JPH0316598B2 - - Google Patents

Info

Publication number
JPH0316598B2
JPH0316598B2 JP20713382A JP20713382A JPH0316598B2 JP H0316598 B2 JPH0316598 B2 JP H0316598B2 JP 20713382 A JP20713382 A JP 20713382A JP 20713382 A JP20713382 A JP 20713382A JP H0316598 B2 JPH0316598 B2 JP H0316598B2
Authority
JP
Japan
Prior art keywords
air
temperature
low
nitrogen
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20713382A
Other languages
Japanese (ja)
Other versions
JPS5997480A (en
Inventor
Kazuo Seki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Original Assignee
Japan Oxygen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd filed Critical Japan Oxygen Co Ltd
Priority to JP20713382A priority Critical patent/JPS5997480A/en
Publication of JPS5997480A publication Critical patent/JPS5997480A/en
Publication of JPH0316598B2 publication Critical patent/JPH0316598B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04157Afterstage cooling and so-called "pre-cooling" of the feed air upstream the air purification unit and main heat exchange line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04024Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of purified feed air, so-called boosted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/04054Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/24Processes or apparatus using other separation and/or other processing means using regenerators, cold accumulators or reversible heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/62Liquefied natural gas [LNG]; Natural gas liquids [NGL]; Liquefied petroleum gas [LPG]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/04Compressor cooling arrangement, e.g. inter- or after-stage cooling or condensate removal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/904External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by liquid or gaseous cryogen in an open loop

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

【発明の詳細な説明】 本発明は空気分離装置に於ける原料空気の低温
圧縮方法に関し、詳しくは既設の空気液化分離装
置に於ける原料空気圧縮工程を液化天然ガス(以
下LNGと略称する)の寒冷を利用した低温圧縮
工程とする方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a low-temperature compression method for feed air in an air separation device, and more specifically, the feed air compression process in an existing air liquefaction separation device is performed using liquefied natural gas (hereinafter abbreviated as LNG). The present invention relates to a method of performing a low-temperature compression process using cold temperatures.

LNGを発電または都市ガス等に使用する際、
このLNGを有する寒冷を空気の液化分離に利用
して製品酸素、窒素等の電力原単位を低減する試
みは数多く行なわれており、既に実装置が稼動し
ている。しかしこれら従来行なわれている方法は
主として装置内に設けられた循環窒素系統の乾燥
窒素とLNGを熱交換させて寒冷の受授を行なつ
ている。即ち従来循環窒素の低温圧縮は行なわれ
ているが原料空気の低温圧縮は行なわれていなか
つた。この理由は原料空気中の水分を低温圧縮前
に除去する方法が解明されていなかつたためであ
る。原料空気をメタノールで洗滌して脱水する方
法があるが圧縮時の安全性や洗滌時の安全性に問
題があり、また乾燥剤で脱湿を行なう方法がある
がこの乾燥剤の再生に電力を必要とする。
When using LNG for power generation or city gas, etc.
Many attempts have been made to reduce the electricity consumption rate for products such as oxygen and nitrogen by utilizing the refrigeration of LNG for liquefaction and separation of air, and actual equipment is already in operation. However, these conventional methods mainly exchange heat between dry nitrogen in a circulating nitrogen system installed in the equipment and LNG to provide cooling. That is, conventionally, low-temperature compression of circulating nitrogen has been performed, but low-temperature compression of feed air has not been performed. The reason for this is that a method for removing moisture in the raw material air before low-temperature compression has not been elucidated. There is a method of dehydrating raw air by washing it with methanol, but there are problems with safety during compression and safety during washing.Also, there is a method of dehumidifying using a desiccant, but it requires electricity to regenerate this desiccant. I need.

本発明は上記に鑑みなされたものでLNGの寒
冷を利用して空気液化分離装置の原料空気の温度
を約−140℃迄冷却し同時に含有する水分を除去
し、この低温乾燥空気を空気圧縮機によつて低温
圧縮することにより、圧縮に要する電力原単位を
常温圧縮の際の1/2.3とし空気分離に於ける電力
原単位の低減化を計つたものである。
The present invention was developed in view of the above, and utilizes the refrigeration of LNG to cool the raw air temperature of the air liquefaction separation device to approximately -140°C, simultaneously removes the moisture contained therein, and transfers this low-temperature dry air to an air compressor. By performing low-temperature compression using this method, the power unit required for compression is 1/2.3 of that for room-temperature compression, thereby reducing the power unit required for air separation.

