの単量体
組成が変わり、次の瞬間に生成する重合体の組成がまた
変わる。かくして重合が進行する間、時々刻々生成する
重合体の組成は変化していく。これを共重合組成のドリ
フトという。かくして、組成に分布が生じることとな
る。
Generally, resins obtained by copolymerization, for example, radical copolymerization, are composed of copolymers having a distribution in composition. The reason is that, in the copolymerization reaction, each monomer has a specific reactivity ratio, and even if monomers are charged and reacted at a certain ratio in the reactor, the composition of the polymer which is generated every moment as the polymerization progresses Does not match the monomer charge ratio. Some monomers polymerize, the composition of the remaining monomers changes, and then the composition of the next polymer changes, thus changing the composition of the remaining monomers, and the composition of the polymer produced at the next moment Changes again. Thus, while the polymerization proceeds, the composition of the polymer formed every moment changes. This is called a copolymer composition drift. Thus, a distribution occurs in the composition.

塩化ビニリデンを第二成分とし、その他の単量体を第
三、第四の成分とする塩化ビニル系樹脂においては、塩
化ビニルと塩化ビニリデンとの反応性比が、大きくかけ
離れているため、従来公知の重合方法ではこのドリフト
による組成分布の大きいものしか得られず、工業的に有
用な樹脂がえられなかったのであるが、特殊な乳化重合
反応法において、初めに塩化ビニルの全量と塩化ビニリ
デンの一部を反応器に仕込み、重合の開始とともに塩化
ビニリデンと他の単量体とを連続添加してやると、反応
器内での時々刻々の組成が一定となり、殆ど共重合組成
のドリフトのない、組成分布の極めて狭くて実用的にな
い、実質的に組成が均一な樹脂が得られる。
In a vinyl chloride resin having vinylidene chloride as the second component and other monomers as the third and fourth components, the reactivity ratio between vinyl chloride and vinylidene chloride is far apart, so that it is conventionally known. In the polymerization method, only those having a large composition distribution due to this drift were obtained, and industrially useful resins could not be obtained.However, in a special emulsion polymerization reaction method, the total amount of vinyl chloride and vinylidene chloride When a part is charged into the reactor and vinylidene chloride and other monomers are continuously added at the start of the polymerization, the composition in the reactor becomes constant every moment, and there is almost no drift of the copolymer composition. A resin whose distribution is extremely narrow and is not practical and has a substantially uniform composition can be obtained.

本発明は、このような共重合組成分布が極めて狭く、
実質的に組成均一と称し得る塩化ビニル系樹脂に関する
ものである。
In the present invention, such a copolymer composition distribution is extremely narrow,
The present invention relates to a vinyl chloride-based resin that can be referred to as having substantially uniform composition.

本発明の樹脂は、塩化ビニル系樹脂の汎用性に加え
て、可塑剤の低減または用いなくてもよい良好な加工性
を与え、塩化ビニリデン樹脂のバリヤー性、耐溶剤
性、光沢等の特長を持たせ、第三、第四の単量体の選
択で多用な実用性能を与えるものであり、そのまま成
形用樹脂として、血液バッグなどの医療器材や、加工食
品用のカップやボトルなど、またはフィルムなどに供せ
られるし、溶解性は良いのに、塗工液は優れた耐溶剤
性を示す特長を活かしてコーティング用、塗料原料用の
樹脂としても用いられるし、乳化重合のあと樹脂粉末
とはせずに、そのままラテックスの形態で、コーティン
グ用、各種バインダー用に用いられる。さらには、塩
化ビニル樹脂に混練りし、加工性の向上を図るポリマー
改質剤としても有用である。
The resin of the present invention, in addition to the versatility of a vinyl chloride resin, provides good workability without the need for reducing or using a plasticizer, and has features such as barrier properties, solvent resistance, and gloss of vinylidene chloride resin. It gives a variety of practical performances by selecting the third and fourth monomers, and as it is as a molding resin, medical equipment such as blood bags, cups and bottles for processed foods, or films Although it has good solubility, the coating liquid is also used as a resin for coating and raw materials for coatings, taking advantage of its excellent solvent resistance. Without being used, it is used as it is in the form of latex for coating and various binders. Further, it is useful as a polymer modifier which is kneaded with a vinyl chloride resin to improve processability.

