JPH03168747A - Photomask - Google Patents

Photomask

Info

Publication number
JPH03168747A
JPH03168747A JP1310311A JP31031189A JPH03168747A JP H03168747 A JPH03168747 A JP H03168747A JP 1310311 A JP1310311 A JP 1310311A JP 31031189 A JP31031189 A JP 31031189A JP H03168747 A JPH03168747 A JP H03168747A
Authority
JP
Japan
Prior art keywords
film
pattern
patterns
carbon atoms
photomask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1310311A
Other languages
Japanese (ja)
Inventor
Eiichi Hoshino
栄一 星野
Mitsugi Kamimura
上村 貢
Yoshimi Goto
後藤 芳美
Shigeru Saito
茂 齋藤
Takatsugu Tazume
田爪 隆次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Fujitsu Electronics Ltd
Fujitsu Ltd
Original Assignee
Kyushu Fujitsu Electronics Ltd
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Fujitsu Electronics Ltd, Fujitsu Ltd filed Critical Kyushu Fujitsu Electronics Ltd
Priority to JP1310311A priority Critical patent/JPH03168747A/en
Publication of JPH03168747A publication Critical patent/JPH03168747A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To decrease the influence of a proximity effect and to decrease the memory capacity of an electronic computer as well as to attain the formation of fine patterns with high accuracy by incorporating carbon atoms into the light shielding patterns to be provided on a transparent substrate. CONSTITUTION:The C-contg. light shielding patterns 3 provided on the transparent substrate are the metallic film patterns laminated with three layers; a C- contg. CrOx film 31, a C-contg. Cr film 32 and a C-contg. CrOx film 33. The carbon atoms are incorporated at 3 to 10% into all of these three metallic film layers. The amt. of the secondary electrons is decreased at the time of exposing and nearly the same exposed regions are formed in the regions plotted by an electron beam when the carbon atoms are incorporated into the patterns in such a manner. Thus, the photomask having the faithful and fine patterns having the high accuracy is formed.

Description

【発明の詳細な説明】 (概 要) 電子ビーム露光法によってパターンが描画されるレチク
ルやマスクなどのフォトマスクに関し、近接効果の影響
を減少させ、電子計算機の記憶容量を小さくして、高精
度な微細パターンを形或することを目的とし、 透明基板上に設けられた遮光パターンに炭素原子が含ま
れているフォトマスクに構或する。
[Detailed Description of the Invention] (Summary) With regard to photomasks such as reticles and masks on which patterns are drawn using electron beam exposure, the influence of the proximity effect can be reduced, the storage capacity of electronic computers can be reduced, and high precision can be achieved. The purpose of this method is to form a fine pattern, and a photomask is constructed in which carbon atoms are included in a light-shielding pattern provided on a transparent substrate.

〔産業上の利用分野〕[Industrial application field]

本発明はフォトマスクに係り、特に電子ビーム露光法に
よってパターンが描画されるレチクルやマスクなどのフ
ォトマスクに関する。
The present invention relates to a photomask, and more particularly to a photomask such as a reticle or mask on which a pattern is drawn using an electron beam exposure method.

最近、LSIなどの半導体デバイスは極めて微細化され
ており、それに伴ってフォトマスクに設ける遮光パター
ンも微細化されている。しかし、そのようなフォトマス
クは出来る限り高精度なパターンを形或することが望ま
しく、それは半導体装置の性能,品質に重大な影響をも
っているからである. 〔従来の技術〕 さて、半導体装置の製造方法におけるフォトリソグラフ
ィ技術で使用されるフォトマスクにはレチクルとマスク
との二種類があり、レチク!レとは半導体基板に転写す
るパターンの5〜10倍の大きさのパターンが設けてあ
り、このレチクルを縮小投影露光装置(ステッパ)に取
り付けて、半導体基板上に縮小投影するフォトマスクの
ことである。
Recently, semiconductor devices such as LSIs have become extremely finer, and accordingly, light-shielding patterns provided on photomasks have also become finer. However, it is desirable that such photomasks form patterns with as high precision as possible, as this has a significant impact on the performance and quality of semiconductor devices. [Prior Art] There are two types of photomasks used in photolithography technology in semiconductor device manufacturing methods: reticles and masks. A reticle is a photomask that has a pattern that is 5 to 10 times the size of the pattern to be transferred onto a semiconductor substrate, and this reticle is attached to a reduction projection exposure device (stepper) and is reduced and projected onto the semiconductor substrate. be.

また、マスクとは半導体基板に転写するパターンと同じ
等倍のパターンが設けてあり、アライメント装置によっ
て半導体基板に密着露光するマスクのことである。
Further, a mask is a mask that is provided with a pattern of the same size as the pattern to be transferred onto a semiconductor substrate, and is exposed in close contact with the semiconductor substrate using an alignment device.

且つ、これらのレチクルやマスクには金属膜などからな
る遮光パターンが透明基板上に形戒されており、その従
来のフォトマスクの断面図を第3図に示している。同図
において、記号1は石英ガラス基板(透明基板),2は
遮光パターンで、その遮光パターン2は例えば酸化クロ
ム(Crux)膜21(膜厚50人),クロム(Cr)
膜22(膜* 600人),酸化クロム(Crux)膜
23(膜厚300人)の三層を積層した金属膜パターン
で構或されている。
In addition, these reticles and masks have a light-shielding pattern made of a metal film or the like formed on a transparent substrate, and a cross-sectional view of such a conventional photomask is shown in FIG. In the figure, symbol 1 is a quartz glass substrate (transparent substrate), 2 is a light-shielding pattern, and the light-shielding pattern 2 is made of, for example, a chromium oxide (Crux) film 21 (film thickness: 50 mm), chromium (Cr).
It is constructed of a metal film pattern in which three layers are laminated: a film 22 (film*600 layers) and a chromium oxide (Crux) film 23 (thickness 300 layers).

ところが、半導体デバイスの微細化に伴い、レチクルや
マスクなどのフォトマスクに設ける遮光パターンも高精
度化が要求されるために、最近ではサブミクロン程度の
パターン形或が可能な電子ビーム露光法でパターンを描
画させている.しかし、電子ビーム露光法は光露光法と
違って電子を入射させるために、微細パターン形或の可
能な反面、パターン精度劣化の一原囚である近接効果を
生じて、その近接効果を補正する必要がある。近接効果
とは露光時のレジスト内での電子散乱,電子入射後の基
板からの後方散乱を繰り返して、照射した位置以外の周
辺にも電荷を蓄積され、その電荷の蓄積に応じたパター
ンが形或されて、それがパターンひずみとなって現像さ
れてパターン精度を低下させることである。他の言い方
をすれば、照射電子の二次電子や発熱のために周辺も感
光されてパターン精度が低下することで、また、この近
接効果は隣接パターンにも影響することになる。
However, with the miniaturization of semiconductor devices, the light-shielding patterns provided on photomasks such as reticles and masks are required to have higher precision. is drawn. However, unlike the light exposure method, the electron beam exposure method allows electrons to be incident, so while it is possible to form fine patterns, it also produces a proximity effect, which is one of the main causes of pattern accuracy deterioration, and the proximity effect must be corrected. There is a need. Proximity effect is a phenomenon in which electron scattering within the resist during exposure and back scattering from the substrate after electron incidence are repeated, and charges are accumulated around the irradiated position, and a pattern is formed according to the accumulation of charges. This results in pattern distortion and deterioration in pattern accuracy. In other words, the periphery is also exposed to light due to the secondary electrons of the irradiated electrons and heat generation, reducing pattern accuracy, and this proximity effect also affects adjacent patterns.

第4図はそれを説明するための従来の露光方法を示す断
面図で、石英ガラス基板1の上にCrux膜21, C
r膜22+ Crux膜23からなる金属膜2をスパッ
タ法で被着し、更にその上にレジスト膜5(膜厚500
0人)を塗布して、その上面から電子ビームEBを選択
的に照射している工程断面図である。
FIG. 4 is a cross-sectional view showing a conventional exposure method for explaining this, in which a Crux film 21, C
A metal film 2 consisting of an r film 22 + a Crux film 23 is deposited by sputtering, and a resist film 5 (thickness: 500 mm) is further applied thereon.
FIG. 3 is a cross-sectional view of a process in which a coating material (0 persons) is applied and an electron beam EB is selectively irradiated from the top surface thereof.

そうすれば、金属膜2に入射した電子から二次電子が反
射する(矢印で示す)ため、また、電子人射による発熱
のために、近接効果によって露光領域52が拡がり、第
4図はそれを図示している。
Then, secondary electrons are reflected from the electrons incident on the metal film 2 (indicated by arrows), and the exposure area 52 expands due to the proximity effect due to heat generation due to human radiation of electrons, which is shown in FIG. is illustrated.

このような近接効果を補正する手段として、従来、予め
パターン自身や隣接パターンの近接効果を考慮して、露
光データに寸法シフト量を加算して補正していた。例え
ば、ボジ型レジストに露光する場合には設計パターンよ
りも小さく描画し、又、ネガ型レジストに露光する場合
には設計パターンよりも大きく描画して、しかも、隣接
パターンをも考慮して加減した補正量を与えていた。
Conventionally, as a means for correcting such a proximity effect, the proximity effect of the pattern itself and adjacent patterns has been taken into account in advance, and a dimensional shift amount is added to the exposure data. For example, when exposing to a positive resist, the pattern is drawn smaller than the design pattern, and when exposing to the negative resist, the pattern is drawn larger than the design pattern, and also the adjacent patterns are taken into consideration. A correction amount was given.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、設計パターンの露光データに加えて、このよう
な近接効果を補正する補正量を計算処理して決定しなが
ら描画することは、電子ビーム露光装置に付属する電子
計算機の記憶容量が大きくなる欠点があり、特に、レチ
クルのような5〜10倍のパターンを描画する場合に、
その記憶容量が一層増加する欠点がある。
However, writing while calculating and determining the correction amount for correcting such proximity effect in addition to the exposure data of the design pattern has the disadvantage that the storage capacity of the electronic computer attached to the electron beam exposure apparatus becomes large. Especially when drawing a 5 to 10 times larger pattern like a reticle,
It has the disadvantage that its storage capacity increases further.

本発明はそのような欠点を低減させて、近接効果の影響
を減少させ、電子計算機の記憶容量を小さくして、高精
度な微細パターンが形威されるフォトマスクを提案する
ものである。
The present invention reduces such drawbacks, reduces the influence of the proximity effect, reduces the storage capacity of electronic computers, and proposes a photomask that allows highly accurate fine patterns to be formed.

〔課題を解決するための手段〕[Means to solve the problem]

その課題は、透明基板上に設けられた遮光パターンに炭
素原子が含まれているフォトマスクによって解決される
This problem is solved by a photomask in which a light-shielding pattern provided on a transparent substrate contains carbon atoms.

〔作 用〕[For production]

即ち、従来は、比較的に電子が逸散しにくい遮光膜(金
属膜)のために二次電子や発熱を生じていたが、本発明
は、遮光膜に入射した電子が逸散し易いように遮光膜に
炭素原子(C)を含有させて、そのような遮光膜を形或
した石英ガラス基板を使用し、それを電子ビーム露光法
で描画してフォトマスクを形或する。
That is, in the past, secondary electrons and heat generation were generated due to the light-shielding film (metal film) from which electrons are relatively difficult to dissipate, but the present invention uses a light-shielding film that makes it easier for electrons to dissipate when they enter the light-shielding film. A quartz glass substrate with a light shielding film containing carbon atoms (C) is used, and a photomask is formed by drawing on the light shielding film using an electron beam exposure method.

そうすれば、遮光膜から電子が逃げ易くて近接効果が減
少し、電子計算機の記憶容量も小さくできて、しかも、
高精度な微細パターンをもったフォトマスクが得られる
In this way, electrons can easily escape from the light-shielding film, reducing the proximity effect, and reducing the storage capacity of electronic computers.
A photomask with a highly accurate fine pattern can be obtained.

〔実 施 例〕〔Example〕

以下に図面を参照して実施例によって詳細に説明する。 Examples will be described in detail below with reference to the drawings.

第1図は本発明にかかるフォトマスクの断面図を示して
おり、図中の記号1は石英ガラス基板(厚み2〜3mm
) ,  3はC含有遮光パターン(C含有金属膜パタ
ーン)で、そのC含有遮光パターン3はC含有Crux
膜31(膜厚50人),C含有Cr膜32(膜厚600
人),C含有Cry.膜33(膜厚300人)の三層を
積層した金属膜パターンであり、これら三層の金属膜す
べてに3〜10%の炭素原子を含有させてある。このよ
うな炭素原子を含有させれば、露光時に二次電子の発生
量が減少して、電子ビームで描画した領域にほぼ同じ露
光領域が形威され、その結果、従来よりも忠実な高精度
微細パターンをもったフォトマスクを形戒することがで
きる。
FIG. 1 shows a cross-sectional view of a photomask according to the present invention, and symbol 1 in the figure is a quartz glass substrate (2 to 3 mm thick).
), 3 is a C-containing light-shielding pattern (C-containing metal film pattern), and the C-containing light-shielding pattern 3 is C-containing Crux.
Film 31 (thickness 50), C-containing Cr film 32 (thickness 600)
human), C-containing Cry. This is a metal film pattern in which three layers of film 33 (thickness: 300 layers) are laminated, and all of these three metal films contain 3 to 10% of carbon atoms. If such carbon atoms are included, the amount of secondary electrons generated during exposure will be reduced, and the exposed area will be approximately the same as the area drawn with the electron beam, resulting in a high precision that is more faithful than before. A photomask with a fine pattern can be used.

その炭素原子を含有させる方法を説明すると、Cr膜や
Crow膜を被着するためにはスバッタ法を用いている
が、そのスパッタの際にスパッタガスとしてアルゴン(
Ar)ガスと共に炭酸(C○2)ガスを用いる。スバッ
タ条件の一例を記載すると、ガス圧5mToor , 
Arガス100cc/分,CO2ガス15cc/分.ス
バッタ電圧450 V , スバッタ電流4.5A程度
でスパッタをおこない、スパッタ基板にはクロムまたは
酸化クロムを用いる。
To explain the method for incorporating carbon atoms, a sputtering method is used to deposit a Cr film or a Crow film, but argon (argon) is used as the sputtering gas during sputtering.
Carbon dioxide (C○2) gas is used together with Ar) gas. An example of spatter conditions is gas pressure 5mToor,
Ar gas 100cc/min, CO2 gas 15cc/min. Sputtering is performed at a sputtering voltage of 450 V and a sputtering current of about 4.5 A, and chromium or chromium oxide is used for the sputtering substrate.

第2図は本発明にかかる露光方法を示す断面図であり、
石英ガラス基板1上にいずれも炭素原子を含有させたC
rux膜31, Cr膜32, Crux膜33からな
るC含有金属膜3を上記条件のスパッタ法で被着し、更
にその上にレジストIIU5(It!厚5000人)を
塗布して、その上面から電子ビームEBを選択的に照射
する。そうすると、C含有金属膜3に入射した電子は比
較的容易に膜中を移動して逸散されるために、二次電子
が減少して、また、それだけ発熱量も減少して近接効果
が減少し、従来よりもレジスト膜5の露光領域53に忠
実なレジストパターンが描画される。
FIG. 2 is a cross-sectional view showing the exposure method according to the present invention,
C containing carbon atoms on the quartz glass substrate 1
A C-containing metal film 3 consisting of a Crux film 31, a Cr film 32, and a Crux film 33 is deposited by sputtering under the above conditions, and then a resist IIU5 (It! thickness: 5000 mm) is applied from the top surface. Selectively irradiate with electron beam EB. Then, the electrons incident on the C-containing metal film 3 move through the film relatively easily and are dissipated, so the number of secondary electrons decreases, and the amount of heat generated decreases accordingly, reducing the proximity effect. However, a resist pattern that is more faithful to the exposed area 53 of the resist film 5 than before is drawn.

従って、電子ビーム露光装置に付属する電子計算機の記
憶容量を従来より小さくすることができて、且つ、従来
よりも忠実な高精度パターンを有するフォトマスクが得
られる。即ち、露光データに加算して補正する寸法シフ
ト量が減少するだけ誤差も少なくなって、設計パターン
に忠実なパターンが形威されて高精度化できる。
Therefore, the storage capacity of the electronic computer attached to the electron beam exposure apparatus can be made smaller than before, and a photomask having a more faithful and accurate pattern than before can be obtained. That is, as the amount of dimensional shift corrected by adding to the exposure data is reduced, the error is also reduced, and a pattern faithful to the design pattern can be produced with high accuracy.

上記の実施例は遮光パターンとしてCrO).膜,Cr
膜からなる複合金属膜パターンを例として説明したが、
他の材料からなる遮光パターンを有するフォトマスクに
も適用できることはいうまでもない。
The above embodiment uses CrO) as the light shielding pattern. Membrane, Cr
The explanation was given using a composite metal film pattern consisting of a film as an example.
It goes without saying that the present invention can also be applied to photomasks having light-shielding patterns made of other materials.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば電子ビ
ーム露光装置に付属する電子計算機の記憶容量を少なく
できて、且つ、従来よりも忠実な高精度パターンをもっ
たレチクルなどのフォトマスクを形戊することができ、
LSIなど半導体デバイスの性能・品質向上に寄与する
ものである。
As is clear from the above description, according to the present invention, the storage capacity of the electronic computer attached to the electron beam exposure apparatus can be reduced, and a photomask such as a reticle with a more faithful and accurate pattern than before can be manufactured. can be shaped,
This contributes to improving the performance and quality of semiconductor devices such as LSI.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかるフォトマスクの断面図、第2図
は本発明にかかる露光方法を示す断面図、第3図は従来
のフォトマスクの断面図、第4図は従来の露光方法を示
す断面図であ・る。 図において、 1は石英ガラス基板、 2は遮光パターン、または、金属膜、 21. 23はCry.膜、 22はCr膜、 3はC含有遮光パターン、または、C含有金属膜、31
. 33はC含有CryX膜、 32はC含有Cr膜、 5はレジスト膜、 52. 53は露光領域、 EBは電子ビーム を示している。 第4図
FIG. 1 is a sectional view of a photomask according to the present invention, FIG. 2 is a sectional view showing an exposure method according to the invention, FIG. 3 is a sectional view of a conventional photomask, and FIG. 4 is a sectional view of a conventional exposure method. FIG. In the figure, 1 is a quartz glass substrate, 2 is a light shielding pattern or a metal film, 21. 23 is Cry. 22 is a Cr film; 3 is a C-containing light-shielding pattern or a C-containing metal film; 31
.. 33 is a C-containing CryX film, 32 is a C-containing Cr film, 5 is a resist film, 52. Reference numeral 53 indicates an exposure area, and EB indicates an electron beam. Figure 4

Claims (1)

【特許請求の範囲】[Claims]  透明基板上に設けられた遮光パターンに炭素原子が含
まれてなることを特徴とするフォトマスク。
A photomask characterized in that a light-shielding pattern provided on a transparent substrate contains carbon atoms.
JP1310311A 1989-11-29 1989-11-29 Photomask Pending JPH03168747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1310311A JPH03168747A (en) 1989-11-29 1989-11-29 Photomask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1310311A JPH03168747A (en) 1989-11-29 1989-11-29 Photomask

Publications (1)

Publication Number Publication Date
JPH03168747A true JPH03168747A (en) 1991-07-22

Family

ID=18003696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1310311A Pending JPH03168747A (en) 1989-11-29 1989-11-29 Photomask

Country Status (1)

Country Link
JP (1) JPH03168747A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003530711A (en) * 2000-04-11 2003-10-14 エテック システムズ インコーポレイテッド Method and apparatus for correcting resist heating in real time in lithography

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003530711A (en) * 2000-04-11 2003-10-14 エテック システムズ インコーポレイテッド Method and apparatus for correcting resist heating in real time in lithography

Similar Documents

Publication Publication Date Title
KR101795335B1 (en) Mask blank, transfer mask, method for manufacturing transfer mask and method for manufacturing semiconductor device
US20070091421A1 (en) Multilayer reflective film coated substrate, manufacturing method thereof, reflective mask blank, and reflective mask
TWI758324B (en) Mask substrate, phase shift mask, manufacturing method of phase shift mask, and manufacturing method of semiconductor device
JP2005529362A (en) Photomask and defect repair method
WO2022050156A1 (en) Reflection-type mask, reflection-type mask blank, and method for manufacturing reflection-type mask
US6709791B1 (en) Halftone phase shift photomask and blanks for halftone phase shift photomask for it and pattern forming method using this
CN111902772A (en) Mask blank, phase shift mask and method for manufacturing semiconductor device
JP6964115B2 (en) Manufacturing method for mask blanks, transfer masks, and semiconductor devices
JP3177948B2 (en) Photomask for exposure
JP2005241693A (en) Halftone phase shift mask blank, its manufacturing method and halftone phase shift mask and its manufacturing method
JP3071324B2 (en) How to modify the phase shift mask
JPH03168747A (en) Photomask
US6506525B2 (en) Method of repairing an opaque defect in a photomask
JP3289606B2 (en) Blank for halftone type phase shift mask and halftone type phase shift mask
JP2001290257A (en) Half-tone phase-shifting photomask, blanks for half-tone phase-shifting photomask therefor and pattern forming method using the same
JP7154572B2 (en) MASK BLANK, TRANSFER MASK, AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE
JP4099836B2 (en) Halftone phase shift mask blank, method of manufacturing the same, and halftone phase shift mask
JPH09244211A (en) Blank for halftone phase shift mask, halftone phase shift mask and its production
JPS6289053A (en) Photomask
JPH0344915A (en) Manufacture of x-ray exposure mask
JPH01264221A (en) Formation of pattern and lithographic apparatus
JPS61272925A (en) Manufacture of x-ray mask
JPS62125352A (en) Production of photomask
JPS60140347A (en) Photomask
JPH03208329A (en) X-ray mask, method of correcting x-ray mask, and x-ray exposure system