JPH0154361B2 - - Google Patents

Info

Publication number
JPH0154361B2
JPH0154361B2 JP5747788A JP5747788A JPH0154361B2 JP H0154361 B2 JPH0154361 B2 JP H0154361B2 JP 5747788 A JP5747788 A JP 5747788A JP 5747788 A JP5747788 A JP 5747788A JP H0154361 B2 JPH0154361 B2 JP H0154361B2
Authority
JP
Japan
Prior art keywords
weight
parts
monomer
resin
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5747788A
Other languages
Japanese (ja)
Other versions
JPS63254114A (en
Inventor
Kazumasa Kamata
Masamitsu Tateyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP5747788A priority Critical patent/JPS63254114A/en
Publication of JPS63254114A publication Critical patent/JPS63254114A/en
Publication of JPH0154361B2 publication Critical patent/JPH0154361B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、メタクリル樹脂本来の特性を損なう
ことなく耐衝撃性を付与したメタクリル樹脂の製
造方法に関する。 メタクリル樹脂はプラスチツク材料の中では勿
論のこと、無機ガラスに比較してさえも、透明性
をはじめとする光学的性質に卓越した特性を有し
ており、また表面光沢、耐候性、染顔料着色性、
成形加工性等においても極めて優れており、これ
らの特性を生かして、照明、看板、窓材、光学レ
ンズ、テールレンズ、メーターカバー、ダストカ
バー、デイスプレイ、テーブルウエアー、光学用
途、建材、電気機器部品、車輌部品、装飾分野、
雑貨など多方面の分野で使用されている。 しかしメタクリル樹脂は、耐衝撃性が不足して
いるという問題があり、個々の用途分野において
その改良が強く要望されているのが実状である。 メタクリル樹脂の耐衝撃性を改良する方法とし
ては、古くから種々の提案がなされている。最も
一般的で且つ効果的な方法として、メタクリル酸
メチルを主成分とする連続樹脂相中に、常温でゴ
ム状の弾性体を粒子状で不連続的に分散せしめる
方法がとられている。 ゴム状弾性体としては、ブタジエンを主成分と
した不飽和ゴム状重合体、ブチルアクリレート、
2―エチルヘキシルアクリレートなどを主成分と
したアクリル酸エステル系重合体、あるいはエチ
レン/酢酸ビニル共重合体などの飽和ゴム状弾性
体が使用されている。 不飽和ゴム状弾性体の導入は耐衝撃性の発現性
の面では優れているが、ポリマー主鎖の不飽和結
合に起因する耐候性不良の問題があり、一方飽和
ゴム状弾性体の導入は、耐候性の面では優れてい
るものの、ゴム成分自体の弾性率と弾性回復性が
低く、さらに硬質樹脂成分とのグラフト重合性に
乏しいため、耐衝撃性の発現性、透明性、表面光
沢等が劣り、また流動模様(フローマーク)を生
じるなど表面外観にも問題がある。一般にこれら
のゴム状弾性体が粒子状の不連続相としてメタク
リル樹脂などの硬質樹脂の連続相中に均一に分散
した2成分系よりなる耐衝撃性樹脂組成物を合成
する場合、重要な因子としてゴム状弾性体の粒子
径、架橋度、ゴム相への硬質樹脂相のグラフト重
合性および硬質樹脂相の分子量などが挙げられて
おり、事実、樹脂特性の優劣とバランスはこれら
の因子によつて大きな影響を受ける。この内でも
ゴム相の架橋度、グラフト重合性が重要である。
つまり架橋又はグラフト性単量体の選択が重要因
子となるということである。 又近年耐候性に優れたアクリル酸エステル系弾
性体をゴム相とした耐衝撃性樹脂組成物あるいは
耐衝撃性メタクリル樹脂組成物において、ゴム相
の耐衝撃性の発現効果、成形品の透明性、耐スト
レス白化性あるいは成形過程でのゴム粒子の変形
に起因する真珠状光沢、耐候性等を改良する目的
でゴム粒子内部に硬質樹脂を含有せしめる方法が
提案されており(特公昭52−30996号、特開昭48
−55233号)、確かにその効果は認められるもの
の、メタクリル樹脂として見た場合、透明性、表
面光沢の面ではまだかなり劣る問題点がある。 本発明者らは以上の事実に鑑み、透明性、表面
光沢、表面外観、耐候性などメタクリル樹脂本来
の優れた特性を損ずることなくこれに耐衝撃性を
付与したメタクリル樹脂について鋭意検討した結
果、メタクリル酸メチルを主成分とした硬質架橋
樹脂を粒子内部に含有し、外層を構成する架橋ア
クリル酸エステル系共重合体を重合する際、特殊
な構造を有する架橋性単量体を共重合成分として
使用することにより、耐衝撃性の発現性、成形品
の外観に優れたメタクリル樹脂の得られることを
見い出し本発明に到達した。 すなわち、本発明の要旨とするところは、メタ
クリル酸メチル単位を80重量%以上を含む硬質架
橋樹脂(A)5〜50重量部を粒子内部に含有し、アル
キル基の炭素数が1〜8のアクリル酸アルキルエ
ステルの少なくとも1種69.9〜89.9重量%とスチ
レン単独またはスチレンとその誘導体の混合物10
〜30重量%ならびに次式 または で示される物質の少なくとも1種0.1〜10重量%
よりなる単量体混合物の架橋アクリル酸エステル
系共重合体(B)95〜50重量部が外層を構成する粒子
径が0.2〜0.45μmの多重構造アクリル系弾性体
〔〕100重量部の存在下に、メタクリル酸メチル
80〜100重量%、アルキル基の炭素数1〜8のア
クリル酸アルキルエステルの少なくとも1種0〜
20重量%、およびこれと共重合可能な他のビニル
系単量体0〜10重量%以下よりなる単量体または
単量体混合物(C)10〜1000重量部を重合することを
特徴とする耐衝撃性メタクリル樹脂の製造方法で
ある。 本発明の最も重要な特徴は、硬質架橋樹脂芯の
外層に架橋アクリル酸エステル系共重合体(B)を重
合によつて設けるに際して、上述した式(1)および
(2)式に示した特殊な物質を架橋剤として用いると
ころにある。 本発明で用いられる硬質架橋樹脂相(A)、非架橋
硬質樹脂相は、良好な透明性を付与せしめるため
に、各重合段階で個別的に必要とする助剤、架橋
性単量体成分を除いた単量体組成は同一とするか
または極めて近似させることが望ましい。また架
橋アクリル酸エステル系共重合体(B)の屈折率も、
前記の硬質樹脂セグメントと極めて近似させるこ
とが好ましい。 また、本発明のメタクリル樹脂において、透明
性および表面外観と耐衝撃性の発現性能のバラン
スのため分散させるゴム粒子径を考慮する必要が
ある。本発明のメタクリル樹脂においては、透明
性耐衝撃性何れにも優れたものを得るため、架橋
アクリル酸エステル系共重合体(B)の重合が実質上
完了した時点で0.2〜0.45μmの範囲が好ましい。
粒子径が0.2μm未満の場合は得られる樹脂の透明
性は良好となるものの、耐衝撃性の発現性に劣
り、一方、0.45μmを越える場合は得られる樹脂
の耐衝撃性は優れるものの、透明性や表面外観が
劣る。 本発明における多重構造アクリル系弾性体
〔〕は、メタクリル酸メチル単位を80重量%以
上を含有する硬質架橋樹脂(A)を粒子内部にもち、
その外層に架橋アクリル酸エステル系共重合体(B)
を有する構造よりなる。 本発明でいう硬質架橋樹脂(A)はメタクリル酸メ
チル単独またはメタクリル酸メチル80〜100重量
%と他の共重合性ビニル又はビニリデン単量体0
〜20重量%とからなる単量体または単量体混合物
100重量部に、0.1〜10重量部、より好ましくは
0.5〜5重量部の架橋性単量体を添加して重合し
て得られた共重合体であり、多重構造アクリル系
弾性体〔〕100重量部のうち5〜50重量部、よ
り好ましくは10〜40重量部含有せしめることが必
要である。その量が5重量部未満では耐衝撃性の
発現性効果が少なく、透明性も低下する。逆に50
重量部を越える場合は表面光沢が低下すると共に
耐衝撃性も低下する傾向がある。 硬質架橋樹脂(A)の重合に用いるメタクリル酸メ
チルと共重合性のビニル又はビニリデン単量体と
しては、スチレン、アクリロニトリル、アルキル
基の炭素数が1〜8であるアクリル酸アルキルエ
ステル等があげられる。 また硬質架橋樹脂(A)の重合に用いる架橋性単量
体は、メタクリル酸メチルと共重合するものであ
れば特に限定する必要はなく、通常用いられる、
エチレングリコールジメタクリレート、エチレン
グリコールジアクリレート、1,3―ブチレンジ
メタクリレート、テトラエチレングリコールジア
クリレート等の2官能性単量体、またはトリメチ
ロールプロパントリアクリレート、トリアリルシ
アヌレート、トリアリルイソシアヌネート等の3
官能性単量体、またはペンタエリスリトールテト
ラアクリレート等の4官能性単量体をそれぞれ単
独でまたは組み合わせて用いることができる。 架橋アクリル酸エステル系共重合体(B)はアルキ
ル基の炭素数が1〜8のアクリル酸アルキルエス
テル群の中で、好ましくはn―ブチルアクリレー
ト、2―エチルヘキシルアクリレートの少なくと
も1種69.9〜89.9重量%とスチレン単独またはス
チレンとその誘導体の混合物10〜30重量%ならび
に次式 または で示される物質の少なくとも1種0.1〜10重量%
の範囲よりなる単量体混合物の共重合体であつ
て、硬質架橋樹脂(A)の存在下にその外層に95〜50
重量部重合せしめる。アクリル酸エステル系単量
体とスチレンまたはスチレンとその誘導体の混合
物との組成割合は透明性を付与するために重要な
因子の一つであり、上記組成範囲以外では透明性
が低下する。式(1)および(2)で示される物質は本発
明を構成する因子の中で最も重要な部分の一つで
あり、これによつて本発明の目的が達成される。
その作用効果の詳細については明確ではないが、
架橋アクリル酸エステル系共重合体(B)の架橋度と
メタクリル酸メチルとのグラフト重合性がバラン
スよくコントロールされるためと推論される。そ
の添加量は、単独で用いる場合と併用する場合と
によつて適正値が異なるものの、0.1〜10重量%
の範囲が適当である。また式(1)および(2)で示され
た物質以外に、公知の多官能性単量体を0〜9重
量%の範囲で併用することもできる。またこの多
官能性単量体は特に限定する必要はなく通常用い
られるものである。具体的化合物としては、エチ
レングリコールジ(メタ)アクリレート、1,3
ブチレンジ(メタ)アクリレート、テトラエチレ
ングリコールジ(メタ)アクリレート、ジビニル
ベンゼンなどを用いることができる。 次いで多重構造アクリル系弾性体〔〕の存在
下で単量体または単量体混合物(C)を重合せしめる
が、これを構成する成分組成は、メタクリル酸メ