以下本発明を図面に依つて詳細に説明する。 The present invention will be explained in detail below with reference to the drawings.

第1図は本発明方法の一実施例を示す系統図で
ある。空気吸入口1より入つた温度30℃、湿度80
℃の空気は空気ブロワー2により約0.1〜0.15
Kg/cm2に圧縮され38℃に昇温して加温器3に導入
される。該加温器3に於てこの原料空気は向流す
る第1循環冷媒と熱交換して該第1循環冷媒が後
記する空気冷却器10bの流路10b2に入つて該
空気冷却器10bの他流路10b1に析出している
水分をパージ出来る温度迄これを加温し、自身は
約26℃迄降温して管4より導出し空気予冷器5に
入る。該空気予冷器5に於て向流する乾燥低温圧
縮器と熱交換し約2℃迄降温して導出し、次いで
水分離器6に入つて凝縮した水分を分離し管7、
管8、弁9を経て対でなり、切換え使用される空
気冷却器の一方10aの流路10a1に入る。該空
気冷却器10aの流路10a1に入つた低圧原料空
気は他の流路10a2を向流する第1循環冷媒(フ
ロンまたは窒素)と熱交換し−140℃迄降温し、
同時に流路10a1の管壁に凝縮した水分を析出さ
せ低温乾燥空気となつて管11、弁12を経て管
13へ導出する。上記第1循環冷媒(フロンまた
は窒素)は後記する第1LNG熱交換器14に於て
LNGと熱交換してその寒冷により−145℃迄降温
して空気冷却器10aに導入され上記低圧原料空
気を冷却した後導出して第1冷媒循環ポンプ15
により圧送され前記加温器3で昇温された後、他
の一方の空気冷却器10bに入つてこれを昇温し
た後、再び第1LNG熱交換器14に戻り循環す
る。管13の約−140℃、約−200mmAgの低温乾
燥空気は次いで複数段よりなる空気圧縮機16に
導入される。本実施例では最終段吐出圧力5Kg/
cm2、5段圧縮の等温圧縮機の場合について示す。
即ち各段16a,16b,16c,16d,16
eに於ける吐出空気は圧縮熱のため約20℃昇温す
るので各段16a,16b,16c,16d吐出
後の圧縮乾燥空気は夫々圧縮空気冷却器17に入
つて夫々−140℃迄冷却後再び圧縮される。該圧
縮空気冷却器17には後記する第2LNG熱交換器
18に於て向流するLNGより寒冷を供給され第
2冷媒循環ポンプ19によつて循環される第2循
環冷媒(フロン)が−140℃で満たされている。
第2LNG熱交換器18には管20より−160℃の
LNGが導入され向流する第2循環冷媒を−150℃
迄冷却し、自身は−135℃迄昇温して導出し使用
に供される。前記空気圧縮機16の最終段16e
を5Kg/cm2G、−125℃で吐出した圧縮乾燥空気は
次いで窒素熱交換器21に導入され、向流する空
気液化分離装置22より排出され管23を経て導
入された廃窒素と熱交換し、該廃窒素を常温より
−120℃迄降温せしめ自身は−42℃迄昇温して管
24より導出する。−42℃の圧縮乾燥空気は次い
で前記空気予冷器5に入り向流する前記原料空気
と熱交換してこれを約2℃迄降温させ自身は約24
℃迄昇温して管25より導出し前記空気液化分離
装置22に導入される。大気空気はこの様に
LNGの寒冷を利用して冷却、除湿され低温圧縮
されて、既設の空気液化分離装置22へ圧縮原料
空気として送入される。
FIG. 1 is a system diagram showing an embodiment of the method of the present invention. Temperature of air entering from air intake port 1: 30℃, humidity: 80℃
The air at ℃ is approximately 0.1~0.15 by air blower 2.
It is compressed to kg/cm 2 , heated to 38° C., and introduced into the warmer 3. In the warmer 3, this raw material air exchanges heat with the first circulating refrigerant flowing countercurrently, and the first circulating refrigerant enters the flow path 10b2 of the air cooler 10b, which will be described later. It is heated to a temperature at which the moisture deposited in the other flow path 10b1 can be purged, and the temperature is lowered to about 26° C., and the air is led out through the pipe 4 and enters the air precooler 5. In the air precooler 5, heat is exchanged with a dry low-temperature compressor flowing countercurrently, the temperature is lowered to about 2°C, and the air is discharged.Then, the air enters a water separator 6 to separate the condensed water, and is passed through a pipe 7.
It forms a pair through a pipe 8 and a valve 9, and enters a flow path 10a1 of one of the air coolers 10a, which is used selectively. The low-pressure raw material air that has entered the flow path 10a 1 of the air cooler 10a exchanges heat with the first circulating refrigerant (fluorocarbon or nitrogen) flowing countercurrently through the other flow path 10a 2 , and its temperature is lowered to -140°C.