本発明の樹脂において、塩化ビニリデンの含量が15重
量部以下では、内部可塑化効果や耐溶剤性、光沢等と、
塩化ビニリデンを共重合せしめる効果が期待できない。
また、65重量部を越えると、従来知られる塩化ビニリデ
ン系樹脂に近いものとなる。また他の単量体の導入量に
ついては、その一種または二種以上の合計量で5重量部
以下では、これを導入した効果は明瞭とならず、55重量
部以上では塩化ビニル系樹脂としての汎用性を失う。
In the resin of the present invention, when the content of vinylidene chloride is 15 parts by weight or less, internal plasticizing effect and solvent resistance, gloss and the like,
The effect of copolymerizing vinylidene chloride cannot be expected.
On the other hand, if it exceeds 65 parts by weight, it becomes close to a conventionally known vinylidene chloride resin. Regarding the amount of the other monomer to be introduced, if the total amount of one or more of them is 5 parts by weight or less, the effect of introducing the monomer is not clear. Lose versatility.

本発明の樹脂の分子量は、その用途に応じて適した値
とする。すなわち、有機溶剤に溶かすコーティングや塗
料原料用では溶液の粘度が高過ぎると不便なので、比較
的低めの分子量、たとえば数平均で2万から5万程度と
し、成形用ではそれより高めであるし、ラテックスでは
さらに高めともする。
The molecular weight of the resin of the present invention is set to a value suitable for its use. In other words, in the case of coating or coating raw materials that are dissolved in an organic solvent, if the viscosity of the solution is too high, it is inconvenient. Therefore, a relatively low molecular weight, for example, about 20,000 to 50,000 in number average, and higher for molding, Latex may be even higher.

上述の方法により製造できる本発明の樹脂では、組成
分布が実質的になく、かつ5万〜10万という比較的高い
分子量を取り得ることも特徴である。
The resin of the present invention which can be produced by the above-mentioned method is characterized in that it has substantially no composition distribution and can have a relatively high molecular weight of 50,000 to 100,000.

なお、分子量は、ポリスチレンを標準とするゲルパー
ミエーションクロマトグラフィー(GPC)での値であ
る。
The molecular weight is a value measured by gel permeation chromatography (GPC) using polystyrene as a standard.

本発明の樹脂においては、GPCにて分取用の大容量カ
ラムを用いて、4乃至5区分に分取した各分画につき元
素分析を行うと、どの分画部分も測定バラツキの範囲内
で同様に実質的に一定であるという、実質的に均一な組
成を示す。
In the resin of the present invention, when using a large-capacity column for preparative separation by GPC and performing elemental analysis on each of the fractions fractionated into 4 to 5 sections, any fraction is within the range of measurement variation. It also shows a substantially uniform composition, which is also substantially constant.

元素分析は、炭素、水素、窒素は、NCアナライザーな
どの常法により、塩素は酸素フラスコ燃焼法により、硫
黄は原子吸光分析により各々求める。
For elemental analysis, carbon, hydrogen, and nitrogen are determined by a conventional method such as an NC analyzer, chlorine is determined by an oxygen flask combustion method, and sulfur is determined by atomic absorption analysis.

さらに、本発明の樹脂は、以下に述べるような溶解度
分別操作により、溶解液比率が溶出開始から終了まで狭
い範囲にあり、溶解度では分別できない。
Furthermore, in the resin of the present invention, the solubility ratio is in a narrow range from the start to the end of elution by the solubility separation operation described below, and the resin cannot be separated by the solubility.

溶解度分別:樹脂0.1gを、10mlのテトラヒドロフランに
溶かし、粒径が1mm程度のガラスビーズと良く混ぜあわ
せを行い、該溶媒を揮発させる。得られた樹脂で表面コ
ートされたガラスビーズを、定温ジャケット付きのガラ
ス筒に充填し、テトラヒドロフラン(良)/メタノール
(貧)溶離液により溶解度分別を行う。貧溶媒100容量
%から始めて、良/貧溶媒の比率を5容量%刻みに変え
て良溶媒100容量%まで、21フラクションに分別すべく
溶出させる。
Solubility fractionation: 0.1 g of resin is dissolved in 10 ml of tetrahydrofuran, mixed well with glass beads having a particle size of about 1 mm, and the solvent is volatilized. Glass beads surface-coated with the obtained resin are filled in a glass cylinder equipped with a constant temperature jacket, and the solubility is fractionated using a tetrahydrofuran (good) / methanol (poor) eluent. Starting from 100% by volume of the poor solvent, the ratio of good / poor solvent is changed in 5% by volume steps and eluted to fractions of 21 to 100% by volume of the good solvent.

