JPH03167520A - Light source device for liquid crystal projection device - Google Patents

Light source device for liquid crystal projection device

Info

Publication number
JPH03167520A
JPH03167520A JP1306424A JP30642489A JPH03167520A JP H03167520 A JPH03167520 A JP H03167520A JP 1306424 A JP1306424 A JP 1306424A JP 30642489 A JP30642489 A JP 30642489A JP H03167520 A JPH03167520 A JP H03167520A
Authority
JP
Japan
Prior art keywords
liquid crystal
light source
concave mirror
light
condenser lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1306424A
Other languages
Japanese (ja)
Inventor
Yasunori Hiroshima
広島 康則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Electronic Corp filed Critical Pioneer Electronic Corp
Priority to JP1306424A priority Critical patent/JPH03167520A/en
Publication of JPH03167520A publication Critical patent/JPH03167520A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently and effectively use light from a light source by inserting a collected light fiber between a concave mirror or a condenser lens and a liquid crystal display panel. CONSTITUTION:The collected optical fiber 15 obtained by collecting a large number of optical fibers and making them in a bundle state is provided in the middle of the concave mirror 6 and the liquid crystal display panel 3. The optical fiber 15 is housed in a frame or the like and maintained in the bundle state. Besides, the cross section shape thereof as a bundle is demarcated according to the shape of the frame. In such a case, the cross section shape of one end surface 15a of the optical fiber 15 faced to the concave mirror is made circular and the diameter thereof is made almost identical to the aperture 6' of the mirror 6. Simultaneously, the cross section shape of the other end surface 15b faced to the panel 3 is made rectangular whose size is almost identical to the panel 3. Thus, luminous flux projected from the concave mirror or the condenser lens is efficiently used and power consumption is saved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、液晶投写装置に使用される光源装置に関する
ものである. 〔従来の技術〕 大型のテレビ画面が楽しめるビデオ・プロジエクタの一
つとして、透過型の液晶投写装置が知られている. このような液晶投写装置は、原理的には第5図に示すよ
うな構成をしている。すなわち、投写光源lからの光は
、コンデンサレンズ2によって平行光線にされ、透過型
の液晶表示バネル3を照射し、これを透過した光が投写
レンズ4で屈折されてスクリーン5上に拡大した画像を
結像する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a light source device used in a liquid crystal projection device. [Prior Art] A transmissive liquid crystal projection device is known as a video projector that allows you to enjoy a large television screen. Such a liquid crystal projection device has a structure as shown in FIG. 5 in principle. That is, the light from the projection light source 1 is made into parallel light by the condenser lens 2 and illuminates the transmissive liquid crystal display panel 3, and the light that passes through this is refracted by the projection lens 4 to produce an enlarged image on the screen 5. image.

次に、カラー画像を得るための液晶投写装置を第6図に
示す。この装置において、投写用光源1から発した光は
凹面鏡6で反射され、コンデンザレンズ2によって平行
光線にされる。次に、この平行光線は、グイクロイック
ミラ−7によって以下の手順によって青色成分の光、緑
色成分の光、赤色成分の光に分離される。先ず、凹面鏡
6で反射された白色光は、最初にプルー果ラー7bで青
色或分の光が反射され、直角に折lIIIされて図の上
方に進み、残りの光が直進して次にレッドミラー7rで
赤色戒分の光が反射されて図の下方に直角に曲げられて
進む。残りの緑色成分の光はこれらプルーξラー7bと
レッドミラー7rの双方を通過して直進する。反射され
た青色成分の光と赤色威分の光は、図の上下に配置され
たミラー8,9にそれぞれ反射され、再び直角に曲げら
れて、直進してきた緑色成分の光と平行になり同方向に
進む。
Next, FIG. 6 shows a liquid crystal projection device for obtaining color images. In this device, light emitted from a projection light source 1 is reflected by a concave mirror 6 and converted into parallel light by a condenser lens 2. Next, this parallel light beam is separated into blue component light, green component light, and red component light by the guichroic mirror 7 according to the following procedure. First, in the white light reflected by the concave mirror 6, some of the blue light is first reflected by the blue color 7b, is bent at a right angle and travels upward in the figure, and the remaining light travels straight and then red light. The light of the red precept is reflected by the mirror 7r and travels downward in the figure at a right angle. The remaining green component light passes through both the puller 7b and the red mirror 7r and travels straight. The reflected blue component light and red component light are each reflected by mirrors 8 and 9 placed at the top and bottom of the figure, and are bent at right angles again to become parallel to the green component light that has traveled straight. Go in the direction.

このようにして平行にされた各色戒分の光は、各光路に
直角に設けられた各色用の透過型液晶表示バネル3 r
 s 3 g s 3 t)を透過し、各色の画像情報
を持つ液晶透過光for,log,jobとなる。これ
らの内、青色と赤色の情報を持つ液晶透過光Job,1
0rはそれぞれミラー11.12に反射されて緑色の情
報を持つ液晶透過光10gの光路内に入り、グイクロイ
ックミラ−13,14で反射されて全ての液晶透過光1
0r,10gt 10bが重なり合う。ここで、各液晶
表示バネル3r,3g,3bから投写レンズ4までの光
路長が全て等しくなるようにミラーや液晶表示パネル等
が配置されているので、投写レンズ4に入射した各色の
情報を持つ液晶透過光は、スクリーン5上に拡大された
カラー画像を結像する。
The light of each color divided in parallel in this way is transmitted to a transmission type liquid crystal display panel 3 r for each color provided at right angles to each optical path.
s 3 g s 3 t), and becomes liquid crystal transmitted light for, log, job having image information of each color. Among these, liquid crystal transmitted light Job, 1 with blue and red information
0r is reflected by the mirrors 11 and 12 and enters the optical path of the liquid crystal transmitted light 10g having green information, and is reflected by the guichroic mirrors 13 and 14 and all the liquid crystal transmitted light 1
0r, 10gt 10b overlap. Here, since the mirrors, liquid crystal display panels, etc. are arranged so that the optical path lengths from each liquid crystal display panel 3r, 3g, 3b to the projection lens 4 are all equal, information on each color incident on the projection lens 4 is stored. The light transmitted through the liquid crystal forms an enlarged color image on the screen 5.

上記のような液晶投写装置では、スクリーン5に明るい
画像を投写させるために、強力な投写用光源lが必須の
ものであり、光源から発11女される光を平行光線に集
光して使用している。たとえば、前述の第6図では、凹
面鏡6とコンデンサレンズとによって、平行光線を得て
いる。また、第7図のように凹面鏡6として放物面鏡6
aを使用する場合もある.これは、光源を放物線の焦点
に置けば、集光されて平行光線を得ることができること
を利用したものである.さらに、第8図では、凹面鏡6
として楕円面vL6bを使用している。すなわち楕円の
一方の焦点に光源l@置き、光線を他方の焦点にいった
ん集束させてからコンデンサレンズ2によって平行光線
にするものである。
In the above-mentioned liquid crystal projection device, in order to project a bright image on the screen 5, a powerful projection light source is essential, and the light emitted from the light source is used by condensing it into parallel light beams. are doing. For example, in the above-mentioned FIG. 6, parallel light rays are obtained by the concave mirror 6 and the condenser lens. Also, as shown in FIG. 7, a parabolic mirror 6 is used as the concave mirror 6.
Sometimes a is used. This takes advantage of the fact that if a light source is placed at the focal point of a parabola, the light will be focused and parallel rays will be obtained. Furthermore, in FIG. 8, the concave mirror 6
The ellipsoidal surface vL6b is used as the ellipsoidal surface vL6b. That is, a light source l@ is placed at one focal point of the ellipse, and the light beams are once converged at the other focal point, and then converted into parallel beams by the condenser lens 2.

一方、これらの投写用光源は強力であることから発熱も
大きく、図示しない冷却用ファン等により冷却できるよ
うにしている。
On the other hand, since these projection light sources are powerful, they also generate a large amount of heat, so they can be cooled by a cooling fan or the like (not shown).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記の従来技術にあっては、第9図に示
すように、光源からは凹面鏡6の口径6′を脊する円形
断面の光束が来るのに対し、液晶表示パネル3の形状が
矩形であるため、バネル3の外側を照射する無駄な光束
が生じていた。通常のテレビ画面に使用される画面の縦
、横の比が3:4の場合、光源から出る全光量のうち約
40%が無駄になっている計算になる。そのため従来は
この余分な光束を出すために、投写光源lの出力が大き
く設定されており、冷却負荷も大きくなっていた. 〔発明の目的〕 本発明は上記の事実に鑑みてなされたもので、光源から
の光を無駄なく有効に使用することができる液晶投写装
置用光源装置を提イハすることを目的としている. 〔発明の概要〕 上記の目的を達戊するために本発明は、凹面鏡又はコン
デンサレンズと液晶表示パネルとの間に集合光ファイバ
を挿入し、この集合光ファイバの投写光源側の断面形状
を対向する凹面鏡又はコンデンサレンズとほぼ同じ大き
さの円形にし、液品表示パネル側の端面を該パネルとほ
ぼ同じ形状にした構成を採用している。これによっ゜ζ
、光源としての凹面鏡又はコンデンサレンズの全面から
来る光束を円形に形成された端面で受け、これらの光を
外部に洩らすことなく矩形にして液晶画面に照射するこ
とができ、光源から出る光束を無駄なく利用することが
できる。
However, in the above-mentioned prior art, as shown in FIG. 9, a light beam with a circular cross-section along the aperture 6' of the concave mirror 6 comes from the light source, whereas the liquid crystal display panel 3 has a rectangular shape. As a result, a wasted luminous flux was generated that irradiated the outside of the panel 3. If the height-to-width ratio of a typical television screen is 3:4, approximately 40% of the total amount of light emitted from the light source is wasted. Therefore, in the past, the output of the projection light source l was set to be large in order to emit this extra luminous flux, and the cooling load was also large. [Object of the Invention] The present invention has been made in view of the above-mentioned facts, and it is an object of the present invention to propose a light source device for a liquid crystal projection device that can effectively use the light from the light source without wasting it. [Summary of the Invention] In order to achieve the above object, the present invention inserts a collective optical fiber between a concave mirror or a condenser lens and a liquid crystal display panel, and makes the cross-sectional shape of the projection light source side of the collective optical fiber opposite to each other. The liquid product display panel has a circular shape that is approximately the same size as the concave mirror or condenser lens, and the end face on the liquid product display panel side has approximately the same shape as the panel. Due to this ゜ζ
, the light beam coming from the entire surface of a concave mirror or condenser lens as a light source can be received by the circular end face, and the light can be made into a rectangular shape and irradiated onto the LCD screen without leaking to the outside, and the light beam emitted from the light source is not wasted. It can be used without any restrictions.

〔発明の実施例〕[Embodiments of the invention]

以下に本発明の実施例を図面を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図において、1は投写光源で凹面鏡6の焦点の位置
に置かれている。この実施例では凹面鏡6には放物面鏡
が使用されているから凹面鏡6は直接平行な光束を反射
している。3は透過型の液晶表示パネルである。そして
凹面鏡6と液晶表示バネル3との中間に多数の光ファイ
バを集合して束状にした集合光ファイバ15が設けられ
ている。
In FIG. 1, reference numeral 1 denotes a projection light source placed at the focal point of a concave mirror 6. In this embodiment, since a parabolic mirror is used as the concave mirror 6, the concave mirror 6 directly reflects parallel light beams. 3 is a transmissive liquid crystal display panel. A collective optical fiber 15, which is a bundle of a large number of optical fibers, is provided between the concave mirror 6 and the liquid crystal display panel 3.

この集合光ファイバl5は、図示しない枠等に収容され
て束状を維持しているもので、枠の形状に従って束とし
ての断面形状が画定されるものである。そこで、集合光
ファイバl5の凹面鏡に面した一方の端面15aの断面
形状を円形にして、その直径を凹面鏡6の口径6′と略
々同じにすると共に、他方の液晶画面表示パネル3に面
した端面15bの断面形状は、液晶画面表示パネル3と
略々同じ大きさの矩形にしている。
The collective optical fibers 15 are housed in a frame (not shown) to maintain a bundle shape, and the cross-sectional shape of the bundle is defined according to the shape of the frame. Therefore, the cross-sectional shape of one end face 15a facing the concave mirror of the collective optical fiber l5 is made circular so that its diameter is approximately the same as the aperture diameter 6' of the concave mirror 6, and the cross-sectional shape of the end face 15a facing the concave mirror 6 is made approximately the same, and the end face 15a facing the other liquid crystal screen display panel 3 is made circular. The end surface 15b has a rectangular cross-sectional shape that is approximately the same size as the liquid crystal screen display panel 3.

第2図に示すように、光ファイバl6は二重構造をした
ガラスまたはプラスチックの繊維で、中心部(コア)1
6aは外側(クラッド)16bより高い屈折率を有して
いる。そのため光ファイバ16の一端から所定範囲の入
射角度でコア16a内に入射した光線は、光ファイバ1
6が中間でどのように曲がっていても途中で漏洩するこ
とはなく、全反射を繰り返しながら他方の端部に達する
As shown in Figure 2, the optical fiber l6 is a double-layered glass or plastic fiber with a core 1
6a has a higher refractive index than the outside (cladding) 16b. Therefore, a light beam that enters the core 16a from one end of the optical fiber 16 at an incident angle within a predetermined range is
No matter how bent 6 is in the middle, there is no leakage along the way, and it reaches the other end while repeating total reflection.

しかも、コアの透明度も高い。これらのことから光ファ
イバ内での光路損失は無視してよい。
Furthermore, the core has high transparency. For these reasons, optical path loss within the optical fiber can be ignored.

したがって、第1図に示す構或にすることによって、凹
面鏡6からの反射光を無駄なく集合光ファイバ15で受
けることができ、受けた光束を全て液晶表示バネル3に
照射することができる。このことから、投写光源lを従
来より小出力にでき、それだけ冷却負荷が低減される。
Therefore, by adopting the structure shown in FIG. 1, the reflected light from the concave mirror 6 can be received by the collective optical fiber 15 without waste, and all of the received light beam can be irradiated onto the liquid crystal display panel 3. Therefore, the output of the projection light source 1 can be lower than that of the conventional one, and the cooling load is reduced accordingly.

また凹面鏡6の面積と液晶表示バネル3の面積を略々等
しくすればよいので、凹面鏡6の口径も小さくでき、安
価に製造できる. 第3図は凹面鏡とコンデンサレンズとを使用した実施例
を示す。凹面鏡には楕円面鏡6bが使川され、楕円の一
方の焦点に置かれた投写光源lからの光は、楕円の他方
の焦点に集束する。コンデンサレンズ2の焦点位置を楕
円の上記他方の焦点と一致させておけば、コンデンサレ
ンズ2からは平行光線が出て、集合光ファイバ】5によ
って液晶表示パネル3を照射する。この場合、集合光フ
ァイバ15の一方の端面15aはコンデンサレンズ2と
略々同径の円形にされる。他方の端面l5bは第1図と
同じ矩形である. 第4図は凹面鏡を使用せずに、コンデンサレンズ2のみ
を使用した実施例を示す。投写光源lはコンデンサレン
ズ2の黒点に置かれている。この場合も集合光ファイバ
15の一方の端面15aはコンデンサレンズ2と略々同
径の円形にされる.上記の実施例では、透過型の液晶表
示パネル3を用いているが、反1・l型でも使用できる
Furthermore, since the area of the concave mirror 6 and the area of the liquid crystal display panel 3 need only be made approximately equal, the aperture of the concave mirror 6 can be made small and can be manufactured at low cost. FIG. 3 shows an embodiment using a concave mirror and a condenser lens. An ellipsoidal mirror 6b is used as the concave mirror, and light from a projection light source l placed at one focus of the ellipse is focused on the other focus of the ellipse. By aligning the focal point of the condenser lens 2 with the other focal point of the ellipse, parallel light rays are emitted from the condenser lens 2 and illuminate the liquid crystal display panel 3 through the collective optical fiber 5. In this case, one end surface 15a of the collective optical fiber 15 is formed into a circular shape having approximately the same diameter as the condenser lens 2. The other end surface l5b has the same rectangular shape as in FIG. FIG. 4 shows an embodiment in which only a condenser lens 2 is used without using a concave mirror. The projection light source l is placed at the black spot of the condenser lens 2. In this case as well, one end surface 15a of the collective optical fiber 15 is formed into a circular shape having approximately the same diameter as the condenser lens 2. In the above embodiment, a transmissive type liquid crystal display panel 3 is used, but an anti-1/1 type liquid crystal display panel 3 can also be used.

また、凹面鏡は放物面鏡、楕円面vI.等の種類に関係
なく使用できる。さらに本発明において、入射光線は完
全な平行光線である必要はなく、光ファイバ16内で上
記の全反射を繰り返すことができる範囲の入射角度であ
れば、集束光線、発敗光線の何れの場合でも使用可能で
ある。
In addition, concave mirrors include parabolic mirrors, ellipsoidal mirrors, and vI. It can be used regardless of the type. Furthermore, in the present invention, the incident light beam does not need to be a perfectly parallel light beam, but can be either a converging light beam or a divergent light beam, as long as the incident angle is within a range that allows the above-mentioned total reflection to be repeated within the optical fiber 16. It can also be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、凹面鏡またはコン
デンサレンズからの投写光束を無駄なく使用することが
できるので、投写光源を従来より小出力のものにするこ
とができ、冷却負荷も小さくなり電力消費を節約できる
。また、凹面鏡またはコンデンサレンズを小型化できる
ので、液晶投写装置のコストダウンが図れるという格別
の効果を奏する。
As explained above, according to the present invention, the projected light beam from the concave mirror or condenser lens can be used without wasting it, so the projection light source can be made with a lower output than conventional ones, the cooling load is also reduced, and the power consumption is reduced. You can save consumption. Furthermore, since the concave mirror or condenser lens can be made smaller, the cost of the liquid crystal projection device can be reduced, which is a special effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の液晶投写装置用光源装置の構成を示す
斜視図、 第2図は光ファイバの構成図、 第3図は本発明の他の実施例で、凹面鏡とコンデンサレ
ンズとを使用した場合の構成迄示す正面図、 第4図は凹面鏡を使用せずにコンデンサレンズのみを使
用した実施例の構戒を示す斜視図、 第5図は液品投写装置の原理を示す図、第6図はカラー
液晶投写装置の構或を示す図、第7図は従来の液晶投写
装置用光源装置の1例を示す構威図、 第8図は従来の光源装置の他の例を示す構成図、第9図
は液晶画面と投写光源からの光束との形状の相違を示す
図である。 1・・・投写光源、2・・・コンデンサレンズ、3・・
・液晶表示パネル、l5・・・集合光ファイバ、15a
・・・光源側端而、15b・・・液晶表示パネル側端面
FIG. 1 is a perspective view showing the configuration of a light source device for a liquid crystal projection device according to the present invention, FIG. 2 is a configuration diagram of an optical fiber, and FIG. 3 is another embodiment of the present invention, using a concave mirror and a condenser lens. Fig. 4 is a perspective view showing the structure of an embodiment using only a condenser lens without using a concave mirror; Fig. 5 is a diagram showing the principle of a liquid product projection device; Figure 6 is a diagram showing the configuration of a color liquid crystal projection device, Figure 7 is a diagram showing the configuration of an example of a conventional light source device for a liquid crystal projection device, and Figure 8 is a configuration diagram showing another example of a conventional light source device. 9 are diagrams showing the difference in shape between the liquid crystal screen and the light beam from the projection light source. 1... Projection light source, 2... Condenser lens, 3...
・Liquid crystal display panel, l5... collective optical fiber, 15a
... end face on the light source side, 15b... end face on the liquid crystal display panel side.

Claims (1)

【特許請求の範囲】 投写光源と、該投写光源からの光を受ける凹面鏡又はコ
ンデンサレンズとからなり、投写光源の光を凹面鏡又は
コンデンサレンズで集光して液晶表示パネルに照射し、
液晶表示パネルの画像をスクリーンに拡大して投写する
液晶投写装置用光源装置において、 前記凹面鏡又はコンデンサレンズと液晶表示パネルとの
間に光ファイバの束からなる集合光ファイバを配置し、
該集合光ファイバの断面形状を前記投写光源側の端部で
は対向する凹面鏡又はコンデンサレンズと略々同じ直径
の円形とする一方、前記液晶表示パネルに対向する端部
では該パネルと略々同一形状にしたことを特徴とする液
晶投写装置用光源装置。
[Claims] Consisting of a projection light source and a concave mirror or condenser lens that receives light from the projection light source, the light from the projection light source is focused by the concave mirror or condenser lens and irradiated onto a liquid crystal display panel,
In a light source device for a liquid crystal projection device that enlarges and projects an image on a liquid crystal display panel onto a screen, a collective optical fiber consisting of a bundle of optical fibers is arranged between the concave mirror or condenser lens and the liquid crystal display panel,
The cross-sectional shape of the collective optical fiber is made into a circle having approximately the same diameter as the concave mirror or condenser lens facing the projection light source side, while the cross-sectional shape of the collective optical fiber is approximately the same shape as the panel at the end facing the liquid crystal display panel. A light source device for a liquid crystal projection device, characterized in that:
JP1306424A 1989-11-28 1989-11-28 Light source device for liquid crystal projection device Pending JPH03167520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1306424A JPH03167520A (en) 1989-11-28 1989-11-28 Light source device for liquid crystal projection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1306424A JPH03167520A (en) 1989-11-28 1989-11-28 Light source device for liquid crystal projection device

Publications (1)

Publication Number Publication Date
JPH03167520A true JPH03167520A (en) 1991-07-19

Family

ID=17956856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1306424A Pending JPH03167520A (en) 1989-11-28 1989-11-28 Light source device for liquid crystal projection device

Country Status (1)

Country Link
JP (1) JPH03167520A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5479279A (en) * 1993-09-07 1995-12-26 Sextant Avionique Optimized color display device which uses a matrix to control the hue and uses a matrix to control color saturation
FR2758633A1 (en) * 1997-01-23 1998-07-24 Thomson Multimedia Sa Light ray concentrator of specific shape
KR100237200B1 (en) * 1996-12-31 2000-01-15 구자홍 White balance correcting apparatus
EP1043899A1 (en) * 1999-04-06 2000-10-11 Raytheon Marine GmbH Light section transformer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63271301A (en) * 1987-04-30 1988-11-09 Alps Electric Co Ltd Light source for optical shutter array

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63271301A (en) * 1987-04-30 1988-11-09 Alps Electric Co Ltd Light source for optical shutter array

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5479279A (en) * 1993-09-07 1995-12-26 Sextant Avionique Optimized color display device which uses a matrix to control the hue and uses a matrix to control color saturation
KR100237200B1 (en) * 1996-12-31 2000-01-15 구자홍 White balance correcting apparatus
FR2758633A1 (en) * 1997-01-23 1998-07-24 Thomson Multimedia Sa Light ray concentrator of specific shape
EP1043899A1 (en) * 1999-04-06 2000-10-11 Raytheon Marine GmbH Light section transformer

Similar Documents

Publication Publication Date Title
US4941732A (en) Transmission type projection screen
JP2878944B2 (en) Light source device and projection display device
JPH06289394A (en) Light source for projection type display device, illuminator and liquid crystal display device
JP2004326129A (en) Illuminator and projection type display device
US6398368B2 (en) Light pipe for a projector system
US6411440B2 (en) Array lens, lighting optical system, optical unit and imaging apparatus
KR19980081503A (en) Rear Projection Display and Screen Unit
KR100201996B1 (en) Liquid crystal display projector
JPH03167520A (en) Light source device for liquid crystal projection device
JPH10241437A (en) Light source device, illumination system, and image projection device
JPH0725777Y2 (en) LCD projector
CN216133290U (en) Small-size single LCD projector dodging light path
JP2605782B2 (en) Projection display device
JPH02275933A (en) Liquid crystal projector
JP3689430B2 (en) TRANSMISSION SCREEN, MANUFACTURING METHOD THEREOF, AND REAR PROJECTION IMAGE DISPLAY DEVICE USING THE SAME
JPH0933881A (en) Liquid crystal video projector
JPH06118374A (en) Liquid crystal projector
JPH07301800A (en) Light source device for liquid crystal projector
JPS61257086A (en) Video projector
JPH11149803A (en) Lighting system and projection type display device using the same
JP2768345B2 (en) LCD projector
JPS6337336A (en) Transmission type screen
JPH11133351A (en) Projection device
JP2885220B2 (en) Light source device
JP2007010787A (en) Projector, video display device, and projection system