JPH0316634A - Material vapor generator - Google Patents

Material vapor generator

Info

Publication number
JPH0316634A
JPH0316634A JP15267589A JP15267589A JPH0316634A JP H0316634 A JPH0316634 A JP H0316634A JP 15267589 A JP15267589 A JP 15267589A JP 15267589 A JP15267589 A JP 15267589A JP H0316634 A JPH0316634 A JP H0316634A
Authority
JP
Japan
Prior art keywords
substance
vapor
gas
container
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15267589A
Other languages
Japanese (ja)
Other versions
JP2760059B2 (en
Inventor
Yoichiro Tabata
要一郎 田畑
Yoshihiro Ueda
植田 至宏
Shigeo Eguri
成夫 殖栗
Kazuhiko Hara
一彦 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1152675A priority Critical patent/JP2760059B2/en
Priority to US07/535,615 priority patent/US5150375A/en
Priority to DE69031430T priority patent/DE69031430T2/en
Priority to EP94111354A priority patent/EP0622875B1/en
Priority to DE69022487T priority patent/DE69022487T2/en
Priority to EP90111049A priority patent/EP0402842B1/en
Publication of JPH0316634A publication Critical patent/JPH0316634A/en
Application granted granted Critical
Publication of JP2760059B2 publication Critical patent/JP2760059B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/031Metal vapour lasers, e.g. metal vapour generation

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Physical Vapour Deposition (AREA)
  • Lasers (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To enhance the accelerating energy of a vapor ion beam by providing a vessel contg. the material at the center of a tube filled with a gas in its axial direction and furnishing a hole piercing the vessel. CONSTITUTION:A voltage is impressed between a pair of electrodes 1a and 1b, and an electric discharge is generated in the discharge space 3 filled with a buffer gas. The buffer gas in the discharge space 3 is heated by the discharge, hence the vessel contg. the metals 4a and 4 deposited on the inner surface of a discharge tube 2 is heated, and the metal 4 is heated. The vapor is liberated from the metal 4a deposited on the inner surface of the discharge tube 2 into the discharge space 3 in the amt. determined by the surface temp. of the metal 4, and the vapor fills a vapor generating layer 17 and is then injected into the discharge space 3 from a through hole 18. Consequently, the injection of the vapor is controlled.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分1F] この発明は,v!1質の蒸気を励起媒体または1!離.
媒体として利用する物質蒸気発生装置に関するもので、
詳しくは,物質なM発させる機能の構造に関するもので
ある.
[Industrial use 1F] This invention is based on v! 1 quality vapor as an exciting medium or 1! Away.
This relates to a substance vapor generating device that is used as a medium.
In detail, it concerns the structure of the function that causes material M to be emitted.

【従米の技術] この種の蒸気を利用した物質蒸気発生装置の一例として
、金II蒸気レーザー装置や蒸気イオンビーム装置があ
るが,第11図は例えば昭和61年度レーザー学会第6
回年次大会講演予稿集,21a II B 3、第60
頁〜第63頁に示された従来の金属蒸気レーザー装置を
示す断面図である.図において, (la), (lb
)は放電をするための電tf%、(2)は円筒状の放電
管、{3》は蒸気を励起するための放電空間,《4》は
蒸気を発生させるための物質であり、例えば銅や金など
の金属である.(5》は金属(4)が加熱されて蒸発し
た金属蒸気、(6)は断熱材、(7a) , (7b)
はレーザー発振させるための共振ミラー (8a). 
(8blは密閉空間をつくるためのフランジ,《9》は
真空層、(IO)は絶縁筒、(1l)は密閉管、02a
)はガス注入口、(12b)はガス流出口である. 次に動作について説明する.電極対(la) , (I
b)間に電圧を印加し、バッファーガスを封入した放電
空間(3》部を放電させる.この放電したイオンや電子
の加速エネルギーによって、放電空間《3》部のバソフ
ァーガスを加熱し、金属(4)を蒸発させる.パルス放
電によって高加速上ネルギーを持ったイオン.電子及び
高温化したバッファーガスの原子が蒸発した金a蒸気原
子に衝突すると、蒸気原子にエネルギー授受を行って上
位励起レベルに励起させる.断熱材(6)は放電空間《
3》部を所定の蒸気密度を保つためにガス温度の断熱効
果を高める役目をする.また、真空1!!(9)は断熱
材{6}と同じ役目で特に放射熱を断熱するように働く
ものである.上位励起レベルに励起した金属蒸気原子が
下位励起レベルまたは基準レベルに転移した時、光を発
生する.この発生した光は、共振ミラー(7a) , 
(?b)で光増幅されてレーザー光として矢印八方向に
示すように外部に出力され、レーザー加工等の産業に利
用される. [発明が解決しようとする課題] 従来の物質蒸気発生装置は以上のように構成されており
、放電空間(3)中の径.軸方向のバッフ7−ガス温度
分布及び蒸気密度分布を第l2図に示す.図において%
Xは放電空間(3)の径方向を示し、Yは放電空間《3
》の軸方向を示す.Tは温度、(3a)は放電空間《3
)の中心゛部、(3b》は放電仝間(3)の径方向の端
部、曲線(点線)Iは軸方向の温度分布、曲線(一点鎖
線)n**n 1nSは径方向の蒸気密度分布、曲線(
実線) m @, m s, m sは径方向の温度分
布である.図に示すように、放電空間{3}の中心部(
3aJより径方向端部(3b)のバッファーガス温度が
低く、また、軸方向端部のバヅファーガス温度が低くな
ってる.そのため、放電管(2》内の蒸気密度分布はほ
ぼバッフ7−ガス温度の[SI1敗である飽和蒸気密度
noに近似できるので、径方向の蒸気密度分布は曲線n
l,nm,nsのようになる.(この図の場合はn o
>n s = n sとなる.) 一方、バッファーガス密11t(ガス圧)に対して蒸気
W:度が高くなると、電子、バッファーガスのイオン、
中性原子が蒸気原子と衝突するまでの平均自由行程が短
くなり、蒸気原子との衝突するまでにパルス放電によっ
て得る電子、バッファーガスのイオン、中性原子の運動
エネルギーが低くなる.その結果、蒸気原子を−L位励
起レベルに励起できる確率が下がり、レーザケdンが得
られなくなるという問題点がある.また、放電空間(3
1の中心部における蒸気密度が高くなっている現状の装
置では、放電空間(3)の中心部でレーザーバワー密度
が低くなるなどの問題点があった.この発明は上記のよ
うな問題点を解消するためになされたもので、物質が放
電空間中へ蒸発する蒸気電を抑制し、放電空間中のバツ
ファーガス密度に対して物質による蒸気密度を低くする
.これにより、電子、バツファーガスのイオン、中性原
子等と衝突するまでの平均自山行程を長くし、蒸気原子
の内、上位励起レベルに励起する原子数を増大させる.
その結果、レーザーパワーを増大でき、さらにレーザー
もしくは蒸気イオ.ンビームの加速エネルギーを高める
ことのできる物質蒸気発生装置を得ることを目的する。 Caaを解決するための手段1 第1発明に係る物質蒸気発生装置は、ガスを封入した管
内で物質を加熱し、物質を蒸発せしめた蒸気を励起蜂体
または電離媒体として利用する物質蒸気発生装置におい
て、ガスを封入した管内の軸方向における中央部に物質
を封入した容器な設け、容器に貫通した穴を設けたもの
である.また、第2発明に係る物質蒸気発生装置は、ガ
スを封入した管内に、物質を封入した一つ以上の容器を
設け、この容器の各々に複数個の貫通穴を設け、複数個
のn通穴の径の大きさ分布または複数個の貫通穴の配置
分布を、管の軸方向に対して中央部から端部方向に増加
させるようにしたものである. また,第3発明に係る物質蒸気発生装置は、ガスを封入
した管内の軸方向における中央部に物質を包囲する多孔
体を設けたものである.また、第4発明に係る物質蒸気
発生装置は、物質を封入した+a数個の容器を設け、ガ
スを封入した管内の軸方向における中央部で、管内の放
電空間の周囲に容器を配置し、容器の各々に1ケ所以上
の貫通穴を設けたものである. また、第5発明に係る物質蒸気発生装置は、管内の軸方
向における中央部に物質を封入した容器を設け、この容
器を管内に固定する固定部材を設けたものである. また、第6発明に係る物質蒸気発生装置は、ガスを封入
した管内の軸方向における中央部番;物質を封入した容
器を設け、容器にlケ所以上の真通した穴を設けると共
に容器内に電極対を設けたものである. [作用] この第1発明における物質蒸気発生装置は、ガスを封入
した管内に物質を封入した容器を設けることにより、容
器内で物質を蒸発させ、蒸発をさせた蒸気を容器の1ケ
所以上の貫通した穴から放電空間に噴出させることによ
り、蒸気の噴出屋をコントロールするとJ(に、バッフ
ァーガス密度に対する物質による蒸気の蒸気密度を調整
できる.また、第2発明における物質蒸気発生装置は、
容器に設けた複数個の貫通した穴の径の大きさ分布また
は複数個の貫通した穴の配i1分布を、管の軸方向に対
する中央部から端部方向に増加させるようにすることに
より、ガスを封入した管の軸方向に対して蒸気の噴出徹
をコントロールすると共に、軸方向のバッファーガス密
度に対する物質による蒸気の蒸気密度分布をより均一に
する.また、第3発明における物質蒸気発生装置は、放
電空間へ蒸発する物質を多孔体によって抑制すると共に
、菅内の物質による蒸気の蒸気密度をコントロールする
. また、第4発明における物質蒸気発生装置は、物質を封
入した複数個の容器を管内の周囲に配置し、容器の貫通
穴から物質を蒸発させた蒸気を噴出させると共に、ガス
を封入した管内の蒸気密度分布を均一にさせる. また、第5発明における物質蒸気発生装置は、管内に容
器を固定する固定部材を設けたことにより、容器を支持
して管内の蒸気密度分布のコントロールを容易にする. また,第6発明における物質蒸気発生装置は、容器内に
zti対を設け、電極対に電圧を印加することにより、
電極間に放電させて物質を加熱し、容器内での蒸発した
蒸気量を比較的精度よくコントロールする. [実施例J 以下、これらの発明の一実施例を図について説明する.
第1図(a) , (b)は各々第1発明の一実庫例に
よる物質蒸気発生装置の要部を示す断而図である.図に
おいて、(2》は放電管、(3)は放電空間、《41は
物質で例えば銅や金などの金属、(5)は物質(4)の
噴出した蒸気、06》は容器で例えばセラミック、タン
グステンまたはモリブデンなどの耐熱材科で構成した管
状の容器、(l7)は物質の蒸気発生層、(l8)は容
器06)に設けk貫通穴である.第l図(a)は貫通穴
(l8)を1つ設けた例であり、第1図(b)は貫通穴
(l8)を讃数個設けた例を示している.図中、Xは放
電空間(3)の径方向を示し、Yは放電空間(3)の軸
方向を示す.他の各部は第11図に示すものと同様であ
る.以下,例えば金属蒸気レーザー装置の動作について
説明する.電極対(1a)、(1b)間に電圧を印加し
、バッファーガスを封入した放電空間(3)部を放電さ
せる.この放電によって放電空間(31部のバッファー
ガスを加熱させ、すでに放電管(2)の内面に付着した
金属(4a)や金属(4)を封入した容器を加熱して金
属(4)の温度を上昇させる.これらの金属の表面温度
によって決まる蒸気量が放電管(2)の内面に付着した
金属(4a)から放電空間(3)へ放出され、また容器
(16)内の金属(4)による蒸気は、一旦、蒸気発生
層07)に充満した後、貫通穴{l8}から放電空間{
3}へ噴出される.このように、@″iil!(16)
内の金属(4)から出た蒸気は貫通穴(l8)のみから
放電空間(3》に噴出するため、蒸気の噴出量が抑制で
き、放電空間(3)での蒸気密度をバッファーガスの温
度で決まる飽和蒸気密度より低くなるように動作させる
.貫通穴(+8)は第1図(a)に示すように1つでも
良いし,第1図(b)に示すように攻数設けてもよい. 第2図は、金属蒸気レーザー装置のレーザー発振の機構
を示したものであり、第2図(a)は横軸を時間t,縦
軸を放?!電流とする放電電流波形、第2図(b)は横
軸を電子・イオンの運動エネルギー(K子・イオン温度
),縦軸を電子・イオン数Neとするイオン・電子のエ
ネルギーPe分布、第2図(C)は横軸をバッファーガ
スのエネルギー(バッファーガス温度)、縦軸をバッフ
ァーガスの原子数Ngとするバッファーガスのエネルギ
ーPg分布、第2図(d)は横軸を蒸気Rfの励起レベ
ル,縦軸を蒸気原子数Njとする蒸気原子の励起数Pj
分布を示す.図において、《23》はパルス電流,(2
0はPe分布特性、(2Sa)はPg分布特性a、(2
5b)はPg分布特性b、(26a) .  (27a
)は蒸気原子の下位励起数%(26b) , (27b
)は蒸気原子の上位励起数である. 次に、第2図に従って金属蒸気レーザー発振の機構につ
いて説明を加えると、第2図(a)のようにパルス電流
《23》の放電をバッファーガス中で発生させる.この
放電空間の電界Eによって,′Ji離したバッツ1−ガ
ス原子のイオンや電子は加速され、運動エネルギーPe
を得る.その運動エネルギーPcはバッファーガスと衝
突してバッツ7一ガス原子にエネルギーを授受する.そ
のため,イオン・電子のエネルギー分布は第2図(b)
のようになり、運動エネルギーPeは電界Eとイオン・
電子がバッファーガス原子と衝突する平均距離(ガスの
平均自由行程)legによって決まる(PeocE−I
Bg),一般に、この運劫エネルギーノ゛Y均値を電子
温度Teと言っている. またさらに、バッファーガス原子がイオン・電子から得
たエネルギーPgは第2図(c)のPg分布特性a (
25a)のようになり、エネルギーPgはイオン・電子
の運動エネルギーPeとバソファーガス原子が蒸気原子
と衝突するV均距fi(I気の平均自由行程)Igjに
よって決まる(PgocPe・l gj) .−股に,
このエネルY一の平均値をガス?!i!度Tgと言って
いる. さらに、イオン・電子・バッファーガス原子が金属蒸気
原子と南突して、蒸気原子はイオン・電子・バッファー
ガス原子からエネルギーの授受を受け、下位・土位励起
レベルに励起される.この励起された蒸気原子の励起分
布が、下位励起レベルの原子数より上位励起レベルの原
子数多くなった、つまり、反転分布にすることでレーザ
ー発振をする. また,当然のことながら、パルス放電が停止すれば%電
子・イオンはなくなり、バッファーガスのエネルギーは
拡散によって壁である放電管(2)の方向へ伝わり、ガ
ス温度Tgは下がる.以上のレーザー発振の機構から、
金属蒸気密度を抑制するとバッファーガス原子と蒸気原
子との蒸気の平均自由行程1gjが長くなり、パルス期
間中のガス温度TgJ?h電子温度′reが高くなり、
下位励起レベルの原子数に対して上位励起レベルの原子
数が増え、レーザー出力を高める.従って、ガス温度に
よって決まる飽和蒸気密度より金属蒸気密度を抑制する
手段として、この実施例では,第1図(a) . (b
)のように、容器(l6)内で発生した蒸気を貫通穴{
l8}から噴出させ、貫通穴(18)の穴径を制限する
ことで放電空間(3)への蒸気量を抑制すれば放電空間
(3)の蒸気密度が下がる.つまり,上位励起レベルの
原子数が多くなりレーザー出力を増すことができ、装置
の利用効率、品質、機能を高めたものが得られる.第3
図(a) . (b)はそれぞれ第2発明の一実施例を
示すものであり、第3図(a)では容器(l6》に設け
た複数個の貢通穴の径の大きさ分布を管{2}の軸方向
に対して中央部から端部方向に増加させるようにしてい
る.例えば、中央部に位置する穴径を0. 6msとし
、端部に位置する穴径を2■程度にしている.このよう
に構成すれば、容器(l6)内で発生した蒸気を貫通穴
(18)から放電空間への噴出させる単位長さ当りの蒸
気量をガス温度Tgが高い位fl(この場合は中央部)
で少なくし、逆にガス温度の低いa雷管(2)の軸方向
端部で多くすることができる.従って、放電空間(3)
中の軸方向の蒸気密度を均一にし、軸方向の単位長さ当
りのレーザー発振効率を高める.この実施例ではガス温
度Tgが高い位置は放′@管(2)の中央部としたが、
装置によっては中央部ではなくすこしずれた位置になる
こともあり、その装置に応じた規定位置で蒸気の社を少
なくし、放電管(2}の軸方向端部で多くすれば良い. また、第3図(b)は球状の容器(l6)を複数個設け
、容器の貫通穴08》の穴径を各々異なるようにしてい
る.このような構成にして、蒸気を貫通穴(!8)から
放電空間《31への噴出させる単位長さ当りの蒸気量を
、ガス温度Tgが高い位置(この場合は中央部)で少な
くし、逆にガス温度の低い放電管(2)の軸方向端部で
多くしてもよい.まk1この球状容器(16)の貫通穴
(I8)の3僅を同一にして、貫通穴(l8)の配置分
布をガスを封入した管(2)の規定位置から喘部方向に
増加させるようにすることもできる.また,球状容器(
l6)の代わりにリング状の容器で構成してもよい.リ
ング状の容器を用いれば、放電空間(3)に周囲から蒸
気を発生することになる. 第4図(a) . (b)は各々第2発明のさらに他の
実施例に係る容器を示す斜視図である.図において, 
(161)は複数の貫通穴(l8》を有するbox状の
容器で、第4図(a)は容器《i6》に設けた″a敗個
の貫通穴08》の径の大きさ分布を管(2》の軸方向に
対して中央部から端部方向に増加させるようにしている
.第4図(b)は貫通穴(l8)の配置分布をガスを封
入した管(2)の規定位置からa部方向に増加させるよ
うにしたものである.これらの実施例においても、上記
実施例と同様の効果を奏することができる.第2発明に
よれば、第1発明の効果に加え装置の空間的な利用効率
が高められより、コンパクトな装置が得られるとともに
装置の出力が高められる. 第5図.第6図は各々第3発明の一実施例を示すもので
、第5図は要部断面図、第6図は要部斜視図である.第
5図において、(162)は容器で、例えばセラミック
などの多孔質物質で構成している.この実施例は、ガス
を封入した管内の軸方向における中央部に物質を包囲す
る多孔体を設けたものであり、多孔体として例えば容器
の構成物質を多孔質物質としている。容器(162)内
で蒸発した蒸気を容器(162)の多孔質物質の孔を介
して放電空間(3)へ放出する.この容器(162)の
多孔密度を小さくすることで、噴出する蒸気密度を抑制
して容器1162)全体から放電空間(3)へ蒸気(5
)を噴出させるため、放電空間(3)で均一な蒸気密度
が得られレーザー出力を増すことができる.また、第6
図において、(20)はメシューまたは多孔質vJ質で
構成したシート、(21】は基板、(22)は止めピン
である. (163)はシート(20)、シート状の金
属(4)1基板(21)を層状に重ね合わせてビン(2
2)で固定した多層シート状の多孔体である.多層シー
ト(163)を放電空間(3)の回りに多孔質シート(
20)が内側になるように円筒状に巻き回して設置し、
多孔質シート{20}を介して放電空間(3)へ物質の
蒸気(5)を噴出させろ.この多層シート(163)の
多孔密度を小さくすることで、噴出する蒸気密度を抑制
できる.基板(21)を放電管(2)が兼ね備えるよう
に構成してもよい.第3発明によれば第1、2発明の効
果が容器内で得られ、より安価な容器でできる効果があ
る. 第7図はffi45e明による物質蒸気発生装置の−実
施例の要部を示す断面図である.図のように、複数個の
管状の容器(j64L. (165)を放電空間(3}
内に設け、これらの容器を放電空間《3》の周囲に配置
する.この複数個の容a(164) , (165)内
で発生した金属蒸気《5)を貫通穴(18)から放電空
間《3)の径方向の中心に向けて噴出させ、放電空問(
3)の蒸気密度を穴径により抑制し、蒸気密度の均一性
を増すことができる.また、この容器(l64) . 
(165)は第3発明で示した多孔体によるものでも良
い.この発明によれば放電空間(3)の周囲から物質の
蒸気を供給することができ、ガスを封入した管の中央部
のガスまで金属蒸気を均一に浸透させることができ、ま
た、貫通穴(18}の穴径により、蒸気の噴出量をコン
トロールすることができ、利用効率を高めることができ
、さらによりコンパクトな装置が得られる. 第8図は第5発明による物質蒸気発生装置の一実施例の
要部を示す断面図である.図において、(23)は放電
管(2)の内径に沿って設けられた固定部材で、例えば
セラミック、モリブデンやタングステンなどの耐熱性を
有するものによるリングである.このリング(23)の
斜視図を第9図に示す.リング(23》は複数個の容器
(164) , (165)を放電管(2)内に固定す
る固定部材であり、この実施例では放電管(2)の内径
に沿って構成し、複数個の容器(164) . (16
5)をはめ込むための例えば4個の穴(23a)を有し
ている.リング(23)と?St数個の容器(164)
 . (165)と放電管(2) とをはめ合わせるこ
とで、容器を放電空間(3)の任意の位置で固定するこ
とができる.このため、利用効率を高められる位置に容
器を配置にしたものが得られ,より効串の良い装置が得
られる. また、第10図は第61明によるv!J質蒸気発生装置
の一実施例の式部を示す断Ili図である.図において
、(19a) . (19b) ハ容器416j内G:
iケラhた予#I電極である.予WR電% (19a)
 . (19b)間に電圧を印加して放電を発生させ、
この故電からの熱によって容器{目}内の物質《4)の
表面温度を高める.これにより,容器(■6》内での蒸
発した蒸気量が増加するとともに、容器06》のガス圧
力がより高められ、蒸気(5》の噴出看を放電によって
時間的にコントロールし、放電空間の蒸気密度をレーザ
ー発振等のパルス出力に同期して抑制し、パルス出力の
ピーク値を増すことができる.この第6発明によれば容
器内で物質の蒸気発生量を促進でき、また、蒸気発生量
をコントロールできるとともに、発生時刻もコントロー
ルでき,利用効率を高めたものが得られ、出力を制御で
きる.また、上記実施例は、金ri4蒸気レーザー装置
について述べたが、これに限るものではなく、蒸気イオ
ンビーム装置などにも適用できる.[9.明の効果J 以上のように、第l発明によれば、ガスを封入した管内
で物質を加熱し、物質を蒸発せしめた蒸気を励起媒体ま
たは電離媒体として利用する物質蒸気発生装置において
、管内の軸方向における中央部に物質を封入した容器を
設け、容器に貫通した穴を設けたことにより、容器内で
物質を蒸発させた物質の蒸気を貫通穴から噴出させるこ
とで、貫通穴の穴径により蒸気の噴出獄をコントロール
することができ、装置の出力増大や利用効串、品質、機
能を高めたものが得られる効果がある.また、第2発明
によれば、ガスを封入した管内に、物質を封入したー・
っ以上の容器を設け、この容器の各々に複数個の貫通穴
を設け、複数個の貫通穴の径の大きさ分布または複数個
の貫通穴の配置分布を、管の軸方向に対して中央部から
端部方向に増加させるようにしたことにより、第1発明
の効果に加えて装置の空間的な利用効率が高められ、よ
りコンパクトな装置が得られるとともに装置の出力が高
められる効果がある. また、第3発明によれば、ガスを封入した管内の輪方向
における中央部に物質を包囲する多孔体を設けたことに
より、第l、2発明の効果が多孔体で得られ、さらに上
記の容器より安価で、装置に簡単に配置することができ
、また容易に変更できる効果がある. また、第4発明によれば、物質をl{入した複数個の容
器を設け、ガスを封入した管内の軸方向における中央部
で、管内の放電空間の周囲に容器を配置し,容器の各々
に1ケ所以上の貫通穴を設けたことにより、ガスを封入
した管の周囲から物質の蒸気を供給することができ,ガ
スを封入した管の中央部のガスまで蒸気を均一に浸透さ
せることができる.また、上記実施例と同様に貫通穴の
径によって蒸気の噴出置をコントロールすることができ
、利用効率を高めたものが得られ、さらに、よりコンパ
クトな装置が得られる効果がある.また、第5発明によ
れば,管内の軸方向における中央部に物質を封入した容
器を設け、この容器を管内に固定する固定部材を設けた
ことにより、ガスを封入した管内の任意の空間で容器を
容易に配置させることができ、また、利用効串を高めら
れる位置に容器を配置にしたものが得られる効果がある
. また、第6発明によれば、ガスを封入した管内の軸方向
における中央部に物質を封入した容器を設け、容器にI
ケ所以上の貫通した穴を設けると共に、容器内にt[i
対を設けたことにより、容器内で物質の蒸気発生咀を促
進でき、また、蒸気発生鼠をコントロールできるととも
に、発生時刻もコントロールでき、利川効率を高めたも
のが得られ、出力なIIJgIできる効果がある.
[Japanese technology] Examples of material vapor generators using this type of steam include gold II vapor laser devices and vapor ion beam devices.
Proceedings of the Annual Conference, 21a II B 3, No. 60
FIG. 7 is a sectional view showing the conventional metal vapor laser device shown on pages 63 to 63. In the figure, (la), (lb
) is the electric current tf% for discharging, (2) is a cylindrical discharge tube, {3} is a discharge space for exciting steam, and {4} is a substance for generating steam, such as copper and metals such as gold. (5) is the metal vapor that evaporates when the metal (4) is heated, (6) is the insulation material, (7a), (7b)
is a resonant mirror (8a) for laser oscillation.
(8bl is a flange for creating a sealed space, <<9>> is a vacuum layer, (IO) is an insulating tube, (1l) is a sealed tube, 02a
) is the gas inlet, and (12b) is the gas outlet. Next, we will explain the operation. Electrode pair (la), (I
b) A voltage is applied between them to discharge the discharge space (part 3) filled with buffer gas. The acceleration energy of the discharged ions and electrons heats the bathophore gas in the discharge space (part 3), and the metal (4) is evaporated. Ions with high acceleration energy due to pulsed discharge. When electrons and atoms of the heated buffer gas collide with the evaporated gold a vapor atoms, they transfer energy to the vapor atoms and reach a higher excitation level. The heat insulating material (6) is the discharge space《
Part 3 serves to enhance the gas temperature insulation effect in order to maintain the specified vapor density. Also, vacuum 1! ! (9) has the same role as the heat insulating material {6}, especially insulating against radiant heat. When metal vapor atoms excited to an upper excitation level transfer to a lower excitation level or reference level, light is generated. This generated light is transmitted to the resonant mirror (7a),
The light is amplified at (?b) and output as a laser beam to the outside as shown in the eight directions of arrows, and is used in industries such as laser processing. [Problems to be Solved by the Invention] The conventional material vapor generator is configured as described above, and the diameter in the discharge space (3). The axial buff 7 gas temperature distribution and vapor density distribution are shown in Figure 12. In the figure %
X indicates the radial direction of the discharge space (3), and Y indicates the discharge space <3
》 indicates the axis direction. T is temperature, (3a) is discharge space《3
), (3b) is the radial end of the discharge chamber (3), the curve (dotted line) I is the temperature distribution in the axial direction, the curve (dotted line) n**n 1nS is the radial steam Density distribution, curve (
Solid line) m @, m s, ms are the temperature distributions in the radial direction. As shown in the figure, the center of the discharge space {3} (
The buffer gas temperature at the radial end (3b) is lower than that of 3aJ, and the buffer gas temperature at the axial end is also lower. Therefore, the vapor density distribution in the discharge tube (2) can be approximated to the saturated vapor density no, which is the buff 7 - gas temperature [SI1 failure, so the vapor density distribution in the radial direction is the curve n
It becomes like l, nm, ns. (In the case of this figure, no
>ns = ns. ) On the other hand, with respect to the buffer gas density of 11t (gas pressure), when the vapor W becomes higher, electrons, buffer gas ions,
The mean free path of the neutral atoms until they collide with the vapor atoms becomes shorter, and the kinetic energy of the electrons, buffer gas ions, and neutral atoms obtained by the pulse discharge becomes lower before they collide with the vapor atoms. As a result, the probability that vapor atoms can be excited to the −L excitation level decreases, resulting in a problem that laser radiation cannot be obtained. In addition, the discharge space (3
In the current device, where the vapor density is high at the center of the discharge space (3), there are problems such as a low laser power density at the center of the discharge space (3). This invention was made in order to solve the above-mentioned problems, and suppresses the vapor electricity caused by the evaporation of a substance into the discharge space, thereby lowering the vapor density due to the substance relative to the buffer gas density in the discharge space. .. This lengthens the average self-height travel until collision with electrons, buffer gas ions, neutral atoms, etc., and increases the number of vapor atoms that are excited to higher excitation levels.
As a result, the laser power can be increased and even more laser or vapor ionization can be achieved. The purpose of this invention is to obtain a material vapor generator that can increase the acceleration energy of a beam. Means for Solving Caa 1 A substance vapor generator according to the first invention heats a substance in a gas-filled tube and uses the vapor obtained by evaporating the substance as an excited body or an ionization medium. In this case, a container filled with a substance is provided in the axial center of the tube filled with gas, and a hole is provided through the container. Further, in the substance vapor generating device according to the second invention, one or more containers filled with a substance are provided in a pipe filled with gas, each of the containers is provided with a plurality of through holes, and a plurality of n holes are provided in each of the containers. The diameter distribution of the holes or the distribution of the arrangement of multiple through holes increases from the center to the ends in the axial direction of the tube. Further, a substance vapor generating device according to a third aspect of the invention is one in which a porous body surrounding a substance is provided in the central part in the axial direction of a tube filled with gas. Further, the substance vapor generating device according to the fourth invention is provided with +a several containers filled with substances, and the containers are arranged around the discharge space inside the tube at the center in the axial direction of the tube filled with gas, Each container has one or more through holes. Further, a substance vapor generating device according to a fifth aspect of the present invention is provided with a container filled with a substance in the center of the pipe in the axial direction, and a fixing member for fixing the container in the pipe. Further, the substance vapor generating device according to the sixth aspect of the present invention is provided with a container in which the substance is sealed in the central part in the axial direction of the pipe in which the gas is sealed, and in which at least one straight hole is provided in the container. It is equipped with a pair of electrodes. [Function] The substance vapor generating device according to the first invention evaporates the substance in the container by providing a container in which the substance is sealed inside a pipe filled with gas, and the evaporated vapor is sent to one or more locations in the container. By controlling the steam ejector by ejecting it from the through hole into the discharge space, it is possible to adjust the vapor density of the material vapor with respect to the buffer gas density.Furthermore, the material vapor generating device in the second invention includes:
Gas In addition to controlling the ejection of steam in the axial direction of the tube containing the material, it also makes the vapor density distribution of the material more uniform with respect to the buffer gas density in the axial direction. Further, in the substance vapor generating device according to the third aspect of the invention, the porous body suppresses the substance evaporating into the discharge space, and the vapor density of the vapor due to the substance in the tube is controlled. Further, in the substance vapor generating device according to the fourth aspect of the invention, a plurality of containers filled with a substance are arranged around the inside of the pipe, and the vapor containing the substance is spouted from the through hole of the container, and the vapor containing the substance is ejected from the through hole of the container. Make the vapor density distribution uniform. Further, in the substance vapor generating device according to the fifth aspect of the invention, by providing a fixing member for fixing the container in the pipe, the container is supported and the vapor density distribution in the pipe can be easily controlled. Further, the substance vapor generating device in the sixth invention provides a zti pair in the container and applies a voltage to the electrode pair, thereby
The material is heated by electrical discharge between the electrodes, and the amount of vapor evaporated inside the container is controlled with relative precision. [Example J Hereinafter, an example of these inventions will be explained with reference to the drawings.
FIGS. 1(a) and 1(b) are diagrams showing the main parts of a material vapor generating device according to an actual example of the first invention. In the figure, (2) is a discharge tube, (3) is a discharge space, (41 is a substance such as metal such as copper or gold, (5) is the vapor ejected from substance (4), and 06 is a container such as ceramic , a tubular container made of a heat-resistant material such as tungsten or molybdenum, (l7) is a vapor generating layer of the material, and (l8) is a through hole provided in the container (06). Fig. 1(a) shows an example in which one through hole (l8) is provided, and Fig. 1(b) shows an example in which several through holes (l8) are provided. In the figure, X indicates the radial direction of the discharge space (3), and Y indicates the axial direction of the discharge space (3). The other parts are the same as those shown in Fig. 11. Below, we will explain the operation of, for example, a metal vapor laser device. A voltage is applied between the electrode pair (1a) and (1b) to cause a discharge in the discharge space (3) filled with buffer gas. This discharge heats the discharge space (31 parts of buffer gas) and heats the metal (4a) already adhered to the inner surface of the discharge tube (2) and the container containing the metal (4) to raise the temperature of the metal (4). The amount of vapor determined by the surface temperature of these metals is released from the metal (4a) attached to the inner surface of the discharge tube (2) into the discharge space (3), and the amount of vapor determined by the surface temperature of these metals is released into the discharge space (3). After the steam once fills the steam generation layer 07), it flows from the through hole {l8} to the discharge space {
3}. In this way, @″iil! (16)
Since the steam emitted from the metal (4) inside is ejected into the discharge space (3) only from the through hole (l8), the amount of ejected steam can be suppressed, and the vapor density in the discharge space (3) can be controlled by adjusting the temperature of the buffer gas. The operation is performed so that the saturated vapor density is lower than the saturated vapor density determined by Good. Figure 2 shows the mechanism of laser oscillation in a metal vapor laser device. Figure 2 (a) shows the discharge current waveform, where the horizontal axis is time t and the vertical axis is the discharge current. Figure 2 (b) shows the ion/electron energy Pe distribution where the horizontal axis is the kinetic energy of electrons/ions (Kon/ion temperature), the vertical axis is the number Ne of electrons/ions, and Figure 2 (C) is the horizontal axis In Figure 2 (d), the energy of the buffer gas (buffer gas temperature) is the energy of the buffer gas (buffer gas temperature), the vertical axis is the number of atoms in the buffer gas Ng, the energy Pg distribution of the buffer gas, the horizontal axis is the excitation level of the steam Rf, and the vertical axis is the vapor atoms The number of excitations Pj of vapor atoms is the number Nj
Show the distribution. In the figure, <<23>> is the pulse current, (2
0 is Pe distribution characteristic, (2Sa) is Pg distribution characteristic a, (2
5b) is the Pg distribution characteristic b, (26a) . (27a
) are the lower excitation numbers % of vapor atoms (26b), (27b
) is the upper excitation number of vapor atoms. Next, the mechanism of metal vapor laser oscillation will be explained according to Fig. 2. As shown in Fig. 2(a), a discharge of a pulse current 《23》 is generated in a buffer gas. Due to the electric field E in this discharge space, the ions and electrons of Batz1-gas atoms separated by 'Ji are accelerated, and the kinetic energy Pe
obtain. The kinetic energy Pc collides with the buffer gas and transfers energy to the gas atoms. Therefore, the energy distribution of ions and electrons is shown in Figure 2 (b).
The kinetic energy Pe is equal to the electric field E and the ion.
Determined by the average distance (mean free path of the gas) leg that electrons collide with buffer gas atoms (PeocE-I
Bg), generally, the average value of this movement energy is called the electron temperature Te. Furthermore, the energy Pg obtained by the buffer gas atoms from ions and electrons is the Pg distribution characteristic a (
25a), the energy Pg is determined by the kinetic energy Pe of ions and electrons and the V uniform distance fi (mean free path of I) Igj at which bathophore gas atoms collide with vapor atoms (PgocPe・l gj). -In the crotch,
Is the average value of this energy Y-1 gas? ! i! It is called degree Tg. Furthermore, the ions, electrons, and buffer gas atoms collide south with the metal vapor atoms, and the vapor atoms receive and receive energy from the ions, electrons, and buffer gas atoms, and are excited to the lower/subordinate excitation level. The excitation distribution of these excited vapor atoms is such that there are more atoms at the upper excitation level than at the lower excitation level, that is, the population is inverted, which causes laser oscillation. Also, as a matter of course, when the pulse discharge stops, the electrons and ions disappear, the energy of the buffer gas is transmitted by diffusion toward the wall of the discharge tube (2), and the gas temperature Tg decreases. From the above mechanism of laser oscillation,
When the metal vapor density is suppressed, the mean free path 1gj of the vapor between the buffer gas atoms and the vapor atoms increases, and the gas temperature TgJ? during the pulse period increases. hThe electron temperature're increases,
The number of atoms at the upper excitation level increases relative to the number of atoms at the lower excitation level, increasing the laser output. Therefore, in this embodiment, as a means to suppress the metal vapor density from the saturated vapor density determined by the gas temperature, the method shown in FIG. 1(a). (b
), the steam generated in the container (l6) is passed through the through hole {
18} and by restricting the diameter of the through hole (18) to suppress the amount of vapor flowing into the discharge space (3), the vapor density in the discharge space (3) will be reduced. In other words, the number of atoms at the upper excitation level increases and the laser output can be increased, resulting in a device with improved utilization efficiency, quality, and functionality. Third
Figure (a). 3(b) each shows an embodiment of the second invention, and FIG. 3(a) shows the size distribution of the diameters of the plurality of tribute holes provided in the container (l6) of the pipe {2}. The diameter is increased from the center to the ends in the axial direction.For example, the diameter of the hole located at the center is 0.6 ms, and the diameter of the hole located at the ends is approximately 2 mm. With this configuration, the amount of steam generated in the container (l6) is ejected from the through hole (18) into the discharge space by increasing the amount of steam per unit length to the point where the gas temperature Tg is higher fl (in this case, at the center)
It can be decreased at the axial end of the detonator (2) where the gas temperature is low, and increased at the axial end of the detonator (2) where the gas temperature is low. Therefore, the discharge space (3)
It makes the vapor density in the axial direction uniform and increases the laser oscillation efficiency per unit length in the axial direction. In this example, the position where the gas temperature Tg is high is at the center of the vent tube (2), but
Depending on the device, the position may be slightly off-center rather than in the center, so it is best to reduce the amount of steam at a specified position depending on the device, and increase it at the axial end of the discharge tube (2). In Fig. 3(b), a plurality of spherical containers (l6) are provided, and the diameters of the through-holes (!8) of the containers are different from each other.With such a configuration, steam can be passed through the through-holes (!8). The amount of steam ejected from the discharge space (31) per unit length is reduced at the position where the gas temperature Tg is high (in this case, the center), and conversely at the axial end of the discharge tube (2) where the gas temperature is low. You may increase the number of through holes (I8) in this spherical container (16) by making three of them the same, and adjusting the distribution of the through holes (I8) to the prescribed positions of the gas-filled tube (2). It is also possible to increase the amount from the spherical container (
16) may be constructed with a ring-shaped container. If a ring-shaped container is used, steam will be generated from the surroundings in the discharge space (3). Figure 4(a). (b) is a perspective view showing containers according to still other embodiments of the second invention. In the figure,
(161) is a box-shaped container with a plurality of through holes (18), and Fig. 4 (a) shows the diameter size distribution of "a through holes 08" provided in the container (i6). (2) is made to increase from the center to the end in the axial direction. Figure 4 (b) shows the distribution of the through holes (18) at the specified positions of the gas-filled tube (2). In these embodiments, the same effects as in the above embodiments can be achieved.According to the second invention, in addition to the effects of the first invention, the device has the following advantages: The spatial utilization efficiency is improved, a more compact device is obtained, and the output of the device is increased. Fig. 5 and Fig. 6 each show an embodiment of the third invention, and Fig. 5 shows the main points. 6 is a perspective view of the main part. In FIG. 5, (162) is a container, which is made of a porous material such as ceramic. A porous body is provided in the central part in the axial direction of the container to surround the substance, and the porous body is made of a porous material, for example, as the constituent material of the container.The vapor evaporated in the container (162) is It is discharged into the discharge space (3) through the pores of the porous material.By reducing the pore density of this container (162), the density of the ejected vapor is suppressed and the vapor is discharged from the entire container 1162) into the discharge space (3). Steam (5
), a uniform vapor density can be obtained in the discharge space (3) and the laser output can be increased. Also, the 6th
In the figure, (20) is a sheet made of mesh or porous VJ material, (21) is a substrate, and (22) is a retaining pin. (163) is a sheet (20), a sheet metal (4) 1 The substrates (21) are stacked in layers to form a bottle (2).
It is a multilayer sheet-like porous body fixed in step 2). A porous sheet (163) is placed around the discharge space (3).
Wind it into a cylindrical shape and install it so that 20) is on the inside,
Eject the material vapor (5) through the porous sheet {20} into the discharge space (3). By reducing the pore density of this multilayer sheet (163), the density of ejected steam can be suppressed. The substrate (21) may also be configured to serve as the discharge tube (2). According to the third invention, the effects of the first and second inventions can be obtained within a container, and can be achieved using a cheaper container. FIG. 7 is a cross-sectional view showing the main parts of an embodiment of a material vapor generation device by FFI45E Akira. As shown in the figure, a plurality of tubular containers (j64L. (165) are connected to a discharge space (3)
These containers are placed around the discharge space 《3》. The metal vapor 《5) generated in the plurality of volumes a (164) and (165) is ejected from the through hole (18) toward the radial center of the discharge space 《3),
3) The vapor density can be controlled by the hole diameter, increasing the uniformity of the vapor density. Also, this container (l64).
(165) may be made of the porous material shown in the third invention. According to this invention, the vapor of the substance can be supplied from the periphery of the discharge space (3), and the metal vapor can be uniformly permeated to the gas in the center of the gas-filled tube. With a hole diameter of 18}, the amount of steam ejected can be controlled, the utilization efficiency can be increased, and a more compact device can be obtained. Fig. 8 shows an implementation of the material steam generation device according to the fifth invention. FIG. 2 is a sectional view showing the main part of the example. In the figure, (23) is a fixing member provided along the inner diameter of the discharge tube (2), such as a ring made of a heat-resistant material such as ceramic, molybdenum, or tungsten. A perspective view of this ring (23) is shown in Fig. 9.The ring (23) is a fixing member that fixes a plurality of containers (164) and (165) inside the discharge tube (2). In the embodiment, a plurality of containers (164) and (16) are arranged along the inner diameter of the discharge tube (2).
5) has, for example, four holes (23a) for fitting. With the ring (23)? St several containers (164)
.. (165) and the discharge tube (2), the container can be fixed at any position in the discharge space (3). Therefore, a container can be placed in a position that increases usage efficiency, resulting in a more efficient device. Also, FIG. 10 shows v! according to the 61st light! FIG. 2 is a cross-sectional diagram showing the equation of an embodiment of the J-quality steam generator. In the figure, (19a). (19b) G in container 416j:
This is the first #I electrode. Pre-WR electric% (19a)
.. (19b) Apply a voltage between them to generate a discharge,
The heat from this waste electricity increases the surface temperature of the substance (4) inside the container. As a result, the amount of vapor evaporated in the container (■6) increases, the gas pressure in the container 06 is further increased, and the ejection of the steam (5) is temporally controlled by electric discharge, and the discharge space is The vapor density can be suppressed in synchronization with the pulse output of laser oscillation, etc., and the peak value of the pulse output can be increased.According to the sixth invention, the amount of vapor generated from the substance in the container can be promoted, and the amount of vapor generated can be increased. In addition to being able to control the amount, the time of generation can also be controlled, resulting in a product with increased utilization efficiency, and the output can be controlled.Furthermore, although the above embodiment describes a gold RI4 vapor laser device, it is not limited to this. , it can also be applied to steam ion beam devices, etc. [9. Effect of light J As described above, according to the first invention, a substance is heated in a gas-filled tube, and the vapor that evaporates the substance is used as an excitation medium. Or, in a material vapor generator used as an ionizing medium, a container filled with a material is provided in the center of the tube in the axial direction, and a hole is provided in the container to evaporate the material in the container. By ejecting steam from a through hole, the amount of steam emitted can be controlled by adjusting the diameter of the through hole, which has the effect of increasing the output of the device and improving its usability, quality, and functionality.Also. According to the second invention, a substance is sealed in a gas-filled tube.
or more containers are provided, each of the containers is provided with a plurality of through holes, and the size distribution of the diameter of the plurality of through holes or the distribution of the arrangement of the plurality of through holes is centered in the axial direction of the tube. In addition to the effect of the first invention, by increasing the number from the part to the end, the space utilization efficiency of the device is increased, a more compact device is obtained, and the output of the device is increased. .. Further, according to the third invention, the effects of the first and second inventions can be obtained with the porous body by providing a porous body surrounding the substance at the center in the annular direction in the pipe filled with gas, and furthermore, the effects of the first and second inventions can be obtained with the porous body. They are cheaper than containers, can be easily placed in equipment, and have the advantage of being easy to change. Further, according to the fourth invention, a plurality of containers filled with a substance are provided, and the containers are arranged around the discharge space in the tube at the center in the axial direction of the tube filled with gas, and each of the containers is By providing one or more through holes in the tube, the vapor of the substance can be supplied from the periphery of the gas-filled tube, and the vapor can evenly permeate to the gas in the center of the gas-filled tube. can. Further, as in the above embodiment, the location of the steam ejection can be controlled by changing the diameter of the through hole, resulting in an improved utilization efficiency and a more compact device. Further, according to the fifth invention, a container filled with a substance is provided in the center of the pipe in the axial direction, and a fixing member is provided for fixing this container in the pipe, so that any space in the pipe filled with gas can be used. The effect is that the container can be easily placed, and the container can be placed in a position where the utilization efficiency can be increased. According to the sixth aspect of the invention, a container filled with a substance is provided in the center of the pipe filled with gas in the axial direction, and the container has an I.
In addition to providing at least several through holes, t[i
By providing a pair, it is possible to promote the steam generation of the substance in the container, and also to control the steam generation rate, as well as to control the time of generation, resulting in a product with increased efficiency, which has the effect of increasing output IIJgI. There is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) . (b)は各々第1発明の一実施例に
よる物質蒸気発生装置の要部を示す断面図、第2図(a
)〜(d)は金属蒸気レーザー装置のレーザー発振の機
構を示した特性図であり、第2図(a)は横軸を時間t
、縦軸を放電電流とする放電電流波形、第2図(b)は
横幀を電子・イオンの運動エネルギー(?t子・イオン
温度)、縦軸を電子・イオン数Neとするイオン・電子
のエネルギーPe分布,第2図(C)は横軸をバッフ7
−ガスのエネルギー(バッファーガス温度)、縦軸をバ
ッファーガスの原子aNgとするバッフ1−ガスのエネ
ルギーPg分布,第2図(d)は横軸を蒸気原子の励起
レベル、縦軸を蒸気原子数Njとする蒸気暉子の励起数
Pj分布、第3図(a) , (b)は各々第2発明の
一実施例による物質蒸気発生装置の要部を示す断面図、
第4図(a) . (b)は各々第2発明の−実施例に
係る容器を示す斜視図,第5図は第3発明の一実施例に
よる物質蒸気発生装置の要部を示す断面図、第6図は第
3発明の他の実施例に係わる多孔体を示す斜視図、第7
図は第4発明の一実施例による物質蒸気発生装置の要部
を示す断面図、第8図は第5発明のーyI.施例による
物質蒸気発生装置の要部を示す断面図、第9図はこの実
施例に係わるリングを示す斜視図、第10図は第6発明
の一実施例による物′IN蒸気発生装置の要部を示す断
面図、第11図は従来の物質蒸気発生装置の一例を示す
断面図、第12図は従来の物質蒸気発生装置に係わる放
電管内の径方向の温度分布.J気密度分布を示す説明図
である. (la). (lb) ・−−電極、(2)  − −
−故電管、(3) ・・・放電空間、(4)・・・物質
、(5》  ・・・蒸気、(7a).  (7b) ・
” ”共振ミラー (161 − − −容器、06目
 ・・・容器、(162) , (163)  ・・・
多孔体、(164) . (165)  ・・・容器、
(+8)・・・貫通穴、(19a) . (19b) 
 ・・・予#1電極、(23) −・・リング. なお、図中、同一符号は同一、又は相当部分を示す.
Figure 1(a). (b) is a cross-sectional view showing the main parts of the material vapor generating device according to an embodiment of the first invention, and FIG.
) to (d) are characteristic diagrams showing the laser oscillation mechanism of a metal vapor laser device, and FIG. 2(a) shows the horizontal axis as time t.
, the discharge current waveform where the vertical axis is the discharge current, the horizontal axis is the kinetic energy of electrons/ions (?t/ion temperature), and the vertical axis is the ion/electron number Ne. In Figure 2 (C), the horizontal axis is the energy Pe distribution of
- Gas energy (buffer gas temperature), vertical axis is buffer gas atoms aNg Buffer 1 - gas energy Pg distribution, Figure 2 (d) shows horizontal axis as excitation level of vapor atoms, vertical axis as vapor atoms Distribution of the excitation number Pj of the steam generator, where the number Nj is the number Nj, and FIGS. 3(a) and 3(b) are sectional views showing the main parts of the material vapor generator according to an embodiment of the second invention, respectively.
Figure 4(a). (b) is a perspective view showing a container according to an embodiment of the second invention, FIG. A seventh perspective view showing a porous body according to another embodiment of the invention.
The figure is a cross-sectional view showing the main parts of a material vapor generating device according to an embodiment of the fourth invention, and FIG. FIG. 9 is a cross-sectional view showing the main parts of the substance vapor generator according to the embodiment, FIG. 9 is a perspective view showing a ring according to this embodiment, and FIG. FIG. 11 is a sectional view showing an example of a conventional material vapor generating device, and FIG. 12 is a radial temperature distribution inside a discharge tube related to a conventional material vapor generating device. It is an explanatory diagram showing the J tightness distribution. (la). (lb) ・--electrode, (2) ---
-Dead electrical tube, (3)...discharge space, (4)...substance, (5)...steam, (7a). (7b) ・
""Resonance mirror (161 - - - Container, 06th ... Container, (162), (163) ...
Porous body, (164). (165) ...container,
(+8)...Through hole, (19a). (19b)
... Pre-#1 electrode, (23) ---Ring. In addition, the same reference numerals in the figures indicate the same or equivalent parts.

Claims (6)

【特許請求の範囲】[Claims] (1) ガスを封入した管内で物質を加熱し、上記物質
を蒸発せしめた蒸気を励起媒体または電離媒体として利
用する物質蒸気発生装置において、上記ガスを封入した
管内の軸方向における中央部に上記物質を封入した容器
を設け、上記容器に貫通した穴を設けたことを特徴とす
る物質蒸気発生装置。
(1) In a substance vapor generator that heats a substance in a tube filled with gas and uses the vapor obtained by evaporating the substance as an excitation medium or an ionization medium, the What is claimed is: 1. A substance vapor generating device comprising: a container sealed with a substance; and a hole penetrating the container.
(2) ガスを封入した管内で物質を加熱し、上記物質
を蒸発せしめた蒸気を励起媒体または電離媒体として利
用する物質蒸気発生装置において、上記ガスを封入した
管内に、上記物質を封入した一つ以上の容器を設け、こ
の容器の各々に複数個の貫通穴を設け、上記複数個の貫
通穴の径の大きさ分布または上記複数個の貫通穴の配置
分布を、上記管の軸方向に対して中央部から端部方向に
増加させるようにしたことを特徴とする物質蒸気発生装
置。
(2) In a substance vapor generator that heats a substance in a tube filled with a gas and uses the vapor obtained by evaporating the substance as an excitation medium or an ionization medium, a tube in which the above substance is sealed inside a tube filled with the above gas is used. A plurality of containers are provided, a plurality of through holes are provided in each of the containers, and the size distribution of the diameter of the plurality of through holes or the distribution of the arrangement of the plurality of through holes is adjusted in the axial direction of the tube. A substance vapor generating device characterized in that the substance vapor increases from the center toward the ends.
(3) ガスを封入した管内で物質を加熱し、上記物質
を蒸発せしめた蒸気を励起媒体または電離媒体として利
用する物質蒸気発生装置において、上記ガスを封入した
管内の軸方向における中央部に上記物質を包囲する多孔
体を設けたことを特徴とする物質蒸気発生装置。
(3) In a substance vapor generation device that heats a substance in a tube filled with gas and uses the vapor obtained by vaporizing the substance as an excitation medium or ionization medium, the A substance vapor generating device characterized in that a porous body surrounding a substance is provided.
(4) ガスを封入した管内で物質を加熱し、上記物質
を蒸発せしめた蒸気を励起媒体または電離媒体として利
用する物質蒸気発生装置において、上記物質を封入した
複数個の容器を設け、上記ガスを封入した管内の軸方向
における中央部で、上記管内の放電空間の周囲に上記容
器を配置し、上記容器の各々に1ケ所以上の貫通穴を設
けたことを特徴とする物質蒸気発生装置。
(4) In a substance vapor generator that heats a substance in a tube filled with a gas and uses the vapor obtained by evaporating the substance as an excitation medium or an ionization medium, a plurality of containers filled with the substance are provided, and the gas is evaporated. A substance vapor generating device characterized in that the container is arranged around a discharge space in the tube at the center in the axial direction of the tube, and each of the containers is provided with at least one through hole.
(5) ガスを封入した管内で物質を加熱し、上記物質
を蒸発せしめた蒸気を励起媒体または電離媒体として利
用する物質蒸気発生装置において、上記管内の軸方向に
おける中央部に上記物質を封入した容器を設け、この容
器を上記管内に固定する固定部材を設けたことを特徴と
する物質蒸気発生装置。
(5) In a substance vapor generator that heats a substance in a tube filled with gas and uses the vapor obtained by evaporating the substance as an excitation medium or ionization medium, the substance is sealed in the center of the tube in the axial direction. 1. A substance vapor generating device comprising a container and a fixing member for fixing the container in the pipe.
(6) ガスを封入した管内で物質を加熱し、上記物質
を蒸発せしめた上記を励起媒体または電離媒体として利
用する物質蒸気発生装置において、上記ガスを封入した
管内の軸方向における中央部に上記物質を封入した容器
を設け、上記容器に1ケ所以上の貫通した穴を設けると
共に、上記容器内に電極対を設けたことを特徴とする物
質蒸気発生装置。
(6) In a substance vapor generator that heats a substance in a tube filled with gas and uses the vaporized substance as an excitation medium or an ionization medium, the above-mentioned substance is heated in a tube filled with gas, and the above-mentioned substance is heated in the axial center of the tube filled with gas. What is claimed is: 1. A substance vapor generating device, comprising: a container in which a substance is sealed; one or more through holes are provided in the container; and an electrode pair is provided in the container.
JP1152675A 1989-06-14 1989-06-14 Material vapor generator Expired - Lifetime JP2760059B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP1152675A JP2760059B2 (en) 1989-06-14 1989-06-14 Material vapor generator
US07/535,615 US5150375A (en) 1989-06-14 1990-06-11 Substance vaporizing apparatus
DE69031430T DE69031430T2 (en) 1989-06-14 1990-06-12 Apparatus for evaporating substances
EP94111354A EP0622875B1 (en) 1989-06-14 1990-06-12 Substance vaporizing apparatus
DE69022487T DE69022487T2 (en) 1989-06-14 1990-06-12 Device for evaporating substances.
EP90111049A EP0402842B1 (en) 1989-06-14 1990-06-12 Substance vaporizing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1152675A JP2760059B2 (en) 1989-06-14 1989-06-14 Material vapor generator

Publications (2)

Publication Number Publication Date
JPH0316634A true JPH0316634A (en) 1991-01-24
JP2760059B2 JP2760059B2 (en) 1998-05-28

Family

ID=15545652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1152675A Expired - Lifetime JP2760059B2 (en) 1989-06-14 1989-06-14 Material vapor generator

Country Status (1)

Country Link
JP (1) JP2760059B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014201833A (en) * 2013-04-01 2014-10-27 上海和輝光電有限公司Everdisplay Optronics (Shanghai) Limited Evaporation source assembly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60147664U (en) * 1984-03-12 1985-10-01 三菱電機株式会社 Steam injection device for molten substances
JPS63239992A (en) * 1987-03-27 1988-10-05 Toshiba Corp Metal vapor laser device
JPS6431964A (en) * 1987-07-25 1989-02-02 Mitsui Petrochemical Ind Crucible for melting metal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60147664U (en) * 1984-03-12 1985-10-01 三菱電機株式会社 Steam injection device for molten substances
JPS63239992A (en) * 1987-03-27 1988-10-05 Toshiba Corp Metal vapor laser device
JPS6431964A (en) * 1987-07-25 1989-02-02 Mitsui Petrochemical Ind Crucible for melting metal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014201833A (en) * 2013-04-01 2014-10-27 上海和輝光電有限公司Everdisplay Optronics (Shanghai) Limited Evaporation source assembly

Also Published As

Publication number Publication date
JP2760059B2 (en) 1998-05-28

Similar Documents

Publication Publication Date Title
KR101058067B1 (en) Apparatus and method for generating extreme ultraviolet radiation or soft shock radiation
US8907567B2 (en) Plasma light source and plasma light generation method
US7557511B2 (en) Apparatus and method utilizing high power density electron beam for generating pulsed stream of ablation plasma
JP2006517050A (en) High density plasma focus radiation source
TWI412300B (en) Method and device for generating in particular euv radiation and/or soft x-ray radiation
JPH0449216B2 (en)
US7518300B2 (en) Method and device for the generation of a plasma through electric discharge in a discharge space
EP0622875A1 (en) Substance vaporizing apparatus
CN102257883B (en) Method and device for generating EUV radiation or soft x-rays with enhanced efficiency
US5038082A (en) Vacuum switch apparatus
JPH0316634A (en) Material vapor generator
Mesyats Ectons and their role in electrical discharges in vacuum and gases
JP6015149B2 (en) Plasma light source
US4924102A (en) Apparatus for generating negatively charged species
JPH03201399A (en) Method of generating x-ray
JP6834694B2 (en) Plasma light source
JP6772804B2 (en) Plasma light source system
JPH01151130A (en) Contact ionizer
JP6834536B2 (en) Plasma light source
JP2022029437A (en) Non-contact DC ion beam source with hollow cylindrical cathode and deformation collimator
JP6938926B2 (en) Plasma light source
JP6801477B2 (en) Plasma light source
JP6663823B2 (en) Plasma light source
JP6699158B2 (en) Laser accelerator
JP2017195144A (en) Plasma light source and method for generating plasma light