以下に実施例をあげて、本発明をさらに詳しく説明す
るが、これらは本発明の範囲を制限するものではない。
Hereinafter, the present invention will be described in more detail by way of examples, but these do not limit the scope of the present invention.

なお、以下の例において部数はすべて重量部である 実施例1 組成比が塩化ビニリデン/アクリル酸メチル=64/36
で、レーザー光散乱法による平均粒子径が27nmのラテッ
クスをシードラテックスとし、塩化ビニル60部と塩化ビ
ニリデン3.2部とをガラスライニングを施した鉄製反応
容器に仕込み、50℃に昇温し、予め別に準備した塩化ビ
ニリデン11.8部とメタクリル酸メチル20部とアクリル酸
5部との混合物、過硫酸ソーダ、重亜硫酸ソーダ、アル
キルベンゼンスルホン酸ソーダ、各々の水溶液を連続添
加し、乳化重合を行い、塩析、水洗、乾燥して樹脂を得
た。樹脂の同定結果を下記表1に示した。
In the following examples, all parts are parts by weight. Example 1 Composition ratio: vinylidene chloride / methyl acrylate = 64/36
A latex having an average particle size of 27 nm as measured by laser light scattering was used as a seed latex, and 60 parts of vinyl chloride and 3.2 parts of vinylidene chloride were charged into a glass-lined iron-made reaction vessel, and the temperature was raised to 50 ° C. A mixture of the prepared 11.8 parts of vinylidene chloride, 20 parts of methyl methacrylate, and 5 parts of acrylic acid, sodium persulfate, sodium bisulfite, and sodium alkylbenzene sulfonate, each aqueous solution were continuously added, emulsion polymerization was performed, and salting out was performed. The resin was washed with water and dried to obtain a resin. The results of resin identification are shown in Table 1 below.

本実施例の樹脂は、例えば防湿セロハン用のコーティ
ング剤として、現在用いられている酢酸ビニルを共重合
した塩化ビニル樹脂に比べ、優れた溶解性を示すのに、
一旦塗膜を形成すると耐溶剤性に優れ、既存樹脂では問
題のあった印刷ラミネート加工適性が格段に向上するも
のであった。
The resin of the present example, for example, as a coating agent for moisture-proof cellophane, shows excellent solubility compared to a vinyl chloride resin copolymerized with vinyl acetate which is currently used.
Once the coating film was formed, it was excellent in solvent resistance, and the suitability for printing lamination processing, which had a problem with existing resins, was significantly improved.

比較例1 実施例1において、初めに塩化ビニルと一部の塩化ビ
ニリデンを仕込むのではなく、使用する単量体の全量を
仕込んだ。8時間後も反応器内圧は高く、低下する気配
がなかったので、過硫酸ソーダと重亜硫酸ソーダの添加
を続行した。65時間後にようやく圧の低下が始まった
が、極めて緩慢なため、ゲージ圧が0を示したところで
反応を中止した。微少量の塩化ビニルが残っていた。
Comparative Example 1 In Example 1, instead of initially charging vinyl chloride and part of vinylidene chloride, the entire amount of the monomer used was charged. After 8 hours, the internal pressure of the reactor was high and there was no sign of a decrease, so the addition of sodium persulfate and sodium bisulfite was continued. The pressure began to decrease only after 65 hours, but the reaction was stopped when the gauge pressure became 0 because it was extremely slow. Only a small amount of vinyl chloride remained.

塩析、水洗、乾燥して得た樹脂を、テトラヒドロフラ
ンに溶かしたところ、完全に溶けず、溶液は白濁した。
2Gのガラスフィルターで濾過し、透明な溶液について溶
解度分別を行ったところ、100%テトラヒドロフランか
ら100%メタノールまでの5%刻みの21フラクションの
全部に溶出があった。この樹脂は、塩酢ビ樹脂用の溶剤
系には溶けず、コーティング用レジンとしては実用性の
乏しいものであった。
When the resin obtained by salting out, washing and drying was dissolved in tetrahydrofuran, it did not completely dissolve, and the solution became cloudy.
The resulting solution was filtered through a 2G glass filter, and the clear solution was subjected to solubility fractionation. As a result, all 21 fractions in 5% steps from 100% tetrahydrofuran to 100% methanol were eluted. This resin did not dissolve in the solvent system for vinyl chloride vinyl chloride resin, and had poor practicality as a coating resin.