At the same time, moisture condensed on the tube wall of the flow path 10a1 is precipitated and turned into low-temperature dry air, which is led to the tube 13 via the tube 11 and the valve 12. The first circulating refrigerant (fluorocarbon or nitrogen) is supplied to the first LNG heat exchanger 14, which will be described later.
The temperature is lowered to -145°C by exchanging heat with LNG, and the temperature is lowered to -145°C by the cooling, and the air is introduced into the air cooler 10a. After cooling the low-pressure raw material air, the air is led out to the first refrigerant circulation pump 15.
After being pressure-fed and heated by the warmer 3, the LNG enters the other air cooler 10b, where it is heated, and then returns to the first LNG heat exchanger 14 for circulation. The low temperature dry air of about -140° C. and about -200 mmAg in the pipe 13 is then introduced into an air compressor 16 consisting of multiple stages. In this example, the final stage discharge pressure is 5Kg/
cm 2 and a five-stage compression isothermal compressor.
That is, each stage 16a, 16b, 16c, 16d, 16
Since the temperature of the discharged air in e is raised by about 20°C due to the heat of compression, the compressed dry air discharged from each stage 16a, 16b, 16c, and 16d enters the compressed air cooler 17 and is cooled down to -140°C. It will be compressed again. The compressed air cooler 17 is supplied with cold air from LNG flowing countercurrently in a second LNG heat exchanger 18 to be described later, and a second circulating refrigerant (Freon) is circulated by a second refrigerant circulation pump 19 at -140 °C. It is filled with ℃.
The second LNG heat exchanger 18 has a temperature of -160℃ from the pipe 20.
LNG is introduced and the second circulating refrigerant is heated to -150°C.
It is then cooled down to a temperature of -135°C and then brought out for use. The final stage 16e of the air compressor 16
The compressed dry air discharged at 5 kg/cm 2 G and -125° C. is then introduced into the nitrogen heat exchanger 21, where it is heat exchanged with waste nitrogen discharged from the countercurrent air liquefaction separation device 22 and introduced through the pipe 23. The temperature of the waste nitrogen is then lowered from room temperature to -120°C, and the temperature of the waste nitrogen itself is raised to -42°C before being discharged from the pipe 24. The compressed dry air at -42°C then enters the air precooler 5 and exchanges heat with the raw material air flowing countercurrently, lowering its temperature to about 2°C, and the air itself is about 24°C.
The temperature is raised to .degree. C., and the air is drawn out through a pipe 25 and introduced into the air liquefaction separation device 22. Atmospheric air is like this
The LNG is cooled and dehumidified using the cold temperature of the LNG, compressed at a low temperature, and then sent to the existing air liquefaction separation device 22 as compressed raw air.