チル80〜100重量%、アルキル基の炭素数1〜8
のアクリル酸アルキルエステルの少なくとも1種
0〜20重量%ならびにこれと共重合可能な他のビ
ニル系単量体0〜10重量%以下よりなるものであ
る。 前記単量体又は単量体混合物(C)中のメタクリル
酸メチルの含有量が80重量%未満の場合には透明
性、耐熱性などの特性に劣り、またこれと共重合
するアクリル酸アルキルエステルとしては、メチ
ルアクリレート、エチルアクリレート、ブチルア
クリレートなどが挙げられる。また更に共重合成
分として使用可能な他のビニル単量体としてはス
チレン、アクリロニトリル、メタクリル酸などが
挙げられる。単量体または単量体混合物(C)中、ア
クリル酸エステルが20重量%を越える場合には得
られる樹脂の耐熱性や透明性の点で好ましくな
く、また共重合可能な他のビニル単量体が10重量
%を越えると透明性、耐熱性あるいは耐水性など
の点で好ましくない。 単量体または単量体混合物(C)は多重構造アクリ
ル系弾性体〔〕100重量部に対して10〜1000重
量部の範囲で重合せしめる必要がある。10重量部
未満の場合には耐衝撃性の発現性が劣つたり、表
面光沢が低下したりして好ましくない。一方1000
重量部を越える場合には生産性が低下し好ましく
ない。 単量体または単量体混合物(C)には、必要に応じ
て分子量を調節するため、メルカプタン等の重合
度調節剤等を必要に応じて用いることも可能であ
る。用い得る重合度調節剤としては、アルキルメ
ルカプタン、チオグリコール酸およびそのエステ
ル、β―メルカプトプロピオン酸およびそのエス
テル、チオフエノール、チオクレゾール等の芳香
族メルカプタンなどがあげられる。 本発明のメタクリル樹脂の製造は、乳化重合法
によるのが好ましいことより、乳化重合法による
場合の例について説明する。 反応容器に脱イオン水、必要があれば乳化剤を
加えた後、硬質架橋樹脂(A)を構成する単量体混合
物を重合し、次いで架橋アクリル酸エステル系共
重合体(B)を構成する単量体混合物を重合し、次い
で単量体または単量体混合物(C)を重合せしめる。 重合温度は30〜120℃、より好ましくは50〜100
℃である。 重合時間は重合開始剤および乳化剤の種類とそ
の量、重合温度等によつて異なるが、通常は各重
合段階(A),(B)および(C)でそれぞれ0.5〜7時間で
ある。 重合体と水の比は単量体/水=1/20〜1/1
が好ましい。 重合開始剤および乳化剤は、水相単量体相のい
ずれか片方または双方に添加することができる。 重合段階(A),(B)および(C)における各単量体の仕
込方法は、一括または分割で行なうことができる
が重合発熱等の点で分割仕込法がより好ましい。 乳化剤は通常用いられる乳化剤であれば特に限
定する必要はなく、用いられる乳化剤の例として
は、長鎖アルキルカルボン酸塩、スルホコハク酸
アルキルエステル塩、アルキルベンゼンスルホン
酸塩等である。 重合開始剤の種類も特に限定する必要はなく通
常用いられる、水溶性の、過硫酸塩過硼酸塩等の
無機開始剤を単独で、または亜硫酸塩、チオ硫酸
塩等と組み合せてレドツクス開始剤として用いる
こともできる。また有機ヒドロパーオキシド―第
1鉄塩、有機ヒドロパーオキシド―ソジウムスル
ホキシレートのようなレドツクス開始系、ベンゾ
イルパーオキシド、アゾビスイソブチロニトリル
等の開始系も用いることができる。 乳化重合法により得られたポリマーラテツクス
は公知の方法により凝固乾燥させる。 かくして得られたメタクリル樹脂を押出成形
機、射出成形機等により成形することにより、透
明性、表面光沢に優れ、耐衝撃性に富んだ成形品
を得ることができる。 以下実施例に基づき、本発明をさらに詳しく説
明する。実施例中の部は重合部を、%は重量%を
表わす。 実施例1〜2、比較例1〜5 (1) 硬質架橋樹脂(A)の製造 内容積50のステンレススチール製反応容器
に、先ず下記(イ)の原料を各割合で入れ、撹拌下に
窒素を吹き込み実質的に酸素の影響のない状態と
した後、70℃に昇温して下記(ロ)の原料を添加し
て、2時間重合を行ない硬質架橋樹脂体のラテツ
クスを得た。 (イ) 原料 脱イオン水 500部 ザルコシネートLN*1)(S−LN) 0.10部 硼 酸 1.0部 炭酸ソーダ 0.1部 メタクリル酸メチル(MMA) アクリル酸エチル(EA) 1,3―ブチレンジメタクリレート97% 1% 2% 15部 (ロ) 原料 脱イオン水 10部 過硫酸カリウム(KPS) 0.3部 *1 N―アシルザルコシン酸塩 (日光ケミカルズ(株)社製品) このラテツクスのMMAの重合率は98.5%で粒
子径は0.16μmであつた。 (2) 架橋アクリル酸エステル系共重合体(B)の重合
による多重構造アクリル系弾性体〔〕の製造 上記(1)の重合が実質的に終了した固形分で15部
に相当する量の硬質架橋樹脂ラテツクスのはいつ
た上記容器内に、下記のソジウムホルムアルデヒ
ドスルホキシレート(以下ロンガリツトという)
およびザルコシネートLNの水溶液を加え、80℃
に昇温した後、これに表―1に示す組成割合のア
クリル酸エステル系単量体混合物35部にターシヤ
リイブチルハイドロパーオキサイド(TBH)
0.32部を添加したものを150分にわたつて連続的
に添加した。添加終了後、更に3時間重合を継続
して、硬質架橋樹脂(A)を粒子内部に含有した多重
構造アクリル系弾性体〔〕のラテツクスを得
た。 ザルコシネートLN 0.2部 ロンガリツト 0.32部 脱イオン水 10部
The present invention relates to a method for producing a methacrylic resin that imparts impact resistance without impairing the inherent properties of the methacrylic resin. Methacrylic resin has excellent optical properties such as transparency, not only among plastic materials, but even compared to inorganic glass, and has excellent surface gloss, weather resistance, and coloration. sex,
It also has excellent moldability, and by taking advantage of these properties, it can be used in lighting, signboards, window materials, optical lenses, tail lenses, meter covers, dust covers, displays, tableware, optical applications, building materials, and electrical equipment parts. , vehicle parts, decoration field,
It is used in many fields such as miscellaneous goods. However, methacrylic resins have a problem of insufficient impact resistance, and the reality is that there is a strong demand for improvement in each application field. Various proposals have been made for a long time as methods for improving the impact resistance of methacrylic resins. The most common and effective method is to disperse a rubber-like elastic body discontinuously in the form of particles at room temperature in a continuous resin phase containing methyl methacrylate as the main component. As the rubbery elastic body, unsaturated rubbery polymers mainly composed of butadiene, butyl acrylate,
Acrylic acid ester polymers containing 2-ethylhexyl acrylate as a main component, or saturated rubber-like elastic bodies such as ethylene/vinyl acetate copolymers are used. Although the introduction of an unsaturated rubber-like elastic material is excellent in terms of impact resistance, there is a problem of poor weather resistance due to the unsaturated bonds in the polymer main chain.On the other hand, the introduction of a saturated rubber-like elastic material Although it has excellent weather resistance, the elastic modulus and elastic recovery of the rubber component itself are low, and it also has poor graft polymerization with hard resin components, resulting in poor impact resistance, transparency, surface gloss, etc. There are also problems with the surface appearance, such as poor quality and flow marks. In general, when synthesizing a two-component impact-resistant resin composition in which these rubber-like elastic bodies are uniformly dispersed as particulate discontinuous phases in a continuous phase of hard resin such as methacrylic resin, important factors are These include the particle size of the rubber-like elastic material, the degree of crosslinking, the graft polymerizability of the hard resin phase to the rubber phase, and the molecular weight of the hard resin phase.In fact, the superiority and balance of resin properties depend on these factors. be greatly affected. Among these, the degree of crosslinking and graft polymerization of the rubber phase are important.