比較例2 実施例1において、初めに塩化ビニルと塩化ビニリデ
ンを加えるのではなく、全ての単量体を混合し、30時間
にわたって連続添加し、これと共に、過硫酸ソーダと重
亜硫酸ソーダも連添し続けた。界面活性剤は、実施例1
と同じ量加えたところで、連添を中止した。
Comparative Example 2 In Example 1, instead of first adding vinyl chloride and vinylidene chloride, all monomers were mixed and continuously added over 30 hours, and sodium persulfate and sodium bisulfite were also added. I continued. The surfactant was prepared in Example 1.
When the same amount was added, the connection was stopped.

塩析、水洗、乾燥して得られた樹脂は、テトラヒドロ
フランに溶けたので、分子量を測定たところ、数平均で
1.8万、重量平均で6.3万であり、UV検出器によれば低分
子量側でアクリル酸系の含量が高いものであった。
The resin obtained by salting out, washing and drying was dissolved in tetrahydrofuran, and the molecular weight was measured.
The molecular weight was 18 thousand, and the weight average was 63 thousand. According to the UV detector, the acrylic acid content was high on the low molecular weight side.

また、溶解度分別も行ったところ、良/貧=0/100か
ら直ちに溶出があり、同40/60で全量溶出した。分別
(溶出)曲線は、同25/75〜30/70にピークがあり、比較
例1の樹脂よりは組成分布が狭いものとみなされるが、
実施例1の樹脂には及ばない。
Further, when the solubility fractionation was also performed, elution was immediately observed from good / poor = 0/100, and the entire amount was eluted at 40/60. The fractionation (elution) curve has a peak at 25/75 to 30/70 and is considered to have a narrower composition distribution than the resin of Comparative Example 1.
It does not reach the resin of Example 1.

この樹脂は、塩酢ビ樹脂用の溶剤に溶けたので、実施
例1とともに評価したところ、耐溶剤性が不十分であ
り、塗膜とセロハンとの接着性が劣り、また塗膜同士を
ヒートシールしたところ、シール強度が小さく、この点
でも実用性の無いものであった。
Since this resin was dissolved in a solvent for vinyl chloride vinyl chloride resin, it was evaluated together with Example 1 and found that the solvent resistance was insufficient, the adhesion between the coating film and cellophane was poor, and the coating films were heated together. Upon sealing, the sealing strength was low, and this point was also impractical.

実施例2 仕込み単量体の組成を、初添の塩化ビニルを40部、塩
化ビニリデンを11.9部とし、連添混合物を塩化ビニリデ
ン38.1部とアクリロニトリル9部および2−アクリルア
ミド−2−メチルプロパンスルホン酸ソーダ1部とする
他は、実施例1と同様にして、乳化重合せしめ、塩析、
水洗、乾燥して樹脂を得た。樹脂の同定結果を下記表2
に示した。
Example 2 The composition of the charged monomers was 40 parts of initially added vinyl chloride, 11.9 parts of vinylidene chloride, and 38.1 parts of vinylidene chloride, 9 parts of acrylonitrile, and 9 parts of 2-acrylamido-2-methylpropanesulfonic acid. Except for using 1 part of soda, emulsion polymerization, salting out,
The resin was washed with water and dried to obtain a resin. Table 2 below shows the results of resin identification.
It was shown to.

本実施例の樹脂をビデオテープなどの磁気記録媒体用
磁性粉のバインダーとして用いられている塩ビ系樹脂と
比べた。
The resin of this example was compared with a PVC resin used as a binder for magnetic powder for a magnetic recording medium such as a video tape.

いわゆる、塗布型磁気記録媒体のメインバインダー樹
脂に求められる性能は多岐にわたるが、結局、磁性粉
の分散性耐久性の2点に絞られる。ところが、塩ビ系
樹脂の致命的な欠点は、高温時の分解、すなわち脱塩酸
が起こり易いことにあった。
The performance required of the main binder resin of the so-called coating type magnetic recording medium is diversified, but is ultimately limited to two points of durability and dispersibility of the magnetic powder. However, a fatal drawback of the PVC-based resin is that decomposition at high temperature, that is, dehydrochlorination is apt to occur.

本実施例の樹脂は、近年ますます微粉化し分散しにく
くなっている磁性粉を良く分散し、高温脱塩酸も大幅に
抑制されたものであった。
The resin of the present example was capable of well dispersing magnetic powder, which has been becoming finer and more difficult to disperse in recent years, and also greatly suppressed high-temperature dehydrochlorination.

