JPH03168488A - Water hammer buffering device - Google Patents

Water hammer buffering device

Info

Publication number
JPH03168488A
JPH03168488A JP1309748A JP30974889A JPH03168488A JP H03168488 A JPH03168488 A JP H03168488A JP 1309748 A JP1309748 A JP 1309748A JP 30974889 A JP30974889 A JP 30974889A JP H03168488 A JPH03168488 A JP H03168488A
Authority
JP
Japan
Prior art keywords
piston
cylinder
spring
pressure
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1309748A
Other languages
Japanese (ja)
Inventor
Yutaka Yamada
豊 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inax Corp
Original Assignee
Inax Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inax Corp filed Critical Inax Corp
Priority to JP1309748A priority Critical patent/JPH03168488A/en
Priority to ES90122783T priority patent/ES2078285T3/en
Priority to EP90122783A priority patent/EP0430223B1/en
Priority to KR1019900019356A priority patent/KR940003915B1/en
Priority to DE69021838T priority patent/DE69021838T2/en
Publication of JPH03168488A publication Critical patent/JPH03168488A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the second pressure wave from being generated by collision by setting the spring force of a spring which forces a piston in a cylinder chamber which buffers water hammer to a communicating opening side at such strength as the piston stops before it comes into contact with the rear edge part of the cylinder chamber with water pressure. CONSTITUTION:When a venturi tube 18 is installed inside a water flow passage, and when flow is generated, a low pressure part occurs in a throttling part 20 and a piston 34 in a cylinder 26 fully goes down. After the water flow is suddenly stopped, the water flow of high pressure passes through the hole 22 of the throttling part 20. Then the piston 34 is raised to absorb water hammer. The spring force of a spring 38 which forces the piston 34 is set at such strength as the piston 34 stops before it collides with a cap 32 at the rear edge part of the cylinder. It is thus possible to absorb water hammer by retracting the piston 34, and prevent the piston from colliding with the cap 32 at the time of retraction, and the second pressure wave from being generated by collision.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は水栓の弁部を急閉した場合等に生ずる水撃現
魚、所謂ウォーターハンマー現象を緩和して水栓器具や
配管等の損傷を防止し、併せて騒音発生を抑制する水S
緩衝装置に関する.(従来の技術及び発明が解決しよう
とする課8)近年、水栓として、ハンドルを回転操作し
て弁体を軸芯方向にねじ送りすることで弁部を開閉する
ねじ式の水栓に代わって、レバーの回勤操作により弁部
を開閉するようにしたレバー式水栓が急激に普及してき
ている. この種レバー式水栓は、弁部を全開から速やかに全閉す
ることができるなど操作が簡便で使い易い利点を有して
いる反面、弁部の急閑により配管系統に大きな水撃を発
生させ易い.即ち配管内の水又は湯(以下単に水とする
)が流速Vで流れているところへ水栓の弁部を急閉する
と、次の(A)式 ΔP=ρCV・・・・・・(A) (ρ:流体の密度.C:圧力波の伝播速度)で表わされ
る突発的圧力上昇ΔPが生じて管内に大きな木撃現象が
生ずるのである.より具体的に言うと、いま圧力が上昇
しても管壁が伸びない場合にはC=1400m/sであ
り,また水栓を全開したときの管内流速V’;2m/s
程度である.そこでこれらの偵及びρ= 1 0 0 
0kg/ m3の値を上記(^)式へ代入すると、水栓
を急閉したときの圧力上昇ΔF ’= 2 8 0 0
KPa ’= 2 8 kgf/cm2の極めて高い値
に達する,これにより管内に大きな水撃現象が生ずるの
である. 而してこのような木撃現象が生ずると衝am=が発生し
たり、水栓器具,配管等が損傷してしまう. そこでこのような水撃を緩衝するために従来種々の装置
が考えられているが、十分に満足できるものが提供され
ていないのが実情である.(課題を解決するための手段
) 本発明の水撃緩衝装置はこのような課題を解決するため
に案出されたものであり、その要旨は、(イ)給水流路
上に配され、水流が生じたとき絞り部で圧力降下させて
低圧部を発生させるベンチュリー部と、(口)内部のシ
リンダ室を連通口を通じて該ベンチュリー部の絞り部に
連通させるシリンダと、(ハ)該シリンダに摺動可能に
嵌合されたピストンと.(二)該ピストンを該シリンダ
室の連通口の側に向って付勢するスプリングとを有し、
且つ該スプリングのばね力が,前記流路内に水流が生じ
たときにピストンをシリンダの前端部まで押し出し、該
流路内に突発的圧力上昇が生じてピストンが押し戻され
たとき、シリンダの後端部に当接する以前に該ピストン
を停止させるような大きさに設定されていることにある
. (作用及び発明の効果) 本発明の装置では.水栓の弁部が閉じられていて流路内
に水流が生じていないとき,ピストンは給水圧によりシ
リンダの前端部位置より一定距離後退した状態、即ちス
プリングの付勢力に抗して押し戻された状態にある.こ
の状態で水栓の弁部が開かれて流路内に流れが生ずると
,ベンチュリー部の絞り部において圧力降下が生じ、そ
こで生じた低圧部の作用でシリンダ内の水が連通口を通
じて流路内に吸い出され、同時にピストンがスプリング
の付勢力によりシリンダの前端部まで押し出される. 一方水栓の弁部が急閉されて流路内に突発的圧力上昇が
生ずると,シリンダの前端部にあったピストンがスプリ
ングの付勢力に抗して後退し、これとともに流路内の水
が連通口を通じてシリンダ内部に流入する.これにより
流路内に生じた圧力上昇が吸収される.その際、ピスト
ンを押しているスプリングはピストンの後退とともに変
形量が多くなって弾発力を増し,そしてピストンがシリ
ンダの後端部に至る以前でその弾発力、即ち押戻力がピ
ストンに作用する圧力と釣り合ってピストンを停止させ
る.スプリングの付勢力(ばね力)が予めそのような大
きさに設定されているからである. 即ちピストンがシリンダの後端部に衝突すると、その際
に二次的な圧力波が生じることから、本発明ではピスト
ンがシリンダの後端部に当たる以前にこれを停止させる
ようにしており、以て二次的な圧力波の発生を防止して
いる. さて突発的圧力」二Hにより押し戻されたピストンは、
続いてスプリングの付勢力によりシリンダの前端部側へ
と押し出され、そしてその付勢力とピストンに作用する
給水圧とが釣り合う位置で停止する.そして次に水流が
生じると再びシリンダ前端部まで前進させられ、次に起
こる突発的圧力上昇を吸収すべ〈待機する. このように本発明の水撃緩衝装置は,ベンチュリー部の
作用でピストンを効果的に働かせて,圧力上昇を有効に
吸収する特長を有する.即ちこのようなベンチュリー部
を設けない場合には、流路内に水流が生じた場合におい
てもピストンは給水圧によりシリンダ内部を一定量後方
に押し戻された状態にあり、従って水栓弁部の急閉によ
り流路内に突発的圧力上昇が生じたとき、圧力吸収のた
めに後退可能な有効ストロークがそれだけ短くなって圧
力吸収が効果的に行われないこととなるが、本発明の装
置では、ベンチュリー部の作用に基づいてピストンがシ
リンダの前端部から後退して圧力吸収を行うため、有効
に圧力上昇を抑えることができるのである. この他本発明の装置は、シリンダを小型化でき,従って
′Ilc置全体をコンパクトに構成できる特長を有する
.ベンチュリー部の作用でピストンを有効に働かせるこ
とができるため、即ちシリンダの容量を圧力吸収のため
に無駄なく活用できるからである. 尚このベンチュリー部は、絞り部において圧力降下させ
た後その下流で直ちに圧力回復させる作用があり、従っ
て本装置を設けた場合の流動抵抗を小さく抑え得る利点
がある. 本発明に従ってベンチュリー部により低圧部を発生させ
る場合、給水圧が特別に高い場合において最大流量を制
限できる利点が生ずる.このように給水圧が特別に高い
場合、水栓弁部の全開時の流量が不必要に著しく大きく
なり、この場合において弁部を全開から全閉したときの
水撃は極めて大きくなって、これを防止することは実際
上極めて困難であるが,流路上にベンチュリー部を設け
た場合、ベンチュリー部の絞り部でキャビテーションが
起こって、水栓の弁部を全開しても一定流量以上の水が
流れず、水流量が制限される.従って弁部を全閉したと
きの水撃の発生も十分抑制できるのである. (実施例) 次に本発明の実施例を図面に基づいて詳しく説明する. 第1図において10は本発明の一例である水撃緩衝装置
で、筒部工2を有している.筒部l2の両端には配管1
7との接続部l4が設けられており、また各接続部工4
の内面には配管17とのねじ結合のための雌ねじ部l6
が設けられている. 筒部l2の内部には、ペンチュリー管l8が設けられて
いる.ベンチュリー管l8の絞り部20には通孔22が
形威されており、この通孔22を介してペンチュリー管
l8の内部と外部の連通室24とが連通させられている
. 尚絞り部20の内径dは、管路内径Dに対してあまり小
さくな<,d=0.3D程度に抑えられており、また拡
がり角θは最も損失の少ない7e程度にしてあるので、
同部を水が流通する際大きな圧力損失は生じない. 26は筒部l2と一体に設けられたシリンダで、一端に
連通口28が設けられ、内部のシリンダ室がこの連通口
28を通じて前記連通室24及びベンチュリー管l8の
絞り部20の内部に連通させられている. このシリンダ26の他端側の開口には、大気導入孔30
を有するシリンダM32がねじ結合により固定されてい
る. シリンダ26の内部には、ピストン34が欝動可能に嵌
合されている.ピストン34の外周面には環状構が形成
されていて、その環状溝内にOリング36が装着され,
かかるOリング36によってピストン34とシリンダ2
6内面との嵌合部が水密にシールされている. このピストン34とシリンダM32との間には、圧縮コ
イルスプリング38が介設されている.スプリング38
は、一端がシリンダM32に当接させられ、また他端が
ピストン34の後面に当接させられている.尚ピストン
34には円筒部40が形成されており、スプリング38
の一部がこの円筒部40の内部に収容されている.木例
の装置においては、流路内に木魔が生じたときピストン
34がシリンダ26の図中下端部(前端部)に当接し、
また流路内に突発的圧力上昇が生じてピストン34が@
退させられたとき、ピストン34がシリンダ蓋32に当
接する直前で停止するようにスプリング38のばね力が
設定されている. 次に本装置の作用を説明する. 木例の装置においては,水栓の弁部が閉じられている状
態では、ピストン34が給水圧により図中上方へと一定
量押し戻され,その給水圧とこれを反対方向に付勢する
スプリング38の付勢力とが釣り合う位置で停+h L
,ている.この状態で弁部が開かれて流路内に水流が生
じると5ベンチュリー管l8の絞り部20で発生する低
圧部の作用及びスプリング38の付勢力でシリンダ室内
に入り込んでいた水が流路内に吸い出されるとともに、
ピストン34が図中下端部(前端部)まで押し出される
. 次に水栓弁部が急閉されると、同部に前記(A)式で規
定される突発的圧力上昇ΔP=ρC■が生じて配管流路
内を伝播する.するとその圧力上昇に基づいて、流路内
の水がピストン34を押し上げつつ通孔22,連通室2
4,連通口28を通じてシリング26内部に流入する.
即ち流路内の水がシリンダ26内部へと逃げ込み,これ
により圧力上昇が吸収されて水撃現象の発生が回避され
る. 尚その際、ピストン34はスプリング38を撓ませつつ
シリンダ26の後端部直近まで後退し、そして同位置で
ピストン34に作用する圧力とスプリング38のばね力
とが釣り合ってそこで一旦停止する. さて一旦シリンダ26の後端部直近まで後退したピスト
ン34は、引き続きスプリング38により押し出され、
その付勢力とピストン34に作用する給水圧とが釣り合
う位置で停止する.そして再び流路内に水流が生ずると
、ベンチュリー管18の作用で前進させられ、流路内に
突発的圧力上昇が生じたとき再度シリンダ26内を一杯
まで後退して圧力上昇を吸収する. 尚上記のようにベンチュリー管18を設けず,単にシリ
ンダ室を流路と連通させただけの場合にも、流路内の圧
力上昇をある程度吸収することができる.しかしながら
この場合には種々の不都合が生ずる. 例えばベンチュリー管l8を設けないで,且つ上記と同
じスプリング38を用いた場合、流路内に水流が生じて
もピストン34はシリンダ26の前端部まで前進せず、
シリンダ26の前端部より一定距離後退した位置で、即
ち給水圧とスプリング38の付勢力とがバランスする位
置で停止している.モして流路内に突発的圧力上昇が発
生したとき,その位置からの後退運動によって圧力上昇
を吸収する.その際の移動ストロークは小さく,従って
シリンダ26内への木の流入量も少なくなるから、圧力
上昇を効果的に吸収することができない. これに対して本発明の装置では、ピストン34がシリン
ダ26のほぼ全ストローク後退して圧力吸収を行うため
、流路内の圧力上昇を効果的に抑制することができる. また本例の装置は、圧力上昇を吸収するためにシリンダ
室を十分に活用するため、小型のシリンダでも十分に目
的を果たすことができ、水!!緩衝装置をコンパクトに
構成することができる.尚ベンチュリー管l8を設けな
い場合において、スプリングを予圧縮した状態でセット
することにより、流路内に水流が生じている状悪でピス
トン34をシリンダ26の前端部まで前進させた状態と
することもできる〔この場合低圧部は発生しないので、
水流の有無に関わらずピストン34はシリンダ26の前
端部まで前進した状態と?る).シかしながら、この場
合には次のような不都合が生ずる. 水撃による圧力上昇を効果的に吸収するためには以下の
条件、即ち (イ)通水時にはピストン34がシリンダ26の前端部
まで前進し,圧力上昇によってシリンダ26の後端部ま
で後退することにより、シリンダ26内に流路内の水を
より多く流入させ得ること. (U)ピストン34が後退端で停止する際、できるだけ
緩やかに停止すること. (ハ)スプリングに作用する剪断応力でか小さく、最大
偵で■8が許容剪断応力τa以下であること. 等の条件を充足することが必要である.そこで、第2図
に示しているようにシリンダ室の直径をDC ,シリン
ダ室長さをlc,スプリングの平均径をDa  ,線径
をda.−4i効巻数をn,取付時長さを又とすると、
剪断応力で及びばね定数kは次のようになる. ?こでGは横弾性係数で、ステンレス鋼線の場合7 5
 0 0 kgf/mm2程度である.また(1)式の
圧縮力Wの最大値wmaxはW man  =  宜/
 4  s D  c7P  may  −−(3)で
与えられる.ここでP■8は水撃により生じた最大圧力
で,これがピストン34に作用する.さて給水圧に打ち
勝ってピストン34をシリンダ26の前端部に当接させ
るべく、スプリングを予圧縮してセー,トシた場合、ス
プリングのばね定数は予圧縮を与えない場合に比べて小
さくなる. 即ち何れの場合にも圧力上昇によってピストン34がシ
リンダ26のほぼ後端部まで後退するとした場合、その
ときのスプリングの最大圧縮力は、 W噛aX =kx となる.ここでXは自由状態からの変位量であり、その
変位量は,予圧縮を与えた場合の方が予圧縮を与えない
場合に比べて当然に大きくなる.従ってkの値は、予圧
縮を与えた場合の方が小さくなる.而してkの値が小さ
くなれば、(2)式よりn,Daが等しい場合、da 
>da ′(daは予圧縮を与えた場合、以下予圧縮を
ケえたものについては′を付けて示す)となり,(1)
式よりτくτ′となる.即ち予圧縮を与えた場合、スプ
リングにより大きな剪断応力が発生する.一方ピストン
34が後退端に達したときのτをτ.8としてτの許容
偵τaと等しいとしたとき、D6=aDcとしてこれを
W = W @aw =π/4・Dc2Psaxととも
に(1)式に入れると,d4 /Dc =’ i5Pm
ax / 1”J −−−−−−(a)となる.ここで
例えばα=0 . 7 , Psax =7 kgf/
cm.2  , τa = 9 0 kgf/am2 
とすると、d a  / D c  =0  .  1
となる. 他方スプリングの径Daは.DCが与えられればその範
囲内でできるだけ大きくした方が良く5従ってこれもD
cの値に応じて定まってぐる.従ってスプリングに予圧
縮を与える場合には、(2)式よりスプリングの有効巻
数nを太き〈とることになる(kの値が予圧縮を与えな
い場合に比ベて小さい). 而して巻数nを大きくすれば,ピストン34の最大スト
ローク 文一 nda は小さ〈なり、ピストン34後退時にシリンダ26内部
に取り入れることのできる水の醍が少なくなる.即ち水
撃時の圧力吸収効果は,スプリングに予圧縮を与えない
場合に比べて小さくなる.換言すれば、本例の如くベン
チュリー管l8を設けることによって、水撃をより効果
的に緩衝することができるのである. 第3図は本発明の他の実施例を示している.この例では
、シリンダ室にポール弁体42と、弱いスプリング44
と、支持部材46とから成る小型の逆止弁48を配設し
ている. 本例の場合、ピストン34とシリンダM32との間に空
気室50が形成され、空気室50内部に吸入され且つ閉
じ込められた空気が,ピストン34が後退するとき空気
ばねとして作用し,ピストン34がシリンダM32に衝
突するのを抑制する.而して空気室50内に閉じ込めら
れた空気は,ピストン34の後退とともに弾発力を急激
に高めてピストン34の衝突防止を行うから,その分ス
プリングのばね力を弱〈設定できる利点が生ずる.尚第
3図に示しているように,円筒部40内に凸部52を設
けるなどしてピストン34が後退したときの空気室50
の容積をできるだけ小さくすると、空気の圧縮率がより
高くなって空気ばねの弾発力が強くなり,好都合である
.以上本発明の実施例を詳述したが,本発明はその主旨
を逸脱しない範囲において、当業者の知識に基づき様々
な変更を加えた形還で構成することが可能である.
[Detailed Description of the Invention] (Industrial Application Field) This invention alleviates the so-called water hammer phenomenon that occurs when the valve part of a faucet is suddenly closed, and improves the quality of faucet equipment, piping, etc. Water S prevents damage and also suppresses noise generation
Regarding shock absorbers. (Issue 8 to be solved by the prior art and the invention) In recent years, screw-type faucets have been replaced by screw-type faucets, which open and close the valve part by rotating the handle and screwing the valve body in the axial direction. As a result, lever-type faucets, which open and close the valve part by rotating the lever, are rapidly becoming popular. This type of lever-type faucet has the advantage of being easy to operate and use, such as being able to quickly close the valve from fully open, but on the other hand, the sudden opening of the valve causes large water hammer in the piping system. Easy to do. In other words, when the valve of a faucet is suddenly closed to a place where water or hot water (hereinafter simply referred to as water) is flowing at a flow rate V in the pipe, the following equation (A) ΔP=ρCV... (A ) (ρ: density of fluid; C: propagation speed of pressure wave) A sudden pressure increase ΔP occurs, which causes a large wood strike phenomenon in the pipe. To be more specific, if the pipe wall does not expand even if the pressure increases, C = 1400 m/s, and the flow velocity in the pipe when the faucet is fully opened is V'; 2 m/s.
That's about it. Therefore, these detectives and ρ= 1 0 0
Substituting the value of 0 kg/m3 into the above formula (^), the pressure rise when the faucet is suddenly closed is ΔF' = 2 8 0 0
It reaches an extremely high value of KPa' = 28 kgf/cm2, which causes a large water hammer phenomenon inside the pipe. If such a wood impact phenomenon occurs, impact may occur and faucet equipment, piping, etc. may be damaged. Various devices have been devised to buffer against such water hammer, but the reality is that none have been provided that are fully satisfactory. (Means for Solving the Problems) The water hammer shock absorber of the present invention has been devised to solve the above problems, and its gist is (a) that it is arranged on a water supply flow path so that the water flow is A venturi part that lowers the pressure at the constriction part to generate a low pressure part when the pressure is generated, (a) a cylinder that communicates the internal cylinder chamber with the constriction part of the venturi part through a communication port, and (c) a cylinder that slides into the cylinder. With a piston that can be fitted together. (2) having a spring that urges the piston toward the communication port of the cylinder chamber;
The spring force of the spring pushes the piston to the front end of the cylinder when a water flow occurs in the flow path, and when a sudden pressure increase occurs in the flow path and pushes the piston back, the spring force pushes the piston toward the front end of the cylinder. The piston is sized to stop the piston before it touches the end. (Actions and Effects of the Invention) In the device of the present invention. When the valve part of the faucet is closed and there is no water flow in the flow path, the piston is pushed back a certain distance from the front end of the cylinder due to the water supply pressure, that is, it is pushed back against the biasing force of the spring. is in a state. When the valve part of the faucet is opened in this state and a flow is generated in the flow path, a pressure drop occurs at the constriction part of the venturi part, and the water in the cylinder passes through the communication port and passes through the flow path due to the action of the low pressure part created there. At the same time, the piston is pushed out to the front end of the cylinder by the biasing force of the spring. On the other hand, when the valve of a faucet is suddenly closed and a sudden pressure rise occurs in the flow path, the piston at the front end of the cylinder moves back against the biasing force of the spring, and along with this, the water in the flow path flows into the cylinder through the communication port. This absorbs the pressure increase that occurs within the flow path. At this time, the spring that pushes the piston deforms more and more as the piston retreats, increasing the elastic force, and before the piston reaches the rear end of the cylinder, the elastic force, that is, the push-back force, acts on the piston. The piston stops when the pressure is balanced. This is because the biasing force (spring force) of the spring is set to such a magnitude in advance. That is, when the piston collides with the rear end of the cylinder, a secondary pressure wave is generated at that time, so in the present invention, this is stopped before the piston hits the rear end of the cylinder. This prevents the generation of secondary pressure waves. Now, the piston is pushed back by the sudden pressure.
Next, it is pushed toward the front end of the cylinder by the biasing force of the spring, and stops at a position where the biasing force and the water supply pressure acting on the piston are balanced. When the next water flow occurs, it is moved forward again to the front end of the cylinder and waits to absorb the next sudden pressure rise. In this way, the water hammer shock absorber of the present invention has the feature of effectively absorbing pressure increases by making the piston work effectively through the action of the venturi section. In other words, if such a venturi section is not provided, even if water flow occurs in the flow path, the piston will be pushed back by a certain amount inside the cylinder by the water supply pressure, and therefore the faucet valve section will not suddenly open. When a sudden pressure rise occurs in the flow path due to closure, the effective stroke that can be retreated for pressure absorption becomes shorter and pressure absorption is not performed effectively. However, in the device of the present invention, Based on the action of the venturi, the piston retreats from the front end of the cylinder and absorbs pressure, making it possible to effectively suppress pressure rise. In addition, the device of the present invention has the advantage that the cylinder can be downsized, and the entire 'Ilc device can therefore be constructed compactly. This is because the venturi allows the piston to work effectively, which means that the capacity of the cylinder can be used without waste for pressure absorption. This venturi section has the effect of reducing the pressure at the constriction section and then immediately restoring the pressure downstream, and therefore has the advantage of keeping the flow resistance low when this device is installed. When the low pressure section is generated by a venturi section according to the present invention, there is an advantage that the maximum flow rate can be limited when the water supply pressure is particularly high. If the water supply pressure is particularly high like this, the flow rate when the faucet valve is fully open will be unnecessarily large, and in this case, the water hammer will be extremely large when the valve is fully closed from fully open. It is actually extremely difficult to prevent this, but if a venturi section is installed on the flow path, cavitation will occur at the constriction section of the venturi section, and even if the valve section of the faucet is fully opened, water will not exceed a certain flow rate. The water does not flow and the water flow rate is restricted. Therefore, the occurrence of water hammer when the valve part is fully closed can be sufficiently suppressed. (Example) Next, an example of the present invention will be described in detail based on the drawings. In FIG. 1, numeral 10 denotes a water hammer shock absorber, which is an example of the present invention, and has a cylindrical part 2. Pipes 1 are installed at both ends of the cylindrical portion l2.
7 is provided, and each connection part 4
On the inner surface thereof, there is a female threaded portion l6 for threaded connection with the pipe 17.
is provided. A penturi tube l8 is provided inside the cylindrical portion l2. A through hole 22 is formed in the constricted portion 20 of the Venturi tube l8, and the inside of the Penturi tube l8 communicates with an external communication chamber 24 through the through hole 22. Note that the inner diameter d of the constricted portion 20 is suppressed to about <, d=0.3D, which is much smaller than the pipe inner diameter D, and the divergence angle θ is set to about 7e, which causes the least loss.
There is no large pressure loss when water flows through this area. 26 is a cylinder provided integrally with the cylindrical portion l2, and a communication port 28 is provided at one end, and the internal cylinder chamber communicates with the communication chamber 24 and the inside of the constricted portion 20 of the Venturi tube l8 through the communication port 28. It is being done. The opening on the other end side of the cylinder 26 has an atmosphere introduction hole 30.
A cylinder M32 having a diameter is fixed by a screw connection. A piston 34 is slidably fitted inside the cylinder 26. An annular structure is formed on the outer peripheral surface of the piston 34, and an O-ring 36 is installed in the annular groove.
The piston 34 and the cylinder 2 are connected by this O-ring 36.
6 The fitting part with the inner surface is sealed watertight. A compression coil spring 38 is interposed between the piston 34 and the cylinder M32. spring 38
One end is brought into contact with the cylinder M32, and the other end is brought into contact with the rear surface of the piston 34. Note that the piston 34 has a cylindrical portion 40 formed therein, and a spring 38
A part of the cylindrical portion 40 is housed inside the cylindrical portion 40. In the device shown in the example of a tree, when a tree is generated in the flow path, the piston 34 comes into contact with the lower end (front end) of the cylinder 26 in the figure.
In addition, a sudden pressure increase occurs in the flow path, causing the piston 34 to
The spring force of the spring 38 is set so that the piston 34 stops just before it comes into contact with the cylinder lid 32 when it is retracted. Next, we will explain the function of this device. In the device shown in the wooden example, when the valve part of the faucet is closed, the piston 34 is pushed back a certain amount upward in the figure by the water supply pressure, and the spring 38 that biases it in the opposite direction is pushed back by the water supply pressure. Stops at the position where the urging force of +h L
,ing. In this state, when the valve part is opened and a water flow is generated in the flow path, the water that has entered the cylinder chamber is drawn into the flow path by the action of the low pressure part generated at the constriction part 20 of the venturi pipe 18 and the biasing force of the spring 38. As well as being sucked out,
The piston 34 is pushed out to the lower end (front end) in the figure. Next, when the faucet valve section is suddenly closed, a sudden pressure increase ΔP=ρC■ defined by the above formula (A) occurs in the same section and propagates within the piping flow path. Then, based on the pressure increase, the water in the flow path pushes up the piston 34 and pushes up the passage hole 22 and the communication chamber 2.
4. It flows into the sill 26 through the communication port 28.
That is, the water in the flow path escapes into the cylinder 26, thereby absorbing the pressure increase and avoiding the occurrence of water hammer. At this time, the piston 34 moves back to the vicinity of the rear end of the cylinder 26 while deflecting the spring 38, and at the same position, the pressure acting on the piston 34 and the spring force of the spring 38 are balanced, and the piston 34 temporarily stops there. Now, once the piston 34 has retreated to the vicinity of the rear end of the cylinder 26, it is continued to be pushed out by the spring 38,
It stops at a position where the urging force and the water supply pressure acting on the piston 34 are balanced. Then, when a water flow is generated in the flow path again, it is moved forward by the action of the venturi tube 18, and when a sudden pressure rise occurs in the flow path, it retreats inside the cylinder 26 to its full capacity again to absorb the pressure rise. Incidentally, even when the venturi tube 18 is not provided as described above and the cylinder chamber is simply communicated with the flow path, the pressure increase in the flow path can be absorbed to some extent. However, various inconveniences occur in this case. For example, if the Venturi tube l8 is not provided and the same spring 38 as described above is used, the piston 34 will not advance to the front end of the cylinder 26 even if a water flow occurs in the flow path.
It stops at a position set back a certain distance from the front end of the cylinder 26, that is, at a position where the water supply pressure and the biasing force of the spring 38 are balanced. When a sudden pressure rise occurs in the flow path, the pressure rise is absorbed by retreating from that position. The movement stroke at this time is small, and therefore the amount of wood flowing into the cylinder 26 is also small, making it impossible to absorb the pressure increase effectively. On the other hand, in the device of the present invention, the piston 34 moves back almost the entire stroke of the cylinder 26 to absorb pressure, so that the increase in pressure within the flow path can be effectively suppressed. In addition, the device of this example makes full use of the cylinder chamber to absorb the pressure increase, so even a small cylinder can serve the purpose well. ! The shock absorber can be configured compactly. In the case where the venturi tube 18 is not provided, by setting the spring in a precompressed state, the piston 34 can be moved forward to the front end of the cylinder 26 even when water flow is generated in the flow path. [In this case, there is no low pressure part, so
Does the piston 34 move forward to the front end of the cylinder 26 regardless of the presence or absence of water flow? ). However, in this case, the following inconvenience occurs. In order to effectively absorb the pressure increase due to water hammer, the following conditions are satisfied: (a) When water is flowing, the piston 34 advances to the front end of the cylinder 26, and as the pressure increases, it retreats to the rear end of the cylinder 26. Therefore, more water in the flow path can flow into the cylinder 26. (U) When the piston 34 stops at the backward end, it should stop as gently as possible. (c) The shear stress acting on the spring is small, and the maximum value of ■8 is less than or equal to the allowable shear stress τa. It is necessary to satisfy the following conditions. Therefore, as shown in FIG. 2, the diameter of the cylinder chamber is DC, the length of the cylinder chamber is lc, the average diameter of the spring is Da, and the wire diameter is da. -4i If the effective number of turns is n and the length when installed is Mata, then
The shear stress and spring constant k are as follows. ? Here, G is the transverse elastic modulus, which is 7 5 in the case of stainless steel wire.
It is about 0 0 kgf/mm2. Also, the maximum value wmax of the compressive force W in equation (1) is W man = Yi/
4 s D c7P may -- given by (3). Here, P■8 is the maximum pressure generated by water hammer, which acts on the piston 34. Now, if the spring is precompressed to overcome the water supply pressure and bring the piston 34 into contact with the front end of the cylinder 26, the spring constant of the spring will be smaller than when no precompression is applied. That is, in either case, if the piston 34 retreats almost to the rear end of the cylinder 26 due to the pressure increase, the maximum compression force of the spring at that time is W aX = kx. Here, X is the amount of displacement from the free state, and the amount of displacement is naturally larger when precompression is applied than when no precompression is applied. Therefore, the value of k becomes smaller when precompression is applied. Therefore, if the value of k becomes small, from equation (2), if n and Da are equal, da
> da ′ (if da is given precompression, below, those without precompression will be indicated with ′), and (1)
From the formula, τ becomes τ′. In other words, when precompression is applied, a large shear stress is generated in the spring. On the other hand, τ when the piston 34 reaches the retreating end is τ. 8 and equal to the allowable reconnaissance τa of τ, then if D6 = aDc and insert this into equation (1) together with W = W @aw = π/4・Dc2Psax, d4 /Dc ='i5Pm
ax / 1"J -------(a). Here, for example, α = 0.7, Psax = 7 kgf/
cm. 2, τa = 90 kgf/am2
Then, d a /D c =0. 1
becomes. On the other hand, the diameter Da of the spring is . If DC is given, it is better to make it as large as possible within that range.5 Therefore, this is also D.
It is determined depending on the value of c. Therefore, when precompression is applied to the spring, the effective number of turns n of the spring must be set to a large value according to equation (2) (the value of k is smaller than when no precompression is applied). If the number of turns n is increased, the maximum stroke nda of the piston 34 becomes smaller, and less water can be taken into the cylinder 26 when the piston 34 retreats. In other words, the pressure absorption effect during water hammer is smaller than when no precompression is applied to the spring. In other words, by providing the venturi tube l8 as in this example, water hammer can be more effectively buffered. FIG. 3 shows another embodiment of the invention. In this example, a pole valve body 42 and a weak spring 44 are installed in the cylinder chamber.
A small check valve 48 consisting of a support member 46 and a support member 46 is provided. In the case of this example, an air chamber 50 is formed between the piston 34 and the cylinder M32, and the air sucked and trapped inside the air chamber 50 acts as an air spring when the piston 34 retreats, so that the piston 34 Prevents collision with cylinder M32. Since the air trapped in the air chamber 50 rapidly increases the elastic force as the piston 34 retreats to prevent the piston 34 from colliding, there is an advantage that the spring force of the spring can be set to a correspondingly weaker value. .. As shown in FIG. 3, a convex portion 52 is provided in the cylindrical portion 40 to form an air chamber 50 when the piston 34 is retracted.
It is advantageous to make the volume as small as possible because the compressibility of the air becomes higher and the elastic force of the air spring becomes stronger. Although the embodiments of the present invention have been described in detail above, the present invention can be modified and modified in various ways based on the knowledge of those skilled in the art without departing from the spirit thereof.

【図面の簡単な説明】[Brief explanation of the drawing]

第l図は本発明の一実施例である水!X緩#装置の断侑
図であり,第2図は同装置の利点を説明するための説明
図、第3図は本発明の他の実施例である水撃#衝装置の
断Fm図である. lO:水撃#11II装置  l8:ベンチュリー管2
0:絞り部     26:シリンダ28二連通口  
   34:ピストン38:スプリング 第 2 図
Figure 1 shows an embodiment of the present invention. FIG. 2 is an explanatory diagram for explaining the advantages of the device, and FIG. 3 is a cross-sectional view of the water hammer impact device, which is another embodiment of the present invention. be. lO: Water hammer #11II device l8: Venturi tube 2
0: Throttle part 26: Cylinder 28 two communication ports
34: Piston 38: Spring Fig. 2

Claims (1)

【特許請求の範囲】[Claims] (イ)給水流路上に配され、水流が生じたとき絞り部で
圧力降下させて低圧部を発生させるベンチュリー部と、
(ロ)内部のシリンダ室を連通口を通じて該ベンチュリ
ー部の絞り部に連通させるシリンダと、(ハ)該シリン
ダに摺動可能に嵌合されたピストンと、(ニ)該ピスト
ンを該シリンダ室の連通口の側に向って付勢するスプリ
ングとを有し、且つ該スプリングのばね力が、前記流路
内に水流が生じたときにピストンをシリンダの前端部ま
で押し出し、該流路内に突発的圧力上昇が生じてピスト
ンが押し戻されたとき、シリンダの後端部に当接する以
前に該ピストンを停止させるような大きさに設定されて
いることを特徴とする水撃緩衝装置。
(a) a venturi section which is arranged on the water supply flow path and which lowers the pressure at the throttle section to generate a low pressure section when water flow occurs;
(b) a cylinder that communicates the internal cylinder chamber with the throttle part of the venturi section through a communication port; (c) a piston that is slidably fitted into the cylinder; (d) a piston that connects the piston to the throttle part of the venturi section and a spring that biases toward the communication port, and the spring force of the spring pushes the piston to the front end of the cylinder when a water flow occurs in the flow path, causing a sudden burst into the flow path. 1. A water hammer shock absorber, characterized in that the size of the piston is set such that when the piston is pushed back due to an increase in pressure, the piston is stopped before it comes into contact with the rear end of the cylinder.
JP1309748A 1989-11-29 1989-11-29 Water hammer buffering device Pending JPH03168488A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1309748A JPH03168488A (en) 1989-11-29 1989-11-29 Water hammer buffering device
ES90122783T ES2078285T3 (en) 1989-11-29 1990-11-28 SHOCK ABSORBER ARIETE.
EP90122783A EP0430223B1 (en) 1989-11-29 1990-11-28 Water hammer absorbent
KR1019900019356A KR940003915B1 (en) 1989-11-29 1990-11-28 Water hammer absorbent
DE69021838T DE69021838T2 (en) 1989-11-29 1990-11-28 Pressure shock absorbers for liquids.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1309748A JPH03168488A (en) 1989-11-29 1989-11-29 Water hammer buffering device

Publications (1)

Publication Number Publication Date
JPH03168488A true JPH03168488A (en) 1991-07-22

Family

ID=17996822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1309748A Pending JPH03168488A (en) 1989-11-29 1989-11-29 Water hammer buffering device

Country Status (1)

Country Link
JP (1) JPH03168488A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0581597U (en) * 1992-04-08 1993-11-05 エヌテーシー工業株式会社 Water hammer prevention device
JP2010025323A (en) * 2008-07-24 2010-02-04 Universal Shipbuilding Corp Mechanical excessive pressure protective switch
JP2018185021A (en) * 2017-04-27 2018-11-22 株式会社日本イトミック Pressure relaxation mechanism of electric instant water heater

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0581597U (en) * 1992-04-08 1993-11-05 エヌテーシー工業株式会社 Water hammer prevention device
JP2010025323A (en) * 2008-07-24 2010-02-04 Universal Shipbuilding Corp Mechanical excessive pressure protective switch
JP2018185021A (en) * 2017-04-27 2018-11-22 株式会社日本イトミック Pressure relaxation mechanism of electric instant water heater

Similar Documents

Publication Publication Date Title
KR101609591B1 (en) Water piping system having function of alleviating water hammer using ejector effect
JP2006258287A (en) Hydraulic cylinder equipped with unified accumulator
TWI516690B (en) Hydraulic shock absorber
KR101924701B1 (en) Damping device for a percussion device, percussion device and rock drilling machine
CN208907484U (en) A kind of ball valve with pooling feature
CN108894154A (en) A kind of anti-rebound cushion guardail in tunnel
JPH03168488A (en) Water hammer buffering device
JPH04503390A (en) Screw rotor machine with silencer
EP0430223B1 (en) Water hammer absorbent
KR101393930B1 (en) Fuel pulse sound damping device of car engine
CN106195097B (en) One kind, which is stayed, moves back again into two-in-one buffering damping device
JP2577715B2 (en) Water hammer shock absorber
WO2016101925A1 (en) Buffer, railway vehicle buffer apparatus, and buffer system thereof
CN201237055Y (en) Anti-collision buffer of pipe ball-receiving barrel
JPH02134490A (en) Water hammer damping device
JP2799437B2 (en) Water hammer shock absorber
CN209762279U (en) Spring type self-adjusting water tap
ATE475830T1 (en) SHUT-OFF ARRANGE, IN PARTICULAR EXPLOSION PROTECTION VALVE
CN210716043U (en) Explosion-proof ripples gate valve
CN110081266B (en) Water hammer eliminating and pressure reducing device for valve protection
CN209083893U (en) One kind being used for the received buffer unit of in-pipeline detector
JPH05187565A (en) Check valve having pressure relaxation structure
JP2691826B2 (en) Water hammer prevention device
KR101874648B1 (en) Accumulator of High Reduction Top Bracing Apparatus for Ship Engine
JPH06129565A (en) Quick shut-off valve