In other words, the selection of crosslinking or grafting monomers is an important factor. In addition, in recent years, impact-resistant resin compositions or impact-resistant methacrylic resin compositions in which a rubber phase is made of an acrylic ester-based elastic material with excellent weather resistance, the effect of developing impact resistance of the rubber phase, the transparency of molded products, A method of incorporating a hard resin into rubber particles has been proposed for the purpose of improving stress whitening resistance, pearl-like luster caused by deformation of rubber particles during the molding process, and weather resistance (Japanese Patent Publication No. 52-30996). , Japanese Patent Publication No. 1973
-55233), although its effects are certainly recognized, when viewed as a methacrylic resin, it still has problems in terms of transparency and surface gloss. In view of the above facts, the present inventors conducted intensive studies on methacrylic resins that added impact resistance without impairing the original excellent properties of methacrylic resins such as transparency, surface gloss, surface appearance, and weather resistance. When polymerizing the crosslinked acrylic ester copolymer that contains a hard crosslinked resin mainly composed of methyl methacrylate inside the particles and constitutes the outer layer, a crosslinkable monomer with a special structure is used as a copolymerization component. The present invention was accomplished by discovering that a methacrylic resin with excellent impact resistance and excellent appearance of molded products can be obtained by using the same. That is, the gist of the present invention is that 5 to 50 parts by weight of a hard crosslinked resin (A) containing 80% by weight or more of methyl methacrylate units is contained inside the particles, and the alkyl group has 1 to 8 carbon atoms. 69.9 to 89.9% by weight of at least one acrylic acid alkyl ester and styrene alone or a mixture of styrene and its derivatives10
~30% by weight and the following formula or 0.1 to 10% by weight of at least one substance shown in
In the presence of 100 parts by weight of a multi-structure acrylic elastomer with a particle size of 0.2 to 0.45 μm, which constitutes the outer layer, 95 to 50 parts by weight of a crosslinked acrylic ester copolymer (B) of a monomer mixture consisting of , methyl methacrylate
80 to 100% by weight, at least one acrylic acid alkyl ester having an alkyl group of 1 to 8 carbon atoms, 0 to 100% by weight;
It is characterized by polymerizing 10 to 1000 parts by weight of a monomer or monomer mixture (C) consisting of 20% by weight and 0 to 10% by weight of other vinyl monomers copolymerizable therewith. This is a method for producing impact-resistant methacrylic resin. The most important feature of the present invention is that when the crosslinked acrylic ester copolymer (B) is provided on the outer layer of the hard crosslinked resin core by polymerization, the formula (1) and
The special substance shown in formula (2) is used as a crosslinking agent. The hard crosslinked resin phase (A) and non-crosslinked hard resin phase used in the present invention contain auxiliary agents and crosslinkable monomer components that are individually required at each polymerization step in order to impart good transparency. It is desirable that the monomer compositions excepted are the same or very similar. In addition, the refractive index of the crosslinked acrylic ester copolymer (B) is
It is preferable to make it very similar to the hard resin segment described above. Furthermore, in the methacrylic resin of the present invention, it is necessary to consider the diameter of the rubber particles to be dispersed in order to balance transparency, surface appearance, and impact resistance performance. In the methacrylic resin of the present invention, in order to obtain a product excellent in both transparency and impact resistance, at the time when the polymerization of the crosslinked acrylic ester copolymer (B) is substantially completed, the range of 0.2 to 0.45 μm is preferable.
If the particle size is less than 0.2 μm, the resulting resin will have good transparency but poor impact resistance, while if it exceeds 0.45 μm, the resulting resin will have excellent impact resistance but will be transparent. Poor quality and surface appearance. The multi-structure acrylic elastic body [] in the present invention has a hard crosslinked resin (A) containing 80% by weight or more of methyl methacrylate units inside the particles,