比較例3 実施例2と同じ組成の単量体を比較例1と同じ方法で
重合して得た樹脂は、溶解度分布が広く、一般に磁性塗
料作成に用いられる組成の溶剤に溶けず、実用性のない
ものであった。
Comparative Example 3 A resin obtained by polymerizing a monomer having the same composition as in Example 2 in the same manner as in Comparative Example 1 has a wide solubility distribution, does not dissolve in a solvent having a composition generally used for preparing a magnetic paint, and has practical utility. There was no one.

比較例4 実施例2と同じ組成の単量体を比較例2と同じ方法で
重合して得た樹脂は、溶解度分布が多少は狭いものの、
なお広く、分子量が小さかった。一応、磁性塗料は作成
できたが、その塗膜は脱塩酸しやすく耐久性に劣ったも
のであった。
Comparative Example 4 A resin obtained by polymerizing a monomer having the same composition as in Example 2 in the same manner as in Comparative Example 2 has a somewhat narrow solubility distribution,
It was still wide and the molecular weight was small. For the time being, a magnetic paint could be prepared, but the coating film was easily dehydrochlorinated and had poor durability.

実施例3 仕込み単量体の組成を、初添の塩化ビニルを60部、塩
化ビニリデンを6.7部とし、連添混合物を塩化ビニリデ
ン18.3部とアクリル酸ブチル15部とする他は、実施例1
と同様に乳化重合せしめ、塩析、水洗、乾燥し樹脂を得
た。その同定結果を表3に示した。
Example 3 Example 1 was repeated except that the charged monomer composition was 60 parts of initially added vinyl chloride, 6.7 parts of vinylidene chloride, and 18.3 parts of vinylidene chloride and 15 parts of butyl acrylate.
Emulsion polymerization was carried out in the same manner as described above, salting out, washing with water and drying were performed to obtain a resin. The results of the identification are shown in Table 3.

本実施例の樹脂は、塩化ビニル樹脂に比べて可塑剤の
所要量を大幅に減らしても、良好な成形性が得られ、成
形した試料につき可塑剤の溶出量を見たところ、殆ど検
出されなかった。
In the resin of this example, even if the required amount of the plasticizer was significantly reduced as compared with the vinyl chloride resin, good moldability was obtained. Did not.

比較例5 ガラスライニングを施した鉄製耐圧反応容器に、水15
0部、ヒドロキシメチルプロピルセルロース1部、ラウ
ロイルパーオキサイド0.3部と、実施例3の単量体の全
部を仕込み、懸濁重合を行った。重合が暴走反応となる
ことを防止するため、初めの20時間は40℃、次いで60時
間の間50℃に保った。反応器の内圧は高くて、多量の塩
化ビニルが残存し、重合転化率は進んでいないものと看
なされた。さらに60℃に昇温したが、温度上昇に伴い内
圧が上昇するだけで、反応が進行している気配はなかっ
た。そのうち、ラウロイルパーオキサイドの分解半減期
から推して、もはや実質的に重合を進めるだけの開始剤
が残存していないと判断されたので、降温させ、ブロー
ダウンタンクに未反応単量体を抜き取った。
Comparative Example 5 Water 15 was placed in a glass-lined iron pressure-resistant reaction vessel.
0 parts, 1 part of hydroxymethylpropylcellulose, 0.3 part of lauroyl peroxide and all of the monomers of Example 3 were charged, and suspension polymerization was carried out. To prevent the polymerization from becoming a runaway reaction, the temperature was kept at 40 ° C. for the first 20 hours and then at 50 ° C. for 60 hours. The internal pressure of the reactor was high, a large amount of vinyl chloride remained, and it was considered that the polymerization conversion had not progressed. The temperature was further raised to 60 ° C., but only the internal pressure increased as the temperature rose, and there was no sign that the reaction was proceeding. Among them, judging from the decomposition half-life of lauroyl peroxide, it was judged that there was no longer any initiator that could substantially proceed with polymerization, so the temperature was lowered and unreacted monomers were drawn out to the blowdown tank. .

開始剤の量を増やして試してみても、初期の反応速度
は若干速まるものの、徒に分子量を下げるだけで、単量
体の全てを重合さすことは出来なかった。未反応単量体
は、殆とが塩化ビニルであったが、これを無視して生成
樹脂を得た。
When the amount of the initiator was increased, the initial reaction rate was slightly increased, but it was not possible to polymerize all of the monomers merely by lowering the molecular weight. Most of the unreacted monomer was vinyl chloride, but this was ignored to obtain a product resin.

得られた樹脂をテトラヒドロフランに溶かしたとこ
ろ、完全には透明にならず、白濁していた。2Gのガラス
フィルターで濾過したものにつき溶解度分別を行った。
良/貧溶媒比全区画において、溶出があった。この樹脂
を実施例3と同様に成形して試料を得ようと、加熱混練
していたら、その最中に褐変し始め、熱安定性の悪いも
のであった。
When the obtained resin was dissolved in tetrahydrofuran, it did not become completely transparent but became cloudy. Solubility fractionation was performed on those filtered through a 2G glass filter.
Elution was observed in all compartments with a good / poor solvent ratio. If this resin was heated and kneaded to obtain a sample in the same manner as in Example 3, browning began during that time, and the thermal stability was poor.

実施例4 仕込み単量体の組成を、初添の塩化ビニルを50部、塩
化ビニリデンを8.8部とし、連添混合物を塩化ビニリデ
ン21.2部とブタジエン20部とする他は、実施例1と同様
に、乳化重合せしめ、塩析、水洗、乾燥して樹脂を得
た。その同定結果を下記表4に示した。
Example 4 The same procedure as in Example 1 was carried out except that the charged monomer composition was 50 parts of initially added vinyl chloride, 8.8 parts of vinylidene chloride, and 21.2 parts of vinylidene chloride and 20 parts of butadiene. After emulsion polymerization, salting out, washing with water and drying were performed to obtain a resin. The results of the identification are shown in Table 4 below.

本実施例の樹脂は、単量体が塩化ビニルなどと同様に
安価なものを用い、しかも、可塑剤量を大幅に低減し、
製造コストの面でも有利なストレッチフィルムを与える
ものであった。
The resin of this example uses a resin whose monomer is inexpensive like vinyl chloride and the like, and further, greatly reduces the amount of plasticizer,
A stretch film which is advantageous in terms of production cost is provided.

市販の塩化ビニル樹脂製ストレッチフィルムと比較し
たところ、包装フィルムとしての実用的な強度特性は全
て市販品同等で、きわめて低い溶出量を示した。バリヤ
ー性(透湿度)も格段に良かった。バリヤー性は、塩化
ビニリデンを共重合している本発明の樹脂組成及び使用
可塑剤量が少ないことから期待される利点である。
When compared with a commercially available stretch film made of a vinyl chloride resin, all of the practical strength characteristics as a packaging film were equivalent to those of a commercial product, and showed a very low elution amount. The barrier properties (moisture permeability) were also very good. The barrier property is an advantage expected from the fact that the resin composition of the present invention copolymerizing vinylidene chloride and the amount of plasticizer used are small.

実施例5 仕込み単量体の組成を、初添の塩化ビニルを30部、塩
化ビニリデンを10部とし、連添混合物を、塩化ビニリデ
ン30部、スチレン15部、アクリロニトリル12部、N−フ
ェニルマレイミド3部とする以外は、実施例1と同様
に、乳化重合せしめ、塩析、水洗、乾燥して樹脂を得
た。その同定結果を表5に示した。
Example 5 The composition of the charged monomers was 30 parts of initially added vinyl chloride and 10 parts of vinylidene chloride, and the added mixture was 30 parts of vinylidene chloride, 15 parts of styrene, 12 parts of acrylonitrile, and 3 parts of N-phenylmaleimide. The resin was obtained by emulsion polymerization, salting out, washing with water and drying in the same manner as in Example 1 except that the amount was changed to parts. Table 5 shows the results of the identification.

可塑剤を加えた軟質塩化ビニル樹脂のブロー成型ボト
ルなど各種食品飲料用の容器が広く用いられているが、
可塑剤が内容物に溶出する問題と、多量の可塑剤のため
塩化ビニル樹脂が本来持つバリヤー性が全く失われてい
る問題がある。
Various food and beverage containers such as blow molded bottles of soft vinyl chloride resin with a plasticizer are widely used,
There is a problem that the plasticizer is eluted into the contents and a problem that the barrier property inherent to the vinyl chloride resin is completely lost due to the large amount of the plasticizer.

本実施例の樹脂は、より少ない可塑剤の添加で、良好
な成形性を示し、得られた容器のバリヤー性は極めて高
く、塩化ビニル樹脂の欠点を解消するものであった。
The resin of this example exhibited good moldability with the addition of a smaller amount of plasticizer, the barrier properties of the obtained container were extremely high, and the disadvantage of the vinyl chloride resin was eliminated.

比較例6 比較例5と同様にして、実施例5の単量体を懸濁重合
した。ここでも塩化ビニルの全量を重合させることは出
来ず、得られた樹脂は溶解度分布が広く、樹脂の組成分
布が広いことを示していた。
Comparative Example 6 In the same manner as in Comparative Example 5, the monomer of Example 5 was subjected to suspension polymerization. Again, the entire amount of vinyl chloride could not be polymerized, indicating that the resulting resin had a wide solubility distribution and a wide resin composition distribution.

この樹脂を実施例5と同様に成形しようとしたとこ
ろ、押出機からでてくるパリソンが褐色を呈しており、
成形性も悪いものであった。
When this resin was molded in the same manner as in Example 5, the parison coming out of the extruder had a brown color,
Moldability was also poor.

実施例6 仕込み単量体の組成を、初添の塩化ビニルを40部、塩
化ビニリデン13.3部とし、連添混合物を、塩化ビニリデ
ン36.7部、アクリル酸メチル10部とする以外は、実施例
1と同様に、乳化重合せしめ、塩析、水洗、乾燥し樹脂
を得た。その同定結果を下記表6に示した。
Example 6 The composition of Example 1 was changed except that the composition of the charged monomers was 40 parts of initially added vinyl chloride and 13.3 parts of vinylidene chloride, and the addition mixture was 36.7 parts of vinylidene chloride and 10 parts of methyl acrylate. Similarly, emulsion polymerization, salting out, washing with water, and drying were performed to obtain a resin. The results of the identification are shown in Table 6 below.

台紙のうえに、塩化ビニル樹脂を大量の可塑剤と配合
した、いわゆる塩ビペーストをコートし、印刷、エンボ
ス加工したものが高級壁紙として広く用いられている
が、家屋の火災に際し、燃えにくくするため、多量の難
燃剤も同時に配合されている。
The so-called PVC paste, which is a mixture of vinyl chloride resin and a large amount of plasticizer on a mount, is printed and embossed, and is widely used as high-grade wallpaper. , A large amount of flame retardant is also added.

ところが、本実施例の樹脂はより少ない可塑剤量で
ペーストが得られるため、時間とともに可塑剤が壁紙の
表面に移行し汚れやすくなったり、甚だしくはベトつい
たりなどの従来の塩ビ壁紙の欠点がない。樹脂組成の
うえからも、また可塑剤量が少ないことからも、難燃剤
は殆ど加えずとも良い。また、本発明の樹脂による壁
紙は、防汚性に優れ、防炎1級をクリヤーするのに対
し、塩ビ壁紙は防炎2級であった。
However, since the resin of the present embodiment can obtain a paste with a smaller amount of plasticizer, the plasticizer migrates to the surface of the wallpaper over time and becomes easily stained. Absent. From the viewpoint of the resin composition and the small amount of the plasticizer, the flame retardant may be hardly added. Further, the wallpaper made of the resin of the present invention was excellent in antifouling property and cleared flameproofing first grade, while PVC wallpaper was flameproofing second grade.

なお、比較のために、実施例1と各比較例とについ
て、その生成樹脂の分子量および溶解度分別の結果を下
記表7にまとめた。
For comparison, Table 7 below summarizes the results of molecular weight and solubility fractionation of the resulting resin for Example 1 and Comparative Examples.

〔発明の効果〕 本発明の樹脂は、塩化ビニル系樹脂の汎用性に加え
て、可塑剤の低減または用いなくてもよい良好な加工性
を与える。
[Effects of the Invention] In addition to the versatility of a vinyl chloride-based resin, the resin of the present invention provides good processability that requires less or no plasticizer.

塩化ビニリデン樹脂のバリヤー性、耐溶剤性、光沢
等々の特徴をもたせる。
The vinylidene chloride resin has characteristics such as barrier properties, solvent resistance, and gloss.

第三、第四の単量体の選択で多用な実用性能を与え
る。
The selection of the third and fourth monomers gives versatile practical performance.

そのまま成形用樹脂として、血液バッグなどの医療
器材や、加工食品用のカップやボトルなど、またはフィ
ルムなどに供せられる。
It can be used as it is as a molding resin in medical equipment such as blood bags, cups and bottles for processed foods, or films.

溶解性は良いのに、塗工後は優れた耐溶剤性を示す
特長を活かしてコーティング用、塗料原料用の樹脂とし
ても用いられる。
Although it has good solubility, it is also used as a resin for coating and as a raw material for coatings, taking advantage of its excellent solvent resistance after coating.

乳化重合のあと樹脂粉末とはせずに、そのままラテ
ックスの形態で、コーティング用、各種バインダー用に
用いられる。
It is used for coating and various binders in the form of a latex as it is without being converted into a resin powder after emulsion polymerization.

さらには、塩化ビニル樹脂に混練りし、加工性の向
上を図るポリマー改質剤としても効果がある。
Further, it is effective as a polymer modifier which is kneaded with a vinyl chloride resin to improve processability.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】(A)塩化ビニル30〜80重量部、(B)塩
化ビニリデン15〜65重量部、(C)その他の単量体成分
合計で5〜55重量部、あわせて総計100重量部からなる
共重合体樹脂であって、該樹脂は、分子量で分別される
各々の分画の組成が同様に実質的に一定で、溶解度では
分別することのできない共重合体であることを特徴とす
る、塩化ビニル系多元共重合体樹脂。
1. A total of 100 parts by weight of (A) 30 to 80 parts by weight of vinyl chloride, (B) 15 to 65 parts by weight of vinylidene chloride, (C) 5 to 55 parts by weight in total of other monomer components. Wherein the composition of each of the fractions fractionated by molecular weight is also substantially constant, and is a copolymer that cannot be fractionated by solubility. A vinyl chloride-based multi-component copolymer resin.
JP29834588A 1988-11-28 1988-11-28 Vinyl chloride multi-component copolymer resin Expired - Fee Related JP2615164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29834588A JP2615164B2 (en) 1988-11-28 1988-11-28 Vinyl chloride multi-component copolymer resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29834588A JP2615164B2 (en) 1988-11-28 1988-11-28 Vinyl chloride multi-component copolymer resin

Publications (2)

Publication Number Publication Date
JPH02145613A JPH02145613A (en) 1990-06-05
JP2615164B2 true JP2615164B2 (en) 1997-05-28

Family

ID=17858472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29834588A Expired - Fee Related JP2615164B2 (en) 1988-11-28 1988-11-28 Vinyl chloride multi-component copolymer resin

Country Status (1)

Country Link
JP (1) JP2615164B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2007309574B2 (en) 2006-10-25 2013-01-17 Dow Global Technologies Llc A vinylidene chloride copolymer exhibiting improved bubble stability and a process for making the same
CN109369839B (en) * 2018-09-21 2020-12-29 无锡洪汇新材料科技股份有限公司 Self-crosslinking vinyl chloride copolymer emulsion and preparation method thereof

Also Published As

Publication number Publication date
JPH02145613A (en) 1990-06-05

Similar Documents

Publication Publication Date Title
US3971835A (en) Vinyl halide polymer impact modifiers
US3954913A (en) Stabilized nitrile polymers
AU610013B2 (en) Flexible blend compositions based on overpolymers of vinyl chloride polymers on ethylene copolymers
US4129608A (en) Multi-component graft copolymer and thermoplastic resin composition thereof
CA1071798A (en) Thermally stable high nitrile resins and method for producing the same
US4145380A (en) Vinyl halide polymer impact modifiers
CN112409526B (en) Preparation method of chloroethylene-vinyl acetate-butyl acrylate copolymer
JP2615164B2 (en) Vinyl chloride multi-component copolymer resin
GB2304721A (en) Production of styrenic polymers and articles therefrom
CA1041245A (en) Rubber modified high nitrile polymers and polymer blends produced thereby
EP0095769A2 (en) Impact-resistant methacrylic resin composition
US4144289A (en) Vinylidene chloride resin compositions containing chlorinated ethylene/acrylate or methacrylate copolymer
US4230832A (en) Process for preparing resistant vinyl halide polymers
EP0061134B1 (en) Improved polyvinyl chloride and preparation thereof
EP0143991A2 (en) Impact-resistant methacrylic resin composition
JPH02145612A (en) Production of vinyl chloride copolymer resin
JPH0781062B2 (en) Impact-resistant methacrylic resin composition
JPH0154361B2 (en)
JPS63199710A (en) Novel methyl methacrylate/styrene resin excellent in heat resistance and transparency
US4064197A (en) Vinyl halide polymer impact modifiers
KR100468475B1 (en) Method of preparing thermoplastic nitrile resin
JPS6342940B2 (en)
JPH0248176B2 (en)
JP2613668B2 (en) Nitrile polymer composition, molded article and method for producing the same
JPS588716A (en) Production of transparent thermoplastic resin

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees