JPH03167312A - Polyester yarn for impact absorbing air bag - Google Patents

Polyester yarn for impact absorbing air bag

Info

Publication number
JPH03167312A
JPH03167312A JP30848989A JP30848989A JPH03167312A JP H03167312 A JPH03167312 A JP H03167312A JP 30848989 A JP30848989 A JP 30848989A JP 30848989 A JP30848989 A JP 30848989A JP H03167312 A JPH03167312 A JP H03167312A
Authority
JP
Japan
Prior art keywords
strength
polyester
impact
airbag
absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30848989A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Igawa
井川 義之
Takahiro Okubo
隆弘 大久保
Kenichiro Oka
岡 研一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP30848989A priority Critical patent/JPH03167312A/en
Publication of JPH03167312A publication Critical patent/JPH03167312A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Bags (AREA)
  • Artificial Filaments (AREA)

Abstract

PURPOSE:To obtain the title yarn equal to nylon 66, having specific viscosity, density, strength, elongation, etc., showing excellent flame retardance, impact- resistant characteristics, durability, wet heat deterioration resistance and light resistance, comprising ethylene terephthalate as a main repeating unit. CONSTITUTION:The objective yarn which comprises a polyester having a repeating unit composed of >=85%, preferably >=93% ethylene terephthalate and in which the polyester has >=0.76, preferably >=0.86 intrinsic viscosity, >=1.380g/cm<3>, preferably 1.385-1,420g/cm<3> density, >=6.5g/d strength, >=14% elongation, >=120, preferably >=140 toughness, >=4.1g/d, preferably >=4.5g/d knot strength and <=10%, preferably <=5.0% dry heat shrinkage percentage. The yarn contains preferably 0.3-1.5wt.% calculated as amount of phosphorus element of bifunctional phosphorus compound.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は安全を確保するための衝撃吸収エアバッグ用ポ
リエステル繊維に関する. 更に詳しくは、難燃性を有し、耐IIi撃特性、耐久性
に潰れた衝撃吸収エアバッグに関するものである. [従来の技術] 近年、各種交通機関の乗員の保護用として、シートベル
トが一般に使用されているが、さらに安全性の高いエア
バッグシステムが実用化され始めている. 通常エアバッグは原糸を製織後、ゴムを積層し、折りた
たまれて格納されており、事故などのショックを受ける
と、高圧ガスにより瞬時に膨張し、乗員の安全を図るよ
う設置されている.しかるにエアバッグとして重要な特
性は、瞬間的なIlj張に耐え得る耐衝撃性、長期保管
中の耐久性、高圧ガスの通気性の阻止性が高いこと、難
燃性を有すること、およびコンパクトに格納できること
など挙げることができる. 例えば、特開昭64−4 1 438号公報および、特
開昭64−41439号公報の公知例で見られるように
、現在エアバッグに用いられている繊維は、ナイロン−
66であり、ポリエステル繊維は使用されていないのが
実情である,叩ちポリエステル繊維では耐衝撃性に問題
があり使用できなかったのである. 一方、基布表層への積層方法として、例えば特開昭49
−47692号公報、実開昭49−24 1 08号公
報にゴムエラストマー、ウレタン樹脂との積層方法が提
案されている.さらに繊維又は基布を難燃化する方法と
して特公昭55−4 1 6 1 0号公報、特公昭5
3−44599号公報などが提案されている.また従来
のポリエステル繊維では編織物の平坦性、均一性が不十
分であり、機械的特性面で満足なエアバッグが得られな
かったのである. [発明が解決しようとする課U] 前記特開昭64−41438号公報および、特開昭64
−41439号公報の方法で提案されているナイロン6
6繊維はタフネス性、結節強度などの点で優れており、
エアバッグの重要特性である耐V!撃性を満足するもの
が得られていたのである.この点において従来のポリエ
ステル繊維はタフネス性、結節強度の点で劣っており、
エアバッグとしたときの耐衝撃性が悪くエアバッグ用繊
維として用いられなかったのである.一方、ナイロン6
6繊維は耐湿熱性、耐光性の点で劣っておりエアバッグ
の耐久性の点で劣っていた. 特開昭49−47692号公報、実開昭49−24 1
 08号公報に記載された積層物はたしかに難燃性を有
しているものの基布を難燃化するものではない.一方特
公昭55−41610号公報ではボリマの製造時に難燃
性物質を配合する方法、特公昭53−44599号公報
には後加工で難燃化する方法が提案されているが、いず
れの方法でも満足な難燃性を得ることが難しく、難燃性
の耐久性も劣っていた.B燃性を満足するには難燃剤を
多量に使用する必要があり、そのため基布が硬くなり折
り畳んで使用するエアバッグでは格納性が悪くなるとい
う欠点を有していたのである. 本発明は前記ポリエステルの有する課題を解消すること
により、耐衝撃性に優れ、難燃性があり、しかも耐久性
のあるエアバッグを得ることのできる衝撃吸収エアバッ
グ用ポリエステル繊維を提供することにある.さらに従
来技術では達せられなかった、平坦性、均一性をも兼ね
そなえたfIs吸収エアバッグ用ポリエステル繊維を提
供することにある. [課題を解決するための手段および作用](1)11撃
吸収エアバッグ用ポリエステル繊維において、繰返し単
位の85%以上がエチレンレフタレートであるポリエス
テルであり、密度が1.380g/cm2以上、強度が
6.5gd以上、伸度が14%以上、タフネス性が12
0以上、結節強度が4.1g/d以上、乾熱収縮率が1
0%以下である、fII撃吸収エアッグ用ポリエステル
繊維.《2)前記《1》に記載の衝撃吸収エアバッグ用
ポリエステル繊維において、該繊維に2官能性リン化合
物をリン元素量として0.3〜1.5重量%含有してな
ることを特徴とする衝撃吸収エアバッグ. 以下に本発明を詳細に説明する. 本発明に係るWi撃吸収エアバッグ用ポリエステル繊維
は、ポリエステルの繰返し単位の85%以上がエチレン
テレフタレートであることが必須であり、好ましくは9
0%以上、さらに好ましくは93%以上である.また本
発明の構成要件および目的を損なわない範囲で従来公知
の酸或分、グリコール成分を共重合してもよい.前記共
重合酸成分としては、例えばイソフタル酸、5−ナトリ
ュウムスルホイソフタル酸、アジビン酸などが挙げられ
る.また、グリコール成分としてはテトラメチレングリ
コール、ジエチレングリコール、ネオベンチルグリコー
ル、1.4シクロヘキサンジメタノール、ポリエチレン
グリコールなどが挙げられる. 本発明に係るポリエステル繊維の固有粘度を0.76以
上とすることによって、エアバッグの強度、耐久性が向
上し、固有粘度すなわち、分子量は原糸強度、原糸伸度
特性と組合わされ、エアバッグが瞬間的に膨脹した時の
衝撃吸収性をIfll上することができる.固有粘度は
好ましくは0.83以上、さらに好ましくは0.86以
上である. 本発明に係るfill吸収エアバッグ用ポリエステル繊
維の強度を6.5g/d以上、伸度を14%以上、しか
も強度と伸度の積で得られるタフネス性を120以上と
することによって、瞬間的なエアバッグの膨脹に耐える
ことができ、さらにffiI撃時の高いエネルギーを吸
収することができる.タフネス性は好ましくは130以
上、さらに好ましくは140以上である. 本発明に係る衝撃吸収エアバッグ用ポリエステル繊維の
密度を1.380g/cm2以上とすることにより、エ
アバッグ用基布の寸法安定性を向上することができ、好
ましくは1.385g/cm2以上であ.しかし生産性
、製造コストを考慮すると密度は1.420g/cm2
以下が好ましい, 本発明に係るfI撃吸収エアバッグ用ポリエステル繊維
は通常ms物として使用されるため、ポリエステル繊維
の結節強度を4.1g/d以上、乾熱収縮率をlO%以
下とすることにより編織物の引裂き強力、平坦性、均一
性を向上することができる. 結節強度は好ましくは4.3g/d以上、さらに好まし
くは4.5g/d以上である.乾熱収縮率は好ましくは
7.0%以下、さらに好ましくは5,0%以下である.
乾熱収1率が高く、特に10%をこえると1lAIIa
!!!1の平坦性、均一性が保てないため、衝撃吸収性
が低下するばかりか、後加工でゴム等を積層した場合接
着性が悪くなり、したがって長期間の格納で絹織物とゴ
ム層の剥離をまねき耐衝撃性能が低下するという問題が
生じるのである.さらに平坦性、均一性が悪い場合、折
り畳み性が悪くなりエアバッグが嵩高となり格納容積が
増大するという問題が生じるのである. 本発明に係るポリエステル繊維の特徴は2官能性リン化
合物を含有していることである.リン元素量として0.
3〜1.5重量%含有せしめることにより、エアバッグ
の難燃性を向上することができる.好ましくは0.4〜
1.3重量%、更に好ましくは0.6〜1.1重量%で
ある.リン元素量が0.31量%以下では、エアバッグ
用繊維の難燃性が不十分となり、リン元素量を1.6重
量%以上とすると、ポリエステル繊雑の強度が低下し、
かつ収縮特性が大きくなるため、平坦性、寸法安定性が
悪くなるという問題が生じるのである. 本発明のリン化合物は2官能性リン化合物であり、エス
テル形戚性官能基を2個有するリン化合物である.具体
的には下記(1)式で示されるホスホネート、(2〉式
で示されるホスホネート、(3)式で示されるホスフイ
ンオキシドが挙げられる. Rt  P 0 R 3 R5 ( 1 》 (式中R1、R5はそれぞれ同じかまたは異なる基であ
って、炭素数1〜18の炭化水素基を表し、R2、R3
はそれぞれ同じかまたは異なる基であって炭素数が1〜
18の炭化水素基または水素原糸を表し、A は2価の
有機残基、1 A は3価の有機残基を表し、R4はカルボキ2 シル基またはそのエステルを表し、R6はカルボキシル
基またはそのエステル、あるいは互いに−C−C−O−
で示される基を介してA2と1111 0  0 環を形成する2価のエステル形成性官能基を表す.式(
1)で示されるリン化合物の好ましい具体例としては、
フエニルホスホン酸ジメチル、フエニルホスホン酸ジフ
エニルなど挙げられる.式(2)のリン化合物の好まし
い具体例としては(2−カルボキシルエチル)メチルホ
スフイン酸、(2−カルボキシルエチル)フエニルホス
フィン酸、〈2−メトキシ力ルボキシルエチル〉フエニ
ルホスフイン酸メチル、《4−メトキシ力ルポニルフエ
ニル〉フエニルホスフイン酸メチル、(2−(β−ヒド
ロキシエトキシ力ルボニル)エチル)メチルホスフイン
酸のエチレングリコールエステルなどが挙げられる.式
(3)のリン化合物の好ましい具体例としては、(1.
2−ジカルボキシエチルホスフィンオキシド(2.3−
ジカルボキシ1ロビル)ジメチルホスフィンオキシド、
(2.3−ジメトキシ力ルポニルエチル)ジメチルホス
フィンオキシド、(1.2−ジ(β−ヒドロキシエトキ
シ力ルボニル)ジメチルホスフィンオキシドなどが挙げ
られる. これらの化合物の中で特に式《2)のリン化合物がポリ
エステルとの共重合反応性がよいことおよび、重縮合反
応時の飛敗が少ないことから好ましい.本発明のポリエ
ステルには3重量%を越えない範囲で艶消剤、耐光性向
上を目的とした紫外線吸収剤を含んでいてもよい.[実
施例] 実施例で使用した測定法は次の通りである.固有粘度:
オルソクロロフェノールを溶媒とし25℃で測定した溶
液粘度である. 密度:nヘプタン/四塩化炭素からなる密度勾配管(2
5℃)で測定した値である.基布強力:JIS−L−1
096A法によって測定した値である. リン元素量:昭和36年廣川書店発行の「機器による高
分子分析(1)高分子 重合中のリンの定量について」に 従って測定した値である. 破裂強さ:JIS−L−1018A法(ミューレン法)
に従って測定した値で ある. 難燃性:JIS・1091 (D)に従って測定した値
である. 平坦性:基布を平板に置き肉眼で判定した.実施例1及
至3、比較実施例1及至3 以下実施例を挙げて発明を詳細に説明する.テレフタル
酸とエチレングリコールを直接エステル化して得た縮合
物にリン化合物として、[2−(βヒドロキシエトキシ
力ルボニル)エチル]メチルホスフィン酸を表に記した
量添加し、0.03部の三酸化アンチモンを加え更に0
.1部の二酸化チタンを加えて30分で250℃から2
85℃に昇温するとともに反応系を0.5mmHgに減
圧した.その後固有粘度が0.8に達するまでこの温度
および減圧度を維持し反応を行った,得られたボリマを
2 m m }1g下で10時間乾燥した後、ついで2
00℃で0.4mmHg下で18時間固相重合を行い、
固有粘度1.10のポリエステルチップを得た.前記、
固相重合後のポリマチツプを円形の吐出孔から押し出し
て300〜330℃で溶融紡糸を行い、引き続き205
℃の温度で5.6〜6.0f合で延伸熱処理した後、1
〜5%の弛緩率でリラックス処理した後巻取り750デ
ニール−96フィラメントからなるフィラメントヤーン
を得た.得られたフィラメントヤーンを用い、縦および
緯密度26本/インチからなる平織物を得た. 実施例2は実施例1のボリマを得る段階で、リン化合物
を1.5重量%とした以外は同様な方法で平織物を得た
. 比較実施例1はリン化合物を0.2重量%とした以外は
実施例1と同様の方法で平織物を得た。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to polyester fibers for impact-absorbing airbags to ensure safety. More specifically, the present invention relates to a shock-absorbing airbag that is flame retardant, has IIi impact resistance, and is durable. [Prior Art] In recent years, seat belts have been commonly used to protect occupants of various types of transportation, but even safer airbag systems are beginning to be put into practical use. Normally, airbags are made by weaving yarn and then layering rubber, which is then folded and stored.When the bag receives a shock such as an accident, it instantly inflates using high-pressure gas, ensuring the safety of the occupants. However, the important characteristics of an airbag include impact resistance that can withstand instantaneous tension, durability during long-term storage, high resistance to high-pressure gas permeability, flame retardancy, and compact size. For example, it can be stored. For example, the fibers currently used in airbags are nylon-
66, and the reality is that polyester fibers are not used; beaten polyester fibers had problems with impact resistance and could not be used. On the other hand, as a method of laminating the surface layer of the base fabric, for example, JP-A-49
A method of laminating rubber elastomer and urethane resin has been proposed in Japanese Utility Model Publication No. 47692 and Japanese Utility Model Application Publication No. 49-24-108. Further, as a method for making fibers or base fabrics flame retardant, Japanese Patent Publication No. 1982-4 1610 and Japanese Patent Publication No. 5
Publication No. 3-44599 has been proposed. Furthermore, with conventional polyester fibers, the flatness and uniformity of knitted fabrics were insufficient, making it impossible to obtain airbags with satisfactory mechanical properties. [Problem U to be solved by the invention] The above-mentioned Japanese Patent Application Laid-Open No. 64-41438 and Japanese Patent Application Laid-open No. 64-1989
-Nylon 6 proposed by the method of Publication No. 41439
6 fibers have excellent toughness and knot strength,
V resistance is an important characteristic of airbags! We were able to obtain something that satisfied the impact characteristics. In this respect, conventional polyester fibers are inferior in terms of toughness and knot strength.
When made into airbags, it had poor impact resistance and was not used as airbag fiber. On the other hand, nylon 6
6 fibers were inferior in terms of heat and humidity resistance and light resistance, and were inferior in terms of airbag durability. Japanese Unexamined Patent Publication No. 49-47692, Utility Model Application No. 49-24 1
Although the laminate described in Publication No. 08 does have flame retardancy, it does not make the base fabric flame retardant. On the other hand, Japanese Patent Publication No. 55-41610 proposes a method of adding a flame retardant substance during the production of volima, and Japanese Patent Publication No. 53-44599 proposes a method of making it flame retardant through post-processing. It was difficult to obtain satisfactory flame retardancy, and the durability of flame retardancy was also poor. In order to satisfy B flammability, it is necessary to use a large amount of flame retardant, which has the disadvantage of making the base fabric stiff and making it difficult to store in airbags that are used when folded. The present invention aims to provide a polyester fiber for impact-absorbing airbags that can provide an airbag with excellent impact resistance, flame retardancy, and durability by solving the problems of polyester. be. Furthermore, it is an object of the present invention to provide polyester fibers for use in fIs-absorbing airbags that have flatness and uniformity that have not been achieved with conventional techniques. [Means and effects for solving the problem] (1) The polyester fiber for 11 impact-absorbing airbags is polyester in which 85% or more of the repeating units are ethylene phthalate, has a density of 1.380 g/cm2 or more, and has a strength of is 6.5 gd or more, elongation is 14% or more, and toughness is 12
0 or more, knot strength is 4.1 g/d or more, dry heat shrinkage rate is 1
0% or less polyester fiber for fII impact-absorbing air bags. <<2> The polyester fiber for impact-absorbing airbags according to <<1>> above, characterized in that the fiber contains a bifunctional phosphorus compound in an amount of 0.3 to 1.5% by weight as an elemental amount of phosphorus. Shock-absorbing airbag. The present invention will be explained in detail below. In the polyester fiber for a Wi impact-absorbing airbag according to the present invention, it is essential that 85% or more of the repeating units of the polyester are ethylene terephthalate, preferably 9
0% or more, more preferably 93% or more. Furthermore, conventionally known acids and glycol components may be copolymerized within the range that does not impair the constituent elements and objects of the present invention. Examples of the copolymerized acid component include isophthalic acid, 5-sodium sulfoisophthalic acid, and adivic acid. In addition, examples of the glycol component include tetramethylene glycol, diethylene glycol, neobentyl glycol, 1.4 cyclohexanedimethanol, polyethylene glycol, and the like. By setting the intrinsic viscosity of the polyester fiber according to the present invention to 0.76 or more, the strength and durability of the airbag are improved. Shock absorption when the bag is momentarily inflated can be greatly increased. The intrinsic viscosity is preferably 0.83 or more, more preferably 0.86 or more. By making the polyester fiber for fill-absorbing airbags according to the present invention have a strength of 6.5 g/d or more, an elongation of 14% or more, and a toughness obtained by the product of strength and elongation of 120 or more, instantaneous It can withstand severe airbag inflation, and can also absorb the high energy of an ffiI strike. The toughness is preferably 130 or more, more preferably 140 or more. By setting the density of the polyester fiber for impact-absorbing airbags according to the present invention to 1.380 g/cm2 or more, the dimensional stability of the base fabric for airbags can be improved, preferably at 1.385 g/cm2 or more. a. However, considering productivity and manufacturing costs, the density is 1.420g/cm2
The following is preferable. Since the polyester fiber for fI impact-absorbing airbags according to the present invention is usually used as a MS product, the knot strength of the polyester fiber should be 4.1 g/d or more, and the dry heat shrinkage rate should be 1O% or less. This can improve the tear strength, flatness, and uniformity of knitted fabrics. The knot strength is preferably 4.3 g/d or more, more preferably 4.5 g/d or more. The dry heat shrinkage rate is preferably 7.0% or less, more preferably 5.0% or less.
The dry heat yield rate is high, especially when it exceeds 10%, 1lAIIa
! ! ! Since the flatness and uniformity of 1 cannot be maintained, not only will the shock absorption properties deteriorate, but if rubber etc. are laminated in post-processing, the adhesion will be poor, resulting in the silk fabric and rubber layer peeling off when stored for a long period of time. This results in the problem of reduced impact resistance. Furthermore, if the flatness and uniformity are poor, there is a problem in that the foldability becomes poor, the airbag becomes bulky, and the storage volume increases. A feature of the polyester fiber according to the present invention is that it contains a difunctional phosphorus compound. 0 as the amount of phosphorus element.
By containing 3 to 1.5% by weight, the flame retardance of the airbag can be improved. Preferably 0.4~
It is 1.3% by weight, more preferably 0.6 to 1.1% by weight. If the amount of phosphorus element is less than 0.31% by weight, the flame retardance of the airbag fiber will be insufficient, and if the amount of phosphorus element is more than 1.6% by weight, the strength of the polyester fiber will decrease,
In addition, since the shrinkage characteristics increase, problems arise in that flatness and dimensional stability deteriorate. The phosphorus compound of the present invention is a bifunctional phosphorus compound, and is a phosphorus compound having two ester-type related functional groups. Specific examples include phosphonates represented by the following formula (1), phosphonates represented by the formula (2>), and phosphine oxides represented by the formula (3). , R5 are the same or different groups and represent a hydrocarbon group having 1 to 18 carbon atoms, R2, R3
are the same or different groups, each having 1 to 1 carbon atoms.
18 hydrocarbon groups or hydrogen filaments, A represents a divalent organic residue, 1 A represents a trivalent organic residue, R4 represents a carboxyl group or its ester, and R6 represents a carboxyl group or an ester thereof. their esters or each other -C-C-O-
Represents a divalent ester-forming functional group that forms a 1111 0 0 ring with A2 via the group represented by. formula(
Preferred specific examples of the phosphorus compound shown in 1) include:
Examples include dimethyl phenylphosphonate and diphenyl phenylphosphonate. Preferred specific examples of the phosphorus compound of formula (2) include (2-carboxylethyl)methylphosphinic acid, (2-carboxylethyl)phenylphosphinic acid, <2-methoxycarboxylethyl>methyl phenylphosphinate, <<4-Methoxyluponylphenyl>> Examples include methyl phenylphosphinate and ethylene glycol ester of (2-(β-hydroxyethoxycarbonyl)ethyl)methylphosphinic acid. Preferred specific examples of the phosphorus compound of formula (3) include (1.
2-dicarboxyethylphosphine oxide (2.3-
dicarboxy 1 lovir) dimethylphosphine oxide,
(2.3-dimethoxyruponylethyl)dimethylphosphine oxide, (1,2-di(β-hydroxyethoxyrubonyl)dimethylphosphine oxide, etc.) Among these compounds, the phosphorus compound of formula (2) is particularly preferred. It is preferred because it has good copolymerization reactivity with polyester and is less likely to break during the polycondensation reaction. The polyester of the present invention may contain a matting agent and an ultraviolet absorber for improving light resistance in an amount not exceeding 3% by weight. [Example] The measurement method used in the example is as follows. Intrinsic viscosity:
This is the solution viscosity measured at 25°C using orthochlorophenol as a solvent. Density: Density gradient tube (2
This is the value measured at 5℃). Base fabric strength: JIS-L-1
This is a value measured using the 096A method. Phosphorus element content: This is the value measured according to "Instrumental Polymer Analysis (1) Regarding Quantification of Phosphorus During Polymer Polymerization" published by Hirokawa Shoten in 1961. Bursting strength: JIS-L-1018A method (Mullen method)
This is the value measured according to the following. Flame retardancy: Value measured according to JIS 1091 (D). Flatness: The base fabric was placed on a flat plate and judged visually. Examples 1 to 3, Comparative Examples 1 to 3 The invention will be explained in detail by referring to Examples below. To the condensate obtained by directly esterifying terephthalic acid and ethylene glycol, [2-(βhydroxyethoxycarbonyl)ethyl]methylphosphinic acid was added in the amount shown in the table as a phosphorus compound, and 0.03 part of trioxide was added. Add antimony and add 0
.. Add 1 part of titanium dioxide and heat from 250°C to 2°C in 30 minutes.
The temperature of the reaction system was raised to 85°C and the pressure of the reaction system was reduced to 0.5 mmHg. Thereafter, the reaction was carried out by maintaining this temperature and reduced pressure until the intrinsic viscosity reached 0.8.
Solid phase polymerization was carried out at 00°C under 0.4 mmHg for 18 hours.
A polyester chip with an intrinsic viscosity of 1.10 was obtained. Said,
The polymer chips after solid phase polymerization are extruded through a circular discharge hole and melt-spun at 300 to 330°C, followed by spinning at 205°C.
After stretching heat treatment at 5.6~6.0f at a temperature of 1
A filament yarn consisting of 750 denier-96 filaments was obtained by winding after relaxing treatment with a relaxation rate of ~5%. Using the obtained filament yarn, a plain woven fabric with a warp and weft density of 26 threads/inch was obtained. In Example 2, a plain woven fabric was obtained in the same manner as in Example 1, except that the phosphorus compound was changed to 1.5% by weight at the stage of obtaining the volima. In Comparative Example 1, a plain woven fabric was obtained in the same manner as in Example 1 except that the phosphorus compound was 0.2% by weight.

比較実施例2はリン化合物を1.7重量%とした以外は
同様の方法で平織物を得た.比較実施例3は実施例1の
リン化合物の変わりに、フェニルホスフィン酸ジフェニ
ルを0.5重量%使用した以外は同様の方法で平織物を
得た. 結果を表に記した. 実施例1で得られたポリエステルIII4維は固有粘度
、密度、強度、伸度、タフネス、結節強度、乾熱収縮率
などの各特性とも優れたものであり、該繊維を用いてエ
アバッグを織成した結果、強力、破裂強さ、平坦性、難
燃性などすべて満足する優れた衝撃吸収エアバッグが得
られた.実施例2はリン元素量を1.5重量%としたこ
とにより、ポリエステル繊維の固有粘度、密度、強度、
伸度、タフネス、結節強度などの特性がやや劣った結果
、織成されたエアバッグとしては強力、破裂強さが実施
例l比低いものとなった.しかし難燃性、平坦性などを
含め、衝撃吸収エアバッグとして満足できるものであっ
た。
In Comparative Example 2, a plain woven fabric was obtained in the same manner except that the phosphorus compound was 1.7% by weight. In Comparative Example 3, a plain woven fabric was obtained in the same manner as in Example 1 except that 0.5% by weight of diphenyl phenylphosphinate was used instead of the phosphorus compound. The results are listed in the table. The polyester III4 fiber obtained in Example 1 has excellent properties such as intrinsic viscosity, density, strength, elongation, toughness, knot strength, and dry heat shrinkage rate, and the fiber can be used to weave an airbag. As a result, we obtained an excellent impact-absorbing airbag that satisfies all aspects including strength, bursting strength, flatness, and flame retardancy. In Example 2, by setting the amount of phosphorus element to 1.5% by weight, the intrinsic viscosity, density, strength,
As a result of slightly inferior properties such as elongation, toughness, and knot strength, the woven airbag had lower strength and bursting strength than Example 1. However, it was satisfactory as a shock absorbing airbag in terms of flame retardancy, flatness, etc.

比較実施例1はリン元素量を0.2重量%とじたことに
より、ポリエステル繊維の各特性およびエアバッグの各
特性とも実施例1と同様に良好であったが、難燃性の点
で劣ったものであった。
In Comparative Example 1, the amount of phosphorus element was limited to 0.2% by weight, so each property of the polyester fiber and each property of the airbag were as good as in Example 1, but it was inferior in terms of flame retardancy. It was something like that.

比較実施例2はリン元素量を1.7重量%とじたことに
より、実施例1に記したポリエステル繊雌の各特性が低
下したことから、エアバッグの強力、平坦性、破裂強さ
などの点で劣ったものであった. 比較実施例3はリン化合物を、本発明以外のものとした
ことにより、ボリマを得る初期段階で反応が進まず目的
とする固有粘度が得られなかった.その結果ポリエステ
ル繊維の固有粘度密度、強度、伸度、タフネス、結節強
度、乾熱収縮率など劣ったものとなり、該繊維で織成し
たエアバッグの強力、破裂強さ、難燃性など劣ったもの
となった. 《以下余白〉 [発明の効果] 本発明の衝撃吸収エアバッグは次ぎのような優れた特徴
を有する. タフネス性、結節強度を向上したことから従来のポリエ
ステルm維では成し得なかった、耐衝撃性を向上させる
ことができ、ナイロン66に匹敵するエアバッグとなり
、しかも、耐湿熱劣化、耐光性など優れたものが得られ
た.結節強力を向上したことにより、従来よりポリエス
テル繊維の繊度を小さくしても目的強度以上の基布が得
られる.したがって基布の目付けを小さくでき、エアバ
ッグの軽量化がはかれた. 基布を難燃化したことにより、衝突時に火災が発生した
場合でも、直ちに基布が燃焼することを押さえることが
でき、生命の安全性をさらに向上させることができた. 原糸のタフネス性を向上させたにもかかわら、ず乾熱収
縮率を大巾に下げることが出来たことから平坦性の優れ
た基布が得られた.
In Comparative Example 2, each property of the polyester fiber described in Example 1 was reduced due to the phosphorus element content of 1.7% by weight, so the strength, flatness, bursting strength, etc. of the airbag were reduced. It was inferior in some respects. In Comparative Example 3, a phosphorus compound other than the one according to the present invention was used, so that the reaction did not proceed at the initial stage of obtaining the bolimar, and the desired intrinsic viscosity could not be obtained. As a result, polyester fibers have inferior intrinsic viscosity, density, strength, elongation, toughness, knot strength, and dry heat shrinkage, and airbags woven with these fibers have inferior strength, bursting strength, and flame retardancy. It became. 《Blank below〉 [Effects of the Invention] The impact-absorbing airbag of the present invention has the following excellent features. By improving toughness and knot strength, it is possible to improve impact resistance, which could not be achieved with conventional polyester M fibers, making it an airbag comparable to nylon 66, and it also has resistance to moisture and heat deterioration, light resistance, etc. I got something excellent. By improving the knot strength, it is possible to obtain a base fabric that exceeds the target strength even if the fineness of the polyester fiber is made smaller than before. Therefore, the basis weight of the base fabric could be reduced, making the airbag lighter. By making the base fabric flame retardant, even if a fire breaks out during a collision, it is possible to prevent the base fabric from burning immediately, further improving life safety. Despite improving the toughness of the yarn, we were able to significantly reduce the dry heat shrinkage rate, resulting in a base fabric with excellent flatness.

Claims (2)

【特許請求の範囲】[Claims] (1)衝撃吸収エアバッグ用ポリエステル繊維において
、繰返し単位の85%以上がエチレンテレフタレートで
あるポリエステルであり、該ポリエステルの固有粘度が
0.76以上、密度が1.380g/cm^2以上、強
度が6.5g/d以上、伸度が14%以上、タフネス性
が120以上、結節強度が4.1g/d以上、乾熱収縮
率が10%以下である、衝撃吸収エアバッグ用ポリエス
テル繊維。
(1) The polyester fiber for impact-absorbing airbags is a polyester in which 85% or more of the repeating units are ethylene terephthalate, and the polyester has an intrinsic viscosity of 0.76 or more, a density of 1.380 g/cm^2 or more, and strength 6.5 g/d or more, elongation 14% or more, toughness 120 or more, knot strength 4.1 g/d or more, and dry heat shrinkage rate 10% or less.
(2)特許請求の範囲第1項に記載の衝撃吸収エアバッ
グ用ポリエステル繊維において、該繊維に2官能性リン
化合物をリン元素量として0.3〜1.5重量%含有し
てなることを特徴とする衝撃吸収エアバッグ。
(2) In the polyester fiber for impact-absorbing airbags according to claim 1, the fiber contains a bifunctional phosphorus compound in an amount of 0.3 to 1.5% by weight as an elemental amount of phosphorus. Features a shock-absorbing airbag.
JP30848989A 1989-11-28 1989-11-28 Polyester yarn for impact absorbing air bag Pending JPH03167312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30848989A JPH03167312A (en) 1989-11-28 1989-11-28 Polyester yarn for impact absorbing air bag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30848989A JPH03167312A (en) 1989-11-28 1989-11-28 Polyester yarn for impact absorbing air bag

Publications (1)

Publication Number Publication Date
JPH03167312A true JPH03167312A (en) 1991-07-19

Family

ID=17981631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30848989A Pending JPH03167312A (en) 1989-11-28 1989-11-28 Polyester yarn for impact absorbing air bag

Country Status (1)

Country Link
JP (1) JPH03167312A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0664492A (en) * 1992-05-23 1994-03-08 Mercedes Benz Ag Lateral cushioning air bag device
US5356680A (en) * 1991-07-16 1994-10-18 Akzo N.V. Industrial fabrics of controlled air permeability and high ageing resistance and manufacture thereof
US5540965A (en) * 1993-10-13 1996-07-30 Teijin Limited Woven fabric for high performance air bags and process for producing same
US5581856A (en) * 1990-01-12 1996-12-10 Akzo N.V. Process for the production of uncoated technical fabrics with low air permeability
DE19537700A1 (en) * 1995-10-11 1997-04-17 Hoechst Trevira Gmbh & Co Kg Seat belt, especially for motor vehicles, woven from high strength yarns
EP0773313A1 (en) * 1995-10-11 1997-05-14 Hoechst Trevira GmbH & Co. KG Flame retardant safety belts containing phosphorous-modified polyester fibres
EP0773140A1 (en) * 1995-10-11 1997-05-14 Hoechst Trevira GmbH & Co. KG Flame retardant fabrics containing phosphorus-modified polyester fibres, airbags therefrom and their use
US20130033027A1 (en) * 2010-03-30 2013-02-07 Kolon Industries, Inc. Polyester fabric and preparation method for the same
US20130106081A1 (en) * 2010-03-30 2013-05-02 Kolon Industries, Inc. Polyester fabrics for airbag and preparation method thereof
EP2660371A2 (en) * 2010-12-31 2013-11-06 Kolon Industries, Inc. Polyester fiber and method for manufacturing same
US9447523B2 (en) 2011-12-22 2016-09-20 3M Innovative Properties Company Melt blown fiber forming process and method of making fibrous structures

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5581856A (en) * 1990-01-12 1996-12-10 Akzo N.V. Process for the production of uncoated technical fabrics with low air permeability
US5356680A (en) * 1991-07-16 1994-10-18 Akzo N.V. Industrial fabrics of controlled air permeability and high ageing resistance and manufacture thereof
JPH0664492A (en) * 1992-05-23 1994-03-08 Mercedes Benz Ag Lateral cushioning air bag device
US5540965A (en) * 1993-10-13 1996-07-30 Teijin Limited Woven fabric for high performance air bags and process for producing same
CN1082578C (en) * 1995-10-11 2002-04-10 艾特华技术有限公司 Fire resistant safeguard belt comprising phosphorus modified polyester resin and use of such poloester resin
EP0773313A1 (en) * 1995-10-11 1997-05-14 Hoechst Trevira GmbH & Co. KG Flame retardant safety belts containing phosphorous-modified polyester fibres
EP0773140A1 (en) * 1995-10-11 1997-05-14 Hoechst Trevira GmbH & Co. KG Flame retardant fabrics containing phosphorus-modified polyester fibres, airbags therefrom and their use
US5713601A (en) * 1995-10-11 1998-02-03 Hoechst Trevira Gmbh & Co Kg Low-flammability safety belts containing phosphorus-modified polyester fibers and use of these polyester fibers for manufacturing safety belts
DE19537700A1 (en) * 1995-10-11 1997-04-17 Hoechst Trevira Gmbh & Co Kg Seat belt, especially for motor vehicles, woven from high strength yarns
KR100487990B1 (en) * 1995-10-11 2005-08-02 인비스타 테크놀로지즈 에스.에이.알.엘 Uncoated fabric with tread system and airbag comprising same
US20130033027A1 (en) * 2010-03-30 2013-02-07 Kolon Industries, Inc. Polyester fabric and preparation method for the same
US20130106081A1 (en) * 2010-03-30 2013-05-02 Kolon Industries, Inc. Polyester fabrics for airbag and preparation method thereof
JP2013522489A (en) * 2010-03-30 2013-06-13 コーロン インダストリーズ インク Polyester fabric and method for producing the same
EP2660371A2 (en) * 2010-12-31 2013-11-06 Kolon Industries, Inc. Polyester fiber and method for manufacturing same
EP2660371A4 (en) * 2010-12-31 2014-05-21 Kolon Inc Polyester fiber and method for manufacturing same
US9447523B2 (en) 2011-12-22 2016-09-20 3M Innovative Properties Company Melt blown fiber forming process and method of making fibrous structures

Similar Documents

Publication Publication Date Title
US7498280B2 (en) Polyester filament woven fabric for air bags
JPH03167312A (en) Polyester yarn for impact absorbing air bag
JP2007182646A (en) Flame-retardant ultrafine polyester fiber, method for producing the same and high-density woven fabric
KR100487990B1 (en) Uncoated fabric with tread system and airbag comprising same
CA2801482C (en) Fabric for airbag, using polyethylene terephthalate fiber with excellent heat resistance
JPH10195727A (en) Non-coated woven fabric for production of air bag
JPH0748717A (en) Polyester fiber for base fabric for air bag
JP2857707B2 (en) Airbag base fabric for vehicles
JP2944891B2 (en) Polyester fiber for airbag base fabric
KR101025598B1 (en) Polyester yarn for air bag and manufacturing method thereof
JP2864582B2 (en) Shock absorbing airbag
JPH06306730A (en) Base cloth for air bag
KR101295696B1 (en) Polyethyleneterephthalate Fiber for Air Bag and Fabric Using the Same
KR20140090813A (en) Polyethylene terephthalate filament for using air-bag
KR101779442B1 (en) Polyester fiber and preparation method thereof
KR101621079B1 (en) Polyester fabrics for airbag and preparation method thereof
KR101025599B1 (en) Polyester yarn for air bag and manufacturing method thereof
JPH08199449A (en) Fabric base for non-coated air bag and air bag
KR101367401B1 (en) Fabric for airbag
JPH06322636A (en) Woven fabric for air bag
JPH08158153A (en) Polyester filament yarn for air bag base fabric
JPH06306729A (en) Base cloth for air bag
JP2002173825A (en) Synthetic fiber for air-bag fabric and air-bag fabric
JP2009263832A (en) Thin woven fabric excellent in tear strength, and textile product using the same
JP2001001452A (en) Waterproof sheet for tent and hood