The outer layer is a cross-linked acrylic ester copolymer (B)
It consists of a structure with The hard crosslinked resin (A) in the present invention is methyl methacrylate alone or 80 to 100% by weight of methyl methacrylate and 0% of other copolymerizable vinyl or vinylidene monomers.
Monomer or monomer mixture consisting of ~20% by weight
100 parts by weight, 0.1 to 10 parts by weight, more preferably
It is a copolymer obtained by polymerization with the addition of 0.5 to 5 parts by weight of a crosslinkable monomer, and is preferably 5 to 50 parts by weight, more preferably 10 parts by weight out of 100 parts by weight of the multilayer acrylic elastomer. It is necessary to contain up to 40 parts by weight. If the amount is less than 5 parts by weight, the effect of developing impact resistance will be small and transparency will also decrease. 50 on the contrary
If the amount exceeds 1 part by weight, the surface gloss tends to decrease and the impact resistance also tends to decrease. Examples of vinyl or vinylidene monomers copolymerizable with methyl methacrylate used in the polymerization of the hard crosslinked resin (A) include styrene, acrylonitrile, and acrylic acid alkyl esters in which the alkyl group has 1 to 8 carbon atoms. . Further, the crosslinkable monomer used in the polymerization of the hard crosslinked resin (A) does not need to be particularly limited as long as it copolymerizes with methyl methacrylate, and commonly used,
Bifunctional monomers such as ethylene glycol dimethacrylate, ethylene glycol diacrylate, 1,3-butylene dimethacrylate, and tetraethylene glycol diacrylate, or trimethylolpropane triacrylate, triallyl cyanurate, triallyl isocyanunate, etc. No. 3
Functional monomers or tetrafunctional monomers such as pentaerythritol tetraacrylate can be used alone or in combination. The crosslinked acrylic ester copolymer (B) preferably contains at least one of n-butyl acrylate and 2-ethylhexyl acrylate among the acrylic alkyl ester group in which the alkyl group has 1 to 8 carbon atoms, 69.9 to 89.9% by weight. % and styrene alone or a mixture of styrene and its derivatives 10-30% by weight and the following formula or 0.1 to 10% by weight of at least one substance shown in
It is a copolymer of a monomer mixture consisting of a range of 95 to 50
Polymerize parts by weight. The composition ratio of the acrylic acid ester monomer and styrene or a mixture of styrene and its derivatives is one of the important factors for imparting transparency, and transparency decreases outside the above composition range. The substances represented by formulas (1) and (2) are one of the most important components of the present invention, and the objects of the present invention are thereby achieved.
Although the details of its effects are not clear,
It is inferred that this is because the degree of crosslinking of the crosslinked acrylic ester copolymer (B) and the graft polymerizability with methyl methacrylate are controlled in a well-balanced manner. The appropriate amount to add is 0.1 to 10% by weight, although the appropriate value differs depending on whether it is used alone or in combination.
A range of is appropriate. In addition to the substances represented by formulas (1) and (2), a known polyfunctional monomer can also be used in a range of 0 to 9% by weight. Further, this polyfunctional monomer does not need to be particularly limited and is one commonly used. Specific compounds include ethylene glycol di(meth)acrylate, 1,3
Butylene di(meth)acrylate, tetraethylene glycol di(meth)acrylate, divinylbenzene, etc. can be used. Next, the monomer or monomer mixture (C) is polymerized in the presence of the multi-structure acrylic elastomer [ ], and the component composition constituting this is 80 to 100% by weight of methyl methacrylate, carbon of the alkyl group, Numbers 1-8
0 to 20% by weight of at least one acrylic acid alkyl ester and 0 to 10% by weight of another vinyl monomer copolymerizable therewith. If the content of methyl methacrylate in the monomer or monomer mixture (C) is less than 80% by weight, properties such as transparency and heat resistance will be poor, and the acrylic acid alkyl ester copolymerized with it will be inferior. Examples include methyl acrylate, ethyl acrylate, butyl acrylate, and the like. Other vinyl monomers that can be used as copolymerization components include styrene, acrylonitrile, and methacrylic acid. If the amount of acrylic ester exceeds 20% by weight in the monomer or monomer mixture (C), it will be unfavorable in terms of heat resistance and transparency of the resulting resin, and other vinyl monomers that can be copolymerized may If the amount exceeds 10% by weight, it is unfavorable in terms of transparency, heat resistance, water resistance, etc. The monomer or monomer mixture (C) must be polymerized in an amount of 10 to 1000 parts by weight per 100 parts by weight of the multilayer acrylic elastomer. If it is less than 10 parts by weight, it is not preferable because impact resistance may be poor or surface gloss may be reduced. while 1000
If it exceeds parts by weight, productivity will decrease, which is undesirable. A degree of polymerization regulator such as mercaptan may be used in the monomer or monomer mixture (C) to adjust the molecular weight as necessary. Examples of the polymerization degree regulator that can be used include alkyl mercaptans, thioglycolic acid and its esters, β-mercaptopropionic acid and its esters, and aromatic mercaptans such as thiophenol and thiocresol. Since it is preferable to manufacture the methacrylic resin of the present invention by emulsion polymerization, an example in which emulsion polymerization is used will be described. After adding deionized water and an emulsifier if necessary to the reaction vessel, the monomer mixture constituting the hard crosslinked resin (A) is polymerized, and then the monomer mixture constituting the crosslinked acrylic ester copolymer (B) is polymerized. The monomer mixture is polymerized, and then the monomer or monomer mixture (C) is polymerized. Polymerization temperature is 30-120℃, more preferably 50-100℃
It is ℃. The polymerization time varies depending on the type and amount of the polymerization initiator and emulsifier, the polymerization temperature, etc., but is usually 0.5 to 7 hours for each polymerization step (A), (B), and (C). The ratio of polymer to water is monomer/water = 1/20 to 1/1
is preferred. A polymerization initiator and an emulsifier can be added to either or both of the aqueous monomer phases. The monomers in the polymerization steps (A), (B), and (C) can be charged all at once or in portions, but the split-charging method is more preferable from the viewpoint of heat generation during polymerization. The emulsifier is not particularly limited as long as it is a commonly used emulsifier, and examples of emulsifiers that can be used include long-chain alkyl carboxylates, sulfosuccinic acid alkyl ester salts, alkylbenzene sulfonates, and the like. There is no need to particularly limit the type of polymerization initiator, and commonly used water-soluble inorganic initiators such as persulfates and perborates can be used alone or in combination with sulfites, thiosulfates, etc. as redox initiators. It can also be used. Further, redox initiation systems such as organic hydroperoxide-ferrous salts, organic hydroperoxide-sodium sulfoxylate, benzoyl peroxide, azobisisobutyronitrile, and the like can also be used. The polymer latex obtained by the emulsion polymerization method is coagulated and dried by a known method. By molding the methacrylic resin thus obtained using an extrusion molding machine, an injection molding machine, etc., a molded product with excellent transparency, surface gloss, and high impact resistance can be obtained. The present invention will be explained in more detail below based on Examples. In the examples, parts represent polymerized parts, and % represents weight %. Examples 1 to 2, Comparative Examples 1 to 5 (1) Production of hard crosslinked resin (A) First, the following raw materials (A) were charged in various proportions into a stainless steel reaction vessel with an internal volume of 50 mm, and nitrogen was added under stirring. After blowing into the mixture to make it substantially free from the influence of oxygen, the temperature was raised to 70°C, the following raw materials (b) were added, and polymerization was carried out for 2 hours to obtain a latex of hard crosslinked resin. (a) Raw material deionized water 500 parts Sarcosinate LN *1) (S-LN) 0.10 parts Boric acid 1.0 parts Sodium carbonate 0.1 parts Methyl methacrylate (MMA) Ethyl acrylate (EA) 1,3-butylene dimethacrylate 97% 1% 2% 15 parts (b) Raw material deionized water 10 parts Potassium persulfate (KPS) 0.3 parts *1 N-acyl sarcosinate (product of Nikko Chemicals Co., Ltd.) The polymerization rate of MMA in this latex is 98.5%. The particle size was 0.16 μm. (2) Production of multi-layered acrylic elastomer [] by polymerization of cross-linked acrylic ester copolymer (B) An amount of hard material equivalent to 15 parts of the solid content after substantially completing the polymerization in (1) above In the above container containing the crosslinked resin latex, add the following sodium formaldehyde sulfoxylate (hereinafter referred to as Rongarit).
and an aqueous solution of sarcosinate LN at 80°C.
After raising the temperature to
0.32 part was added continuously over 150 minutes. After the addition was completed, polymerization was continued for an additional 3 hours to obtain a latex of a multi-layered acrylic elastomer containing the hard crosslinked resin (A) inside the particles. Sarcosinate LN 0.2 parts Rongarit 0.32 parts Deionized water 10 parts

【表】 上記いずれの場合も、BAおよびSTの重合収
率はそれぞれ97%および99.5%以上であり、得ら
れたラテツクスの粒子径は0.26〜0.28μmであつ
た。 (3) 単量体混合物(C)の重合によるメタクリル樹脂
の製造 上記の重合(2)で得られた多重構造アクリル系弾
性体〔〕の固形分100部に相当するラテツクス
を入れた上記容器内に、ザルコシネートLN0.25
部及び脱イオン水10部を添加して撹拌した後、下
記の単量体混合物(C)を2.5時間にわたつてて連続
的に添加した。その後更に1時間重合を継続しメ
タクリル樹脂をラテツクス状で得た。単量体混合
物(C)のMMAの重合収率は、いずれの例の場合も
99.5%以上であつた。 単量体混合物 (C) MMA EA ノルマルオクチルメルカプタン (n−C8SH)9.87% 6% 0.3% 300部 TBH 0.9部 このラテツクスを以下に述べる方法により凝
固、洗浄、乾燥してメタクリル樹脂の粉体を得
た。 ステンレス製容器に1.0%硫酸水1400部を仕込
み、撹拌下80℃に昇温し先に製造したラテツクス
700部を20分間にわたつて連続的に添加し、その
後内温を95℃まで昇温し、5分間保持した。室温
まで冷却した後ポリマーを別し、脱イオン水で
洗浄し白色のクリーム状ポリマーを得、これを70
℃で24時間乾燥して白色粉体状のポリマーを得
た。 次にこの粉体を、外径40mmφのスクリユー型押
出機((株)日本製鋼所製、P―40―26AB―V型、
L/D=26)を使用し、シリンダー温度200〜260
℃、ダイ温度250℃で溶融混練してペレツトとな
し、多重構造アクリル弾性体〔〕の含有量25%
の耐衝撃性メタクリル樹脂を得た。 これを下記の条件で射出成形し、得られた試験
片から表―2の評価結果を得た。 射出成形機;(株)日本製鋼所製、V―17―65型スク
リユー式自動射出成形機 射出成形条件;シリンダー温度250℃、射出圧700
Kg/cm2 試験片サイズ;110mm×110mm×2mm(厚さ) 70mm×12.5mm×6.2mm(厚さ)
[Table] In all of the above cases, the polymerization yields of BA and ST were 97% and 99.5% or more, respectively, and the particle size of the obtained latex was 0.26 to 0.28 μm. (3) Production of methacrylic resin by polymerization of monomer mixture (C) Inside the above container containing latex equivalent to 100 parts solids of the multi-layered acrylic elastomer [] obtained in the above polymerization (2). In, Sarcosinate LN0.25
After adding and stirring 10 parts of deionized water, the following monomer mixture (C) was added continuously over 2.5 hours. Thereafter, polymerization was continued for an additional hour to obtain a methacrylic resin in the form of a latex. In all cases, the polymerization yield of MMA in monomer mixture (C) is
It was over 99.5%. Monomer mixture (C) MMA EA Normal octyl mercaptan (n-C 8 SH) 9.87% 6% 0.3% 300 parts TBH 0.9 parts This latex is coagulated, washed and dried by the method described below to form methacrylic resin powder. I got it. 1400 parts of 1.0% sulfuric acid water was placed in a stainless steel container, and the temperature was raised to 80°C while stirring to produce the latex produced earlier.
700 parts were added continuously over 20 minutes, and then the internal temperature was raised to 95°C and held for 5 minutes. After cooling to room temperature, the polymer was separated and washed with deionized water to obtain a white creamy polymer, which was
It was dried at ℃ for 24 hours to obtain a white powdery polymer. Next, this powder was processed using a screw type extruder (manufactured by Japan Steel Works, Ltd., P-40-26AB-V type, with an outer diameter of 40 mmφ).
L/D=26), cylinder temperature 200-260
℃, melt-kneaded at a die temperature of 250℃ to form pellets, content of multi-layered acrylic elastic body [ ] 25%
An impact-resistant methacrylic resin was obtained. This was injection molded under the following conditions, and the evaluation results shown in Table 2 were obtained from the test pieces obtained. Injection molding machine: V-17-65 screw type automatic injection molding machine manufactured by Japan Steel Works Co., Ltd. Injection molding conditions: Cylinder temperature 250℃, injection pressure 700
Kg/cm 2 Test piece size: 110mm x 110mm x 2mm (thickness) 70mm x 12.5mm x 6.2mm (thickness)

【表】 実施例3〜4、比較例6〜9 実施例1の一連の製造方法の内、表―3に示し
た部分のモノマー組成のみを変更してメタクリル
樹脂を得、実施例1とまつたく同様に評価し、表
―4の結果を得た。
[Table] Examples 3 to 4, Comparative Examples 6 to 9 Among the series of production methods of Example 1, only the monomer composition of the portion shown in Table 3 was changed to obtain a methacrylic resin, and the same as that of Example 1 was obtained. The same evaluation was performed, and the results shown in Table 4 were obtained.

【表】【table】

【表】【table】

【表】 以上の結果から明らかなように、架橋アクリル
酸エステル系共重合体(B)の重合において本発明で
使用する一般式(1)および(2)の物質がまつたくの無
添加である場合(比較例6)、添加されても本発
明の使用範囲外である場合(比較例7,8)、ま
た本発明の使用範囲内の添加量であつても内部に
硬質架橋樹脂(A)の芯を保有しない場合(比較例
9)には本発明の目的を達成し得ないことが判
る。
[Table] As is clear from the above results, the substances of general formulas (1) and (2) used in the present invention in the polymerization of the crosslinked acrylic acid ester copolymer (B) are free of additives. (Comparative Example 6), even if it is added, it is outside the range of use of the present invention (Comparative Examples 7 and 8), and even if the amount added is within the range of use of the present invention, the hard crosslinked resin (A) is contained inside. It can be seen that the object of the present invention cannot be achieved when the core of the present invention is not possessed (Comparative Example 9).

Claims (1)

【特許請求の範囲】 1 メタクリル酸メチル単位を80重量%以上を含
む硬質架橋樹脂(A)5〜50重量部を粒子内部に含有
し、アルキル基の炭素数が1〜8のアクリル酸ア
ルキルエステルの少なくとも1種69.9〜89.9重量
%とスチレン単独またはスチレンとその誘導体の
混合物10〜30重量%ならびに次式 または で示される物質の少なくとも1種0.1〜10重量%
よりなる単量体混合物の架橋アクリル酸エステル
系共重合体(B)95〜50重量部が外層を構成する粒子
径が0.2〜0.45μmの多重構造アクリル系弾性体
〔〕100重量部の存在下に、メタクリル酸メチル
80〜100重量%、アルキル基の炭素数1〜8のア
クリル酸アルキルエステルの少なくとも1種0〜
20重量%、およびこれと共重合可能な他のビニル
系単量体0〜10重量%以下よりなる単量体または
単量体混合物(C)10〜1000重量部を重合することを
特徴とする耐衝撃性に優れたメタクリル樹脂の製
造方法。
[Scope of Claims] 1. An acrylic acid alkyl ester containing 5 to 50 parts by weight of a hard crosslinked resin (A) containing 80% by weight or more of methyl methacrylate units inside the particles, and in which the alkyl group has 1 to 8 carbon atoms. 69.9 to 89.9% by weight of at least one of the above, 10 to 30% by weight of styrene alone or a mixture of styrene and its derivatives, and the following formula: or 0.1 to 10% by weight of at least one substance shown in
In the presence of 100 parts by weight of a multi-structure acrylic elastomer with a particle size of 0.2 to 0.45 μm, which constitutes the outer layer, 95 to 50 parts by weight of a crosslinked acrylic ester copolymer (B) of a monomer mixture consisting of , methyl methacrylate
80 to 100% by weight, at least one acrylic acid alkyl ester having an alkyl group of 1 to 8 carbon atoms, 0 to 100% by weight;
It is characterized by polymerizing 10 to 1000 parts by weight of a monomer or monomer mixture (C) consisting of 20% by weight and 0 to 10% by weight of other vinyl monomers copolymerizable therewith. A method for producing methacrylic resin with excellent impact resistance.
JP5747788A 1988-03-11 1988-03-11 Production of methacrylic resin with high impact resistance Granted JPS63254114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5747788A JPS63254114A (en) 1988-03-11 1988-03-11 Production of methacrylic resin with high impact resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5747788A JPS63254114A (en) 1988-03-11 1988-03-11 Production of methacrylic resin with high impact resistance

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP6363582A Division JPS58180514A (en) 1982-04-16 1982-04-16 Methacrylate resin composition excellent in impact resistance

Publications (2)

Publication Number Publication Date
JPS63254114A JPS63254114A (en) 1988-10-20
JPH0154361B2 true JPH0154361B2 (en) 1989-11-17

Family

ID=13056787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5747788A Granted JPS63254114A (en) 1988-03-11 1988-03-11 Production of methacrylic resin with high impact resistance

Country Status (1)

Country Link
JP (1) JPS63254114A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2593557B2 (en) * 1989-07-20 1997-03-26 旭化成工業株式会社 Multi-layer acrylic polymer
CA2042452A1 (en) * 1990-05-25 1991-11-26 Loren D. Trabert Modified acrylic capstock
JP3198075B2 (en) * 1997-06-09 2001-08-13 三菱レイヨン株式会社 Multilayer acrylic polymer and methacrylic resin composition using the same
US6783348B2 (en) * 2001-09-26 2004-08-31 Korea Plasys Corporation Extrusion molding apparatus for product having wood pattern and extrusion molding method thereof

Also Published As

Publication number Publication date
JPS63254114A (en) 1988-10-20

Similar Documents

Publication Publication Date Title
US3808180A (en) Composite interpolymer and low haze impact resistant thermoplastic compositions thereof
JP3664575B2 (en) Methacrylic ester resin composition and film formed by molding the same
EP0095769B1 (en) Impact-resistant methacrylic resin composition
US4902745A (en) Rubber-like thermoplastic polymer mixtures
US4595728A (en) Impact-resistant methacrylic resin composition
JPH0315648B2 (en)
JPH0154361B2 (en)
JP2648179B2 (en) Methacrylic resin cast plate excellent in impact resistance and method for producing the same
JP2003522244A (en) Impact-resistant composition based on thermoplastic methacrylic (co) polymer
JPH0465848B2 (en)
US5338804A (en) Methacrylic resin cast plate having transparency and impact resistance, and process for preparation thereof
JPH0781062B2 (en) Impact-resistant methacrylic resin composition
JPS6342940B2 (en)
JPS63120716A (en) Production of impact-resistant resin
JP2002060439A (en) Copolymer having multilayer structure and methacrylic resin composition
JP3366362B2 (en) Methacrylic impact modifier and resin composition
JPS6245886B2 (en)
JP3366363B2 (en) Methacrylic impact modifier and impact resin composition
JPS59124947A (en) Methacrylate resin composition
JPH03163153A (en) Multilayered polymer resin composition
JPH0248176B2 (en)
JPS63135440A (en) Impact-resistant methacrylate resin composition
JPS6099114A (en) Impact-resistant methacrylic resin composition
JPS6153350A (en) Solvent-resistant methacrylic resin composition
JPH08291245A (en) Methacrylic resin composition