次に本発明の特徴である低温除湿工程を第2図
および第3図により更に詳細に述べる。前記空気
予冷器10aが空気冷却期にあつて流路10a1
は管8から管11へ低圧原料空気が流れ、流路1
0a2を流れる第1循環冷媒に冷却されて、流路1
0a1の管壁に含有する水分を凝縮・析出させてい
る時、切換え使用し対でなる他方の空気冷却器1
0bは再生期であつて、(第2図)前記流路10
a2を導出した−1℃の第1循環冷媒は弁49、弁
50を経て第1冷媒循環ポンプ15により圧送さ
れ、前記加温器3に入つて20℃に昇温する。つい
で弁26を経て空気冷却器10bの流路10b2
入つて向流する空気液化分離装置22からの廃窒
素を昇温し、自身は約−61℃に降温して、管27
へ導出し弁28、弁29を経て第1LNG熱交換器
14に入つて冷却され約−145℃に降温し管30
より導出して弁31を経、再び前記空気冷却器1
0aの流路10a2に入り循環する。第1LNG熱交
換器14には管32より−150℃のLNGが導入さ
れ前記第1循環冷媒を熱交換して気化し−65℃で
管33より導出して使用先へ供給される。また前
記空気液化分離装置22よりの廃窒素は窒素熱交
換器21を−120℃で導出後、管34,弁35を
経て前記再生期にある空気冷却器10bの流路1
0b1に入り、向流する前記第1循環冷媒に加温さ
れつつ前周期に於て管壁に析出していた水分を蒸
発し同伴して約15℃で管36より導出し弁37、
管38を経て装置外へ放出される。反対に空気冷
却器10aが再生期、空気冷却器10bが空気冷
却期にある時の運転状態は次の様になる(第3
図)。前記水分離器6を導出した低圧原料空気は
管40、弁41を経て前記対でなる空気冷却器の
一方10bの流路10b1に入り向流する第1循環
冷媒に冷却されて降温し、同時に含有する水分を
凝縮され、その流路10b1の管壁に析出して低温
乾燥空気となる。該流路10b1を導出した低温乾
燥空気は管42、弁43を経て管13より前記空
気圧縮機16へ導入される。また第1循環冷媒は
次の系路を循環する。即ち、前記第1LNG熱交換
器14を管30より低温で導出した該第1循環冷
媒は弁44、管45、管27を経て空気冷却期に
ある前記空気冷却器10bの流路10b2に入り向
流する前記低圧原料空気を冷却し自身は昇温して
導出し、弁46を経て前記第1冷媒ポンプ15に
入つて吐出圧送され前記加温器3に入る。該加温
器3に於て昇温した第1循環冷媒は弁47、管4
8、弁49を経て再生期にある前記空気冷却器1
0aの流路10a2に入り、向流する流路10a1
廃窒素を加温し自身は降温して導出し弁51、弁
29より再び前記第1LNG熱交換器14へ導入さ
れ以下同様に循環する。上記再生期の空気冷却器
10aの他の流路10a1には前記窒素熱交換器2
1を導出した廃窒素が管34、管52、弁53を
経て導入され昇温しつつ流路10a1の管壁に析出
していた水分を蒸発同伴して導出し弁54、管5
5を経て系外へ放出される。この周期に於ける各
熱交換器、冷却器の各流路の温度条件は前周期に
夫々対応している。またこの様に空気冷却器10
aが再生期、空気冷却器10bが空気冷却期にあ
る際、弁41,43、(低圧原料空気系路)、弁4
4,46,47,49,51,29(第1循環冷
媒系路)、弁53,54(廃窒素系路)は開とな
つており、弁37,35,12(低圧原料空気系
路)、弁28,26,50,31(第1循環冷媒
系路)、弁9(廃窒素系路)は閉となつている。
逆に前記の様に空気冷却器10aが空気冷却期、
10bが再生期の場合は弁9,12(低圧原料空
気系路)、弁31,49,50,26,28,2
9(第1循環冷媒系路)、弁35,37(廃窒素
系路)が開となつており、弁54,53,43
(低圧原料空気系路)、弁44,46,47,51
(第1循環冷媒系路)、弁41(廃窒素系路)は閉
となつている。これらの弁はいづれも自動切換弁
であり、前記空気冷却期と再生期の切換時自動的
に開閉弁する様に構成する。上記両期に於ける弁
開閉の状態および各流路を流れる流体の方向を示
したのが第2図および第3図である。両期の切換
間隔は10〜15分の周期とする。
Next, the low temperature dehumidification process which is a feature of the present invention will be described in more detail with reference to FIGS. 2 and 3. When the air precooler 10a is in the air cooling period, low-pressure raw material air flows from the pipe 8 to the pipe 11 in the flow path 10a1.
Cooled by the first circulating refrigerant flowing through the flow path 1
When the moisture contained in the pipe wall of 0a 1 is being condensed and precipitated, the other air cooler 1 in the pair is used in a switching manner.
0b is the regeneration period (Fig. 2), and the flow path 10
The first circulating refrigerant at -1°C from which a 2 has been derived is pumped by the first refrigerant circulation pump 15 through valves 49 and 50, enters the warmer 3, and is heated to 20°C. Next, the waste nitrogen from the air liquefaction separation device 22 flowing countercurrently through the valve 26 enters the flow path 10b 2 of the air cooler 10b and is heated up, and the waste nitrogen itself is cooled to about -61° C. and then passed through the pipe 27.
The LNG enters the first LNG heat exchanger 14 through valves 28 and 29 and is cooled down to approximately -145°C, and then flows into the pipe 30.
After passing through the valve 31, the air cooler 1 is discharged again.
It enters the flow path 10a2 of 0a and circulates. LNG at a temperature of -150°C is introduced into the first LNG heat exchanger 14 through a pipe 32, heat-exchanged with the first circulating refrigerant, vaporized, and led out through a pipe 33 at a temperature of -65°C to be supplied to a user. Further, the waste nitrogen from the air liquefaction separation device 22 is discharged from the nitrogen heat exchanger 21 at -120°C, and then passes through the pipe 34 and valve 35 to the flow path 1 of the air cooler 10b in the regeneration period.
0b1 , and is heated by the first circulating refrigerant flowing counter-currently, evaporates the moisture that had been deposited on the pipe wall in the previous cycle, and brings it out through the pipe 36 at about 15°C, with the valve 37,
It is discharged out of the device via pipe 38. On the contrary, when the air cooler 10a is in the regeneration period and the air cooler 10b is in the air cooling period, the operating state is as follows (3rd
figure). The low-pressure raw material air led out of the water separator 6 passes through a pipe 40 and a valve 41, enters the flow path 10b1 of one of the pair of air coolers 10b, and is cooled by the first circulating refrigerant flowing countercurrently, and its temperature is lowered. At the same time, the contained moisture is condensed and deposited on the pipe wall of the flow path 10b1 to become low-temperature dry air. The low-temperature dry air led out of the flow path 10b 1 is introduced into the air compressor 16 from the pipe 13 via a pipe 42 and a valve 43. Further, the first circulating refrigerant circulates through the next system. That is, the first circulating refrigerant that has been led out of the first LNG heat exchanger 14 at a lower temperature than the pipe 30 passes through the valve 44, the pipe 45, and the pipe 27, and enters the flow path 10b2 of the air cooler 10b in the air cooling period. The low-pressure raw material air flowing in the counterflow is cooled, and the air itself is heated and then led out, enters the first refrigerant pump 15 through the valve 46, is discharged under pressure, and enters the warmer 3. The first circulating refrigerant heated in the warmer 3 is passed through the valve 47 and the pipe 4.
8. The air cooler 1 in the regeneration phase via the valve 49
0a, the waste nitrogen in the flow path 10a 1 flowing countercurrently is heated, and then the waste nitrogen itself is cooled and led out, and is again introduced into the first LNG heat exchanger 14 through the valves 51 and 29, and the same process continues. circulate. The other flow path 10a 1 of the air cooler 10a in the regeneration period includes the nitrogen heat exchanger 2.
1 is introduced through the pipe 34, the pipe 52, and the valve 53, and as the temperature rises, the moisture deposited on the pipe wall of the flow path 10a1 evaporates and is led out.
5 and then released out of the system. The temperature conditions of each flow path of each heat exchanger and cooler in this cycle correspond to the previous cycle. Also like this air cooler 10
When a is in the regeneration period and the air cooler 10b is in the air cooling period, valves 41, 43 (low pressure raw material air system path), valve 4
4, 46, 47, 49, 51, 29 (first circulating refrigerant system) and valves 53, 54 (waste nitrogen system) are open, and valves 37, 35, 12 (low pressure raw air system) are open. , valves 28, 26, 50, and 31 (first circulating refrigerant line), and valve 9 (waste nitrogen line) are closed.
Conversely, as mentioned above, the air cooler 10a is in the air cooling period,
When 10b is in the regeneration period, valves 9, 12 (low pressure raw material air system path), valves 31, 49, 50, 26, 28, 2
9 (first circulation refrigerant system line), valves 35 and 37 (waste nitrogen system line) are open, and valves 54, 53, and 43 are open.
(Low pressure raw material air system line), valves 44, 46, 47, 51
(first circulating refrigerant line) and valve 41 (waste nitrogen line) are closed. These valves are all automatic switching valves, and are configured to open and close automatically when switching between the air cooling period and the regeneration period. FIGS. 2 and 3 show the valve opening/closing states and the direction of fluid flowing through each channel in the above two periods. The switching interval for both periods is 10 to 15 minutes.

次に上記の如く対でなり切換使用する空気冷却
器によつて冷却、水分除去を行なわなければなら
ない理由を以下に説明する。通常空気液化分離装
置に装備されているリバーシング熱交換器や蓄冷
器は原料空気圧力が約5Kg/cm2、水、炭酸ガスパ
ージ用廃窒素は大気圧である。従つて析出水分、
炭酸ガスはこの圧力差によつてパージ用廃窒素が
原料空気温度より低くても充分パージされる。し
かし原料空気、パージ用廃窒素双方が大気圧に近
い場合、通常の熱交換方式では廃窒素の出口温度
が原料空気入口温度より低いため水分はこの廃窒
素では完全にパージ出来ない。第4図に水分含有
率と圧力の関係を示す。圧力1気圧、温度0℃、
2℃、15℃に於ける夫々の水分飽和含有率をX1
X2、X3とするとX1<X2<X3の関係にあるため、
パージ用廃窒素の出口温度が0℃、原料空気入口
温度が2℃(Δt=2℃)の場合水分はX1<X2
ありこの水分の完全なパージは出来ない。しかし
パージ用廃窒素の出口温度が2℃以上であればパ
ージは容易に行なわれる。一般に水分、炭酸ガス
をパージする際はパージ効率を考慮する必要があ
るが、本発明に於ては上記パージ用廃窒素により
析出した水分を完全に運び去ることが出来る様再
生(水分パージ)の際空気冷却器の流路10a2
たは10b2に加温器3で約20℃迄昇温した冷媒を
流しつつ、他の流路10a1または10b1にパージ
用廃窒素を流し上記冷媒と熱交換して加温しつつ
前周期に原料空気が流れて析出した水分をパージ
する。廃窒素量が空気量の60%の場合、空気冷却
器10aまたは10bの入口温度は約−120℃、
出口温度15℃である。この出口温度15℃は原料空
気が入口温度2℃の時の水分含有量に対しこの水
分をパージするために充分余裕のある温度であ
る。
Next, the reason why it is necessary to perform cooling and moisture removal using the air coolers that are used in pairs as described above will be explained below. The reversing heat exchanger and regenerator normally installed in air liquefaction separation equipment have a raw air pressure of about 5 kg/cm 2 , and the water and waste nitrogen for purging carbon dioxide gas have atmospheric pressure. Therefore, precipitated water,
Due to this pressure difference, carbon dioxide gas can be sufficiently purged even if the temperature of the purging waste nitrogen is lower than the raw air temperature. However, when both the feed air and the waste nitrogen for purging are close to atmospheric pressure, moisture cannot be completely purged with the waste nitrogen because the outlet temperature of the waste nitrogen is lower than the inlet temperature of the feed air in a normal heat exchange method. Figure 4 shows the relationship between moisture content and pressure. Pressure 1 atm, temperature 0℃,
The respective water saturation contents at 2℃ and 15℃ are X 1 ,
Assuming X 2 and X 3 , there is a relationship of X 1 < X 2 < X 3 , so
When the outlet temperature of the waste nitrogen for purging is 0° C. and the raw air inlet temperature is 2° C. (Δt=2° C.), the moisture content is X 1 <X 2 , and this moisture cannot be completely purged. However, if the outlet temperature of the waste nitrogen for purging is 2° C. or higher, purging can be easily performed. Generally, when purging moisture and carbon dioxide gas, it is necessary to consider purge efficiency, but in the present invention, regeneration (moisture purge) is carried out so that the moisture precipitated by the waste nitrogen for purging can be completely removed. At the same time, while flowing the refrigerant heated to about 20°C by the heater 3 into the flow path 10a 2 or 10b 2 of the air cooler, waste nitrogen for purging is flowed into the other flow path 10a 1 or 10b 1. While exchanging and heating, the moisture that was precipitated by the flow of raw material air in the previous cycle is purged. When the amount of waste nitrogen is 60% of the amount of air, the inlet temperature of air cooler 10a or 10b is approximately -120°C,
The outlet temperature is 15℃. This outlet temperature of 15°C is a temperature that has a sufficient margin to purge the moisture content of the raw air when the inlet temperature is 2°C.

なお再生の場合の水分パージ用加温源は前記原
料空気の他に工場内の他の廃熱源、例えば空気分
離装置の製品ガス圧送のための圧縮熱等を利用す
ることも出来る。
In addition to the raw material air, other waste heat sources in the factory, such as compression heat for pressurizing product gas from an air separation device, can also be used as a heating source for moisture purging in the case of regeneration.

以上の様な方法によつて空気を低温圧縮するこ
とにより達成し得る省エネルギーは次の通りであ
る。酸素ガス12000m3/hを生産する空気液化分
離装置の場合、温度30℃、湿度80%の空気を5
Kg/cm2迄圧縮する動力原単位は約0.09KWH/m3
Alrである。電力原単位は圧縮機入口温度に比例
して減少するので−140℃で低温圧縮することに
より、 0.09×273−140/273+30=0.0395KWH/m3Air となり、常温の場合の約44%(1/2.3)で済むこ
とになる。即ち電力原単位は56%削減出来る。従
つて前記酸素ガス12000m3/h、原料空気量65000
m3/hである様な大型装置の場合、この省エネル
ギーの値は莫大なものになり、年間稼動時間8000
時間とすると約2.6×107KWHとなりこの効果は
極めて大きい。
Energy savings that can be achieved by compressing air at low temperatures using the method described above are as follows. In the case of an air liquefaction separation device that produces 12,000 m 3 /h of oxygen gas, air at a temperature of 30°C and humidity of 80% is
The power unit to compress up to Kg/cm 2 is approximately 0.09KWH/m 3
Alr. The power consumption rate decreases in proportion to the compressor inlet temperature, so by performing low-temperature compression at -140℃, it becomes 0.09×273−140/273+30=0.0395KWH/m 3 Air, which is approximately 44% (1 /2.3). In other words, the electricity consumption rate can be reduced by 56%. Therefore, the oxygen gas is 12,000 m 3 /h, and the amount of raw air is 65,000
In the case of large equipment such as m 3 /h, this energy saving value is enormous, with annual operating hours of 8000
This effect is approximately 2.6×10 7 KWH in terms of time, which is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の一実施例を示す系統図、
第2図および第3図は本発明の低温除湿工程を詳
細に示す系統図、第4図は水分含有率と圧力の関
係を示す図である。 2は空気ブロワー、3は加温器、5は空気予冷
器、6は水分離器、10a,10bは空気冷却
器、14は第1LNG熱交換器、15は第1冷媒循
環ポンプ、16は空気圧縮機、17は圧縮空気冷
却器、18は第2LNG熱交換器、19は第2冷媒
循環ポンプ、21は窒素熱交換器、22は空気液
化分離装置である。
FIG. 1 is a system diagram showing an embodiment of the method of the present invention;
FIGS. 2 and 3 are system diagrams showing details of the low-temperature dehumidification process of the present invention, and FIG. 4 is a diagram showing the relationship between moisture content and pressure. 2 is an air blower, 3 is a warmer, 5 is an air precooler, 6 is a water separator, 10a, 10b are air coolers, 14 is the first LNG heat exchanger, 15 is the first refrigerant circulation pump, 16 is the air 17 is a compressed air cooler, 18 is a second LNG heat exchanger, 19 is a second refrigerant circulation pump, 21 is a nitrogen heat exchanger, and 22 is an air liquefaction separation device.

Claims (1)

【特許請求の範囲】[Claims] 1 原料空気を原料空気ブロワーにより加温器に
導入し循環冷媒と熱交換した後空気予冷器にて低
温圧縮空気により冷却して降温せしめる工程と、
該原料空気を対でなり切換使用する空気冷却器の
一方に導入して前記循環冷媒により冷却し、且つ
水分をその流路に固化、析出させて除去し低温乾
燥空気とした後空気圧縮機に導入して低温下で所
望圧力まで圧縮する工程と、該低温圧縮原料空気
を窒素熱交換器に導入して空気液化分離装置より
の窒素と熱交換して昇温せしめ、ついで前記空気
予冷器に導入してほぼ常温迄昇温せしめた後空気
分離装置に導入する工程、ならびに液化天然ガス
熱交換器で冷却される冷媒を前記空気冷却器を経
て加温器に導入して昇温した後、他の一方の空気
冷却器に導入して前記窒素熱交換器よりの窒素を
昇温せしめた上前記液化天然ガス熱交換器に戻す
循環冷媒が形成される工程と、前記昇温窒素によ
つて前周期に於て析出固化した水分を融解蒸発し
て同伴除去せしめる工程よりなることを特徴とす
る空気液化分離装置用原料空気の低温圧縮方法。
1. Introducing raw air into a warmer using a raw air blower, exchanging heat with a circulating refrigerant, and then cooling it with low-temperature compressed air in an air precooler to lower the temperature;
The raw air is introduced into one of a pair of air coolers that are used selectively and cooled by the circulating refrigerant, and moisture is solidified and precipitated in the flow path to be removed, resulting in low-temperature dry air, which is then sent to an air compressor. The low-temperature compressed feed air is introduced into a nitrogen heat exchanger to exchange heat with nitrogen from the air liquefaction separation device to raise the temperature, and then to the air precooler. A step of introducing the refrigerant and raising the temperature to almost room temperature and then introducing it into the air separation device, and introducing the refrigerant cooled by the liquefied natural gas heat exchanger to the warmer through the air cooler and raising the temperature, forming a circulating refrigerant which is introduced into the other air cooler to raise the temperature of the nitrogen from the nitrogen heat exchanger and is then returned to the liquefied natural gas heat exchanger; A low-temperature compression method for raw air for an air liquefaction separation device, comprising a step of melting and evaporating moisture that has precipitated and solidified in the previous cycle to remove it along with it.
JP20713382A 1982-11-26 1982-11-26 Method of compressing air as raw material for air liquefyingseparating device at low temperature Granted JPS5997480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20713382A JPS5997480A (en) 1982-11-26 1982-11-26 Method of compressing air as raw material for air liquefyingseparating device at low temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20713382A JPS5997480A (en) 1982-11-26 1982-11-26 Method of compressing air as raw material for air liquefyingseparating device at low temperature

Publications (2)

Publication Number Publication Date
JPS5997480A JPS5997480A (en) 1984-06-05
JPH0316598B2 true JPH0316598B2 (en) 1991-03-05

Family

ID=16534736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20713382A Granted JPS5997480A (en) 1982-11-26 1982-11-26 Method of compressing air as raw material for air liquefyingseparating device at low temperature

Country Status (1)

Country Link
JP (1) JPS5997480A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9491533B2 (en) 2006-01-12 2016-11-08 Sony Corporation Earphone device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9491533B2 (en) 2006-01-12 2016-11-08 Sony Corporation Earphone device
US9826300B2 (en) 2006-01-12 2017-11-21 Sony Corporation Earphone device
US9930437B2 (en) 2006-01-12 2018-03-27 Sony Corporation Earphone device
US9949007B2 (en) 2006-01-12 2018-04-17 Sony Corporation Earphone device
US9961428B2 (en) 2006-01-12 2018-05-01 Sony Corporation Earphone device

Also Published As

Publication number Publication date
JPS5997480A (en) 1984-06-05

Similar Documents

Publication Publication Date Title
US5761923A (en) Air conditioning system
KR100747841B1 (en) Thermal storage airconditioner
KR101102915B1 (en) Desiccant Dehydration System and threrof Control Method
US6199389B1 (en) Air Conditioning system and method for operating the same
CN108224842A (en) A kind of gas compensating type electric automobile heat-pump air-conditioning system with battery thermal management
JPH11316061A (en) Air conditioning system and its operation method
CN117803997A (en) Dehumidifier unit with low dew point exceeding zero depth intelligent cleaning and control method
JP2004053055A (en) Refrigerator
JPH0316598B2 (en)
KR19980058201A (en) System Load Reduction Device of Air Conditioning Equipment
JPