JPH03168369A - Liquid transfer device for physical and chemical appliance - Google Patents

Liquid transfer device for physical and chemical appliance

Info

Publication number
JPH03168369A
JPH03168369A JP1308089A JP30808989A JPH03168369A JP H03168369 A JPH03168369 A JP H03168369A JP 1308089 A JP1308089 A JP 1308089A JP 30808989 A JP30808989 A JP 30808989A JP H03168369 A JPH03168369 A JP H03168369A
Authority
JP
Japan
Prior art keywords
liquid
suction
piston
cylinder
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1308089A
Other languages
Japanese (ja)
Other versions
JP2544212B2 (en
Inventor
Sannosuke Sanuki
讃岐 三之助
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanuki Kogyo KK
Original Assignee
Sanuki Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanuki Kogyo KK filed Critical Sanuki Kogyo KK
Priority to JP1308089A priority Critical patent/JP2544212B2/en
Publication of JPH03168369A publication Critical patent/JPH03168369A/en
Application granted granted Critical
Publication of JP2544212B2 publication Critical patent/JP2544212B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Reciprocating Pumps (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

PURPOSE:To carry out automatic transfer of liquid at an optional speed in a steady flow by sucking a required quantity of liquid into the inside of a cylinder, and by delivering the liquid while controlling the pushing-out action of a piston. CONSTITUTION:In a condition that a changeover valve 5 is opened to a liquid suction passage 3 side, a piston 6b is withdrawn, and the total quantity of liquid required for the treatment of one time is sucked in the inside of a cylinder 6a. Then, the changeover valve 5 is changed over to a liquid delivery passage 11 side, and the pushing-in speed of the piston 6b is controlled by controlling a driving mechanism 12 by means of a sequence controller 13, and the liquid is automatically delivered to the liquid delivery passage 11 at a desired flow rate.

Description

【発明の詳細な説明】 (産業上の利用分野〉 本発明は、液体クロマトグラフやその他の各種の反応分
析処理機等の理化学機械において、小量のサンプルや試
薬その他の薬液を任意に定量送りするための送液装置に
関する. (従来の技術) 従来、この種の送液装置には、プランジャポンプ、ダイ
ヤプラムポンプ、チュービングポンプ等の定量送液ポン
プが使用されている. プランジャポンプは、同一方向に向けた一対のチェッキ
弁間の液路内をブランジャの出入によって加減圧し、一
方向の流れを形成するものであり、またダイヤプラムポ
ンプは、加減圧手段としてダイヤプラムを使用したもの
である.これらのポンプのチェヅキ弁としては、フラッ
プ弁やボール弁が使用されている. チュービングポンプは、弾性チューブをその長手方向に
向けて順に押し潰し位置を移動させ、いわばしぼり出し
方式によって液を送るものであり、多数の押圧子をカム
によって順次往復動させ、これによって弾性チューブを
押し潰し、チューブの弾性によって復元させるようにし
ている.上述のような連続動作させるポンプの他に従来
の送液装置としては、シリンダ装置を使用し、これに通
じる吸液路、及び送液路を1個の切換弁にて切り換え、
シリンダ内に吸い込んだ液を送り出すようにした切換弁
タイプのものや、切換弁の代りに吸液路、及び送液路に
それぞれtTjli式の開閉弁を設け、これをシリンダ
装置の動作に対応させて交互に切換え動作させて吸液、
送液させるようにした電磁開閉弁タイプのものがある.
(発明が解決しようとする課題) 上述したような従来の各種送液装置の内、プランジャポ
ンプや、ダイヤフラムボンブを使用したものは、連続し
た自動運転により小量の送液を行うに適しているが、流
れ方向を規制するためにチェッキ弁が必要であり、この
ため、この弁の位置に気泡が付着し易く、その気泡によ
って弁の開閉が不安定になったり、気泡の大きさの変化
によって流路内圧が変化し、送液量が経時的に変化する
いわゆるドリフト送液が生じたり、更に場合によっては
弁が閉じなくなってしまうという問題がある. また、チェッキ弁を使用するポンプでは、送液圧を変化
しても弁の戻り動作速度が一様に変化しないため、送液
圧と送液量の関係が一定でなくなり、送液圧力変化によ
り送液量に誤差が生じるという問題がある.更にこれら
のポンプによって発生する液流は脈流であり、実際には
脈流を取り除かなければならない場合が多いという問題
がある.またチュービングポンプは、チューブを押し潰
すための機構が複雑であり、またチューブの耐久性及び
耐圧性が低く、しかも脈流となる等の問題がある. 一方、シリンダ装置を使用したものは切換弁や開閉弁を
使用するものであるため、気泡が付着し難く、耐久性、
耐圧性も高くできるが、従来はこの種の装置はピストン
の1ストローク中における動作量や、動作速度の変化を
一定のプログラムにより自動的にコントロールするよう
にしたものがなく、液体クロマトグラフにおける試薬の
自動注入や、各種分析装置への試薬と反応薬との自動混
合注入等の装置には使用されたものはなかった.本発明
はこのような従来の問題にかんがみ、無脈流(定常流)
にて自動送液が任意の速度で行われ、気泡発生の問題が
なく、また、送液圧を変化させても送液量に誤差が生じ
ることがなく、耐久性、耐圧性、操作性に優れた理化学
機械用送液装置の提供を目的としたものである. (課題を達戒するための手段) 上述の如き従来の問題を解決し、所期の目的を達成する
ための本発明の特徴は、第一に先端部分に吸送液路を連
通させたシリンダと、該シリンダ内を往復動作する加減
圧用のピストンと、該ピストンを動作させる駆動機構と
を有する吸送液ポンプを備え、該吸送液ボン1の前記吸
送液路を、給液槽に通じる給液路と、反応チューブもし
くは力ラム等の各種機器類に送り出すための送液路とに
切換連通させる切換弁を備え、かつ、前記ピストンの動
作をコントロールすべく前記駆動機構の動作を制御する
シーケンスコントローラーを備え、前記シリンダ内に必
要量を吸い込ませ、ピストンによる押出動作をコントロ
ールしつつ送液するようにしてなる理化学機械用送液装
置にあり、第二に先端部分に吸送液路を連通させたシリ
ンダと、該シリンダ内を往復動作する加減圧用のピスト
ンと、該ピストンを動作させる駆動機構とを有する複数
の吸送液ポンプを備え、その各吸送液ポンプの各吸排液
路をそれぞれ別々の給液槽に通じる吸液路と、それぞれ
別々もしくは同一の反応チューブ等の各種機器類に送り
出すための送液路とに切換える切換弁と、前記各吸送液
ポンプのピストンの動作をコントロールすべく各駆動機
楕の動作を統一して制御するシーゲンスコントローラー
を備え、前記シリンダ内に必要量を吸い込ませ、ピスト
ンによる押出動作をコントロールしつつ送液するように
してなる理化学機械用送液装置にある.(作用) かかる特徴の送液装置は、切換弁を吸液路測に動作させ
た状態でピストンを後退させ、1回の処理に必要な全量
の液をシリンダ内に吸い込ませる.次いで切換弁を送液
路側に切り換え、駆動機構をシーケンスコントローラー
により制御させて動作させることにより必要な量の液が
定められた流速により自動的に送り出される. また、第二の特徴のように、複数の吸送液ポンプを使用
する場合には、複数のポンプを同時に作動させたり、ま
た交互に作動させ、例えば反応チューブ内に複数種類の
液を交互に連続させて送り込んだり、また同時に送り込
むことができる.更に複数系統の分析機に同時に試薬を
送り込み、各々の結果を比較することもできる. (実施例) 次に本発明の実施例を図面について説明する.第1図は
液体クロマトグラフに実施した例を示しており、第1図
においてla,lb・・・・・・は液槽であり、各種溶
媒、及び洗浄液を別々に収容しておく.2は液槽選択用
切換弁であり、吸液FI@3に各液槽に通じる流路4a
,4b・・・・・・を切換達通させるようにしている.
吸液路3の端部は、吸送液切換弁5に連結されている. 吸送液切換弁5は、後述する吸送液ポンプ6の吸送液路
7に対し、吸液路3と、インジエクタ−8、カラム9及
び分光計10に通じる送液路11とを切換達通させるよ
うにしている. 吸送液ポンプ6は、1回の送り出しに必要な溶媒や洗浄
液の全量を吸い込むことのできる大容量のシリンダ6a
と、そのシリンダ内を往復動作するピストン6bとから
構成されている.そしてこの吸送液ボン16はパルスモ
ータ12aと、減速ギャ12b、ピニオン12c、及び
ラヅク12dからなる駆動機構12によって往復駆動さ
れるようになっている。
Detailed Description of the Invention (Industrial Field of Application) The present invention is applicable to physical and chemical machines such as liquid chromatographs and various other reaction analysis processing machines, in which small amounts of samples, reagents, and other chemical solutions can be arbitrarily and quantitatively fed. (Conventional technology) Conventionally, this type of liquid feeding device uses fixed-quantity liquid feeding pumps such as plunger pumps, diaphragm pumps, and tubing pumps. A diaphragm pump uses a diaphragm as a means for increasing and decreasing pressure by increasing and decreasing the pressure in the liquid path between a pair of check valves that are oriented in one direction by moving a plunger in and out to create a unidirectional flow. Flap valves and ball valves are used as check valves in these pumps.Tubing pumps pump liquid by squeezing the elastic tube in sequence by moving the compressed position in its longitudinal direction. A large number of pushers are sequentially reciprocated by a cam, which crushes the elastic tube and causes it to recover due to the tube's elasticity.In addition to the continuous pump described above, conventional pumps As the liquid device, a cylinder device is used, and the liquid suction path and liquid sending path leading to this are switched with a single switching valve.
There is a switching valve type that sends out the liquid sucked into the cylinder, and instead of a switching valve, a tTjli type on-off valve is installed in the liquid suction path and the liquid feeding path, and these valves are adapted to the operation of the cylinder device. The liquid is sucked by switching the operation alternately.
There is an electromagnetic on-off valve type that allows liquid to be pumped.
(Problems to be Solved by the Invention) Among the various conventional liquid delivery devices described above, those using plunger pumps and diaphragm bombs are suitable for sending small amounts of liquid through continuous automatic operation. However, a check valve is required to regulate the flow direction, and as a result, air bubbles tend to adhere to the position of this valve, making the opening and closing of the valve unstable due to the air bubbles, and changes in the size of the air bubbles. There is a problem that the internal pressure of the flow path changes, so-called drift liquid feeding occurs, where the amount of liquid fed changes over time, and in some cases, the valve does not close. In addition, in pumps that use check valves, the return operation speed of the valve does not change uniformly even if the liquid feeding pressure changes, so the relationship between the liquid feeding pressure and the liquid feeding amount is not constant, and due to changes in the liquid feeding pressure. There is a problem that errors occur in the amount of liquid sent. Furthermore, the liquid flow generated by these pumps is a pulsating flow, and in reality, there is a problem in that the pulsating flow must often be removed. Further, tubing pumps have problems such as a complicated mechanism for crushing the tube, low durability and pressure resistance of the tube, and pulsating flow. On the other hand, cylinder devices use switching valves and on-off valves, so they are less likely to attract air bubbles and are more durable.
Although the pressure resistance can be increased, until now, this type of device has not been able to automatically control the amount of movement during one stroke of the piston or changes in the movement speed using a fixed program, and the reagents used in liquid chromatography There were no devices used for automatic injection of reagents or automatic mixed injection of reagents and reactants into various analytical devices. In view of these conventional problems, the present invention has been developed to
Automatic liquid feeding is performed at any speed, there is no problem of bubble generation, and there is no error in the amount of liquid fed even if the liquid feeding pressure is changed, which improves durability, pressure resistance, and operability. The purpose is to provide an excellent liquid delivery device for physical and chemical machinery. (Means for Achieving the Problems) The features of the present invention for solving the above-mentioned conventional problems and achieving the intended purpose are as follows: Firstly, a cylinder having a suction liquid passage communicated with the tip thereof is used. , a suction liquid pump having a pressure adjustment piston that reciprocates inside the cylinder, and a drive mechanism that operates the piston, and the suction liquid path of the suction liquid bong 1 is connected to a liquid supply tank. and a switching valve for switching communication between a liquid supply path leading to the liquid supply path and a liquid feeding path for sending liquid to various devices such as a reaction tube or a power ram, and controlling the operation of the drive mechanism to control the movement of the piston. The liquid feeding device for physical and chemical machinery is equipped with a sequence controller to suck the necessary amount into the cylinder and feed the liquid while controlling the extrusion operation by the piston. It is equipped with a plurality of suction liquid pumps each having a cylinder with a passage communicating with the cylinder, a pressure adjustment piston that reciprocates within the cylinder, and a drive mechanism that operates the piston, and each suction liquid pump has a plurality of suction liquid pumps. A switching valve that switches the liquid path to a liquid suction path leading to separate liquid supply tanks and a liquid sending path for sending the liquid to various devices such as separate or identical reaction tubes, and a piston of each of the suction liquid pumps. The physics and chemistry system is equipped with a Siegen controller that unifies and controls the operation of each driving machine, and sucks the required amount into the cylinder, and feeds the liquid while controlling the extrusion operation of the piston. It is located in the mechanical liquid delivery device. (Function) The liquid feeding device having this feature moves the piston backward with the switching valve operated to measure the liquid suction path, and sucks the entire amount of liquid required for one treatment into the cylinder. Next, the switching valve is switched to the liquid delivery path side, and the drive mechanism is operated under control of the sequence controller, so that the required amount of liquid is automatically delivered at a predetermined flow rate. In addition, as in the second feature, when using multiple suction liquid pumps, multiple pumps may be operated at the same time or alternately, for example, by alternately pumping multiple types of liquid into the reaction tube. It can be fed continuously or simultaneously. Furthermore, it is also possible to send reagents to multiple analyzers at the same time and compare the results from each. (Example) Next, an example of the present invention will be explained with reference to the drawings. Fig. 1 shows an example in which a liquid chromatograph is used. In Fig. 1, la, lb, . 2 is a switching valve for liquid tank selection, and a flow path 4a leading to each liquid tank is connected to the liquid suction FI@3.
, 4b...... are to be switched and delivered.
An end of the liquid suction path 3 is connected to a suction liquid switching valve 5. The suction liquid switching valve 5 switches the suction liquid passage 7 of the suction liquid pump 6, which will be described later, between the liquid suction passage 3 and a liquid supply passage 11 that communicates with the injector 8, the column 9, and the spectrometer 10. I'm trying to let it pass. The suction liquid pump 6 is a large-capacity cylinder 6a that can suck the entire amount of solvent and cleaning liquid required for one pumping.
and a piston 6b that reciprocates within the cylinder. The suction liquid bong 16 is reciprocated by a drive mechanism 12 consisting of a pulse motor 12a, a reduction gear 12b, a pinion 12c, and a gear 12d.

また、駆動機構12のバルスモータ12a、吸送液切換
弁5の切換駆動モータ5a、及び液送選択用切換弁2の
切換脂動モータ2aは、いずれもシーケンスコントロー
ラー13によって予め入力された手順に従って自動的に
動作がなされるようになっている. この液体クロマトグラタでは、シーゲンスコントローラ
ー13に予め入力したデータに従って1回の送液に必要
な量の溶媒または洗浄液を吸送液ポンプ6内に各/l!
毎に1回で吸い込ませ、シーゲンスコントローラー13
によって駆動機構12によるピストン押し込み速度をコ
ントロールし、所望の流速にて送液路11に送り出し、
必要な分析を自動的に行わせる. また必要に応じ、溶媒の種類や洗浄液等各液毎に送り出
し速度を変更することもできる.第2図は反応チューブ
を用いた分析装置に実施した例を示している.なお、第
1図と同じ部分には同じ符号を付してその説明を省略す
る.第2図において、20は反応チューブである.この
反応チューブ20の上流ll]!I@に二本の送液路1
1.11が連結され、そのそれぞれの上流側端が別々の
吸送液切換弁5.5を介して、ポンプ66が連結され、
各液槽1a,lb・・・・・・から吸引した液をそれぞ
れ反応チューブ20に送り込むようにしている.そして
両方の各弁及びモーターが一つのシーケンスコントロー
ラー13によって制御されるようになっている. この装置では、一方のポンプによりサンプルを、他方の
ポンプにより反応試薬を送り出し、反応チューブ20内
で反応させ、例えば分光計10により測定すむのであり
、必要に応じて両ポンプ6.6から連続して送り込むこ
とも、また両ポンプ66を交互に同期させて間欠送りさ
せ、各液を交互に送り込ませることもできる. (発明の効果) 上述したように本発明の送液装置は、ピストン、シリン
ダーを使用した吸送液ポンプを騙動機構により動作させ
るようにし、この駆動機構をシーゲンスコントローラー
によって制御させるようにし、1回の送液に必要な量の
液を1回の吸引動作で吸い込み、これを自動的に速度コ
ントロールしつつ送り出すようにしたことにより、プラ
ンジャーやダイヤフラムを使用した場合のような脈流を
除く手段が不要となり、耐圧性、耐久性が高く、またチ
ェッキ弁を使用しないため気泡発生の問題が生ぜず、送
液圧を変化させても送液量に誤差が生じることがない.
しかも従来のブランジャーポンプを使用した装置と同様
に自動的に一連の分析等の処理が可能になり、操作性が
良い等の効果がある.
Further, the valve motor 12a of the drive mechanism 12, the switching drive motor 5a of the suction liquid switching valve 5, and the switching oil motor 2a of the switching valve 2 for liquid feeding selection are all automatically operated according to a procedure input in advance by the sequence controller 13. It is now possible to perform the following actions. In this liquid chromatograph, the amount of solvent or washing liquid required for one liquid feeding is pumped into the suction liquid pump 6 according to the data input in advance to the Siegen controller 13.
Inhale once every time, Siegen controller 13
controls the piston pushing speed by the drive mechanism 12 and sends the liquid to the liquid feeding path 11 at a desired flow rate,
Automatically perform the necessary analysis. Also, if necessary, the delivery speed can be changed for each type of solvent, cleaning liquid, etc. Figure 2 shows an example of implementation in an analyzer using a reaction tube. Note that the same parts as in Fig. 1 are given the same reference numerals and their explanation will be omitted. In Figure 2, 20 is a reaction tube. Upstream of this reaction tube 20]! Two liquid feeding paths 1 in I@
1.11 are connected, and the pump 66 is connected to the upstream end of each via a separate suction liquid switching valve 5.5,
The liquid sucked from each liquid tank 1a, lb, . . . is sent to a reaction tube 20, respectively. Both valves and motors are controlled by one sequence controller 13. In this device, one pump pumps a sample and the other pump pumps a reaction reagent to cause a reaction in a reaction tube 20, which is then measured using, for example, a spectrometer 10. If necessary, both pumps 6. Alternatively, both pumps 66 can be alternately synchronized and fed intermittently to feed each liquid alternately. (Effects of the Invention) As described above, in the liquid feeding device of the present invention, a suction liquid pump using a piston and a cylinder is operated by a deception mechanism, and this drive mechanism is controlled by a Siegen controller, By sucking in the amount of liquid required for one liquid transfer in one suction operation and sending it out while automatically controlling the speed, it is possible to eliminate pulsating flow that would occur when using a plunger or diaphragm. It eliminates the need for removal means, has high pressure resistance and durability, and does not use a check valve, so there is no problem with air bubbles, and there is no error in the amount of liquid fed even if the liquid feeding pressure is changed.
Furthermore, it is possible to perform a series of analyzes and other processes automatically in the same way as the conventional apparatus using a plunger pump, and has the advantage of being easy to operate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はそれぞれ別々の実施例を示す流路図で
ある. la,lb・・・液槽、2・・・・・・液槽選択用切換
弁、3・・・・・・吸液路、4a.4b・・・・・・流
路、5・・・・・・吸送液切換弁、 2a,5a・・・・・・切換駆動モータ、6・・・・・
・ポンプ、6a・・・・・・シリンダ、6b・・・・・
・ピストン、7・・・・・・吸送液路、8・・・・・・
インジエクター9・・・・・・カラム、10・・・・・
・分光計、11・・・・・・送液路、12・・・・・・
駆動機構、12a・・・・・・バルスモー夕、12b・
・・・・・ギヤ、12’c・・・・・・ピニオン、12
d・・・・・・ラック、 13・・・・・・シーケンスコントローラー20・・・
・・・反応チューブ.
Figures 1 and 2 are flow path diagrams showing different embodiments. la, lb...Liquid tank, 2...Liquid tank selection switching valve, 3...Liquid suction path, 4a. 4b...Flow path, 5...Suction liquid switching valve, 2a, 5a...Switching drive motor, 6...
・Pump, 6a...Cylinder, 6b...
・Piston, 7...Suction liquid path, 8...
Injector 9...Column, 10...
・Spectrometer, 11... Liquid feed path, 12...
Drive mechanism, 12a... Valve motor, 12b.
...Gear, 12'c...Pinion, 12
d...Rack, 13...Sequence controller 20...
...Reaction tube.

Claims (2)

【特許請求の範囲】[Claims] (1)先端部分に吸送液路を連通させたシリンダと、該
シリンダ内を往復動作する加減圧用のピストンと、該ピ
ストンを動作させる駆動機構とを有する吸送液ポンプを
備え、該吸送液ポンプの前記吸送液路を、給液槽に通じ
る給液路と、反応チューブもしくはカラム等の各種機器
類に送り出すための送液路とに切換連通させる切換弁を
備え、かつ、前記ピストンの動作をコントロールすべく
前記駆動機構の動作を制御するシーケンスコントローラ
ーを備え、前記シリンダ内に必要量を吸い込ませ、ピス
トンによる押出動作をコントロールしつつ送液するよう
にしてなる理化学機械用送液装置。
(1) A suction liquid pump that includes a cylinder with a suction liquid path communicating with the tip, a pressure adjustment piston that reciprocates inside the cylinder, and a drive mechanism that operates the piston; a switching valve for switching the suction liquid path of the liquid pump into communication with a liquid supply path leading to a liquid supply tank and a liquid sending path for sending to various equipment such as a reaction tube or a column; Liquid feeding for physical and chemical machinery, comprising a sequence controller that controls the operation of the drive mechanism to control the movement of the piston, and sucks the required amount into the cylinder and feeds the liquid while controlling the extrusion movement of the piston. Device.
(2)先端部分に吸送液路を連通させたシリンダと、該
シリンダ内を往復動作する加減圧用のピストンと、該ピ
ストンを動作させる駆動機構とを有する複数の吸送液ポ
ンプを備え、その各吸送液ポンプの各吸排液路をそれぞ
れ別々の給液槽に通じる吸液路と、それぞれ別々もしく
は同一の反応チューブ等の各種機器類に送り出すための
送液路とに切換える切換弁と、前記各吸送液ポンプのピ
ストンの動作をコントロールすべく各駆動機構の動作を
統一して制御するシーケンスコントローラーを備え、前
記シリンダ内に必要量を吸い込ませ、ピストンによる押
出動作をコントロールしつつ送液するようにしてなる理
化学機械用送液装置。
(2) A plurality of suction liquid pumps each having a cylinder with a suction liquid path communicating with the tip thereof, a pressure adjustment piston that reciprocates within the cylinder, and a drive mechanism that operates the piston, A switching valve that switches each liquid suction/drainage path of each suction liquid pump into a liquid suction path leading to a separate liquid supply tank and a liquid sending path for sending to various equipment such as separate or the same reaction tube. , a sequence controller that uniformly controls the operation of each drive mechanism to control the operation of the piston of each suction liquid pump, and sucks the required amount into the cylinder and sends it while controlling the extrusion operation by the piston. A liquid feeding device for physical and chemical machinery that dispenses liquid.
JP1308089A 1989-11-28 1989-11-28 Liquid sending device for physics and chemistry machinery Expired - Fee Related JP2544212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1308089A JP2544212B2 (en) 1989-11-28 1989-11-28 Liquid sending device for physics and chemistry machinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1308089A JP2544212B2 (en) 1989-11-28 1989-11-28 Liquid sending device for physics and chemistry machinery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP27905893A Division JPH06193555A (en) 1993-10-01 1993-10-12 Double liquid mixture feeding device for physical and chemical machine

Publications (2)

Publication Number Publication Date
JPH03168369A true JPH03168369A (en) 1991-07-22
JP2544212B2 JP2544212B2 (en) 1996-10-16

Family

ID=17976735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1308089A Expired - Fee Related JP2544212B2 (en) 1989-11-28 1989-11-28 Liquid sending device for physics and chemistry machinery

Country Status (1)

Country Link
JP (1) JP2544212B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009121483A (en) * 2003-01-10 2009-06-04 Teledyne Isco Inc Method and device for accelerating mixing of solvent and solute

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5025101U (en) * 1973-06-30 1975-03-22
JPS60113149A (en) * 1983-11-25 1985-06-19 Tokyo Rika Kikai Kk High-pressure metering pump for liquid chromatography

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5025101U (en) * 1973-06-30 1975-03-22
JPS60113149A (en) * 1983-11-25 1985-06-19 Tokyo Rika Kikai Kk High-pressure metering pump for liquid chromatography

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009121483A (en) * 2003-01-10 2009-06-04 Teledyne Isco Inc Method and device for accelerating mixing of solvent and solute

Also Published As

Publication number Publication date
JP2544212B2 (en) 1996-10-16

Similar Documents

Publication Publication Date Title
JPH0510959A (en) Compound liquid mixture feeding device for physical/ chemical machine
EP0107333B1 (en) Apparatus and method for supply of sample and sheath liquids to analytical flow cell
EP3074751B1 (en) Fluidics system for flow cytometer
US3963151A (en) Fluid dispensing system
US3192969A (en) Automatic sample handling apparatus
JPS6236159B2 (en)
US4244919A (en) Sample diluting apparatus
US3359910A (en) Apparatus for programming fluid flow
CN1311913C (en) Trace amount liquid jet system
US20060000759A1 (en) Liquid feeding system
DE19737173B4 (en) micro-dosing system
JPH0658942A (en) Apparatus and method for sample-liquid analysis
WO2007022667A1 (en) Multiple autopipette apparatus and method of operation
US4695431A (en) Volumetric pumping apparatus and method for supplying fluids to sheath stream flow cells
DE68905698T2 (en) FLOW INJECTION ANALYSIS.
KR20030045840A (en) Automatic pipetting device with rinsing
US7097070B2 (en) Method and apparatus for handling small volume fluid samples
JPH03168369A (en) Liquid transfer device for physical and chemical appliance
EP0781418B1 (en) Device for taking a liquid sample
US3615239A (en) Automated analyzer and programmer therefor
EP0101161B1 (en) Apparatus and method for passing two fluids simultaneously through an analytical flow cell
CN111381068A (en) Liquid adding device, analyzer and liquid adding method
JP2504001B2 (en) Liquid transfer device
JPH0429414Y2 (en)
JP3906424B2 (en) Dispensing method for chemicals, etc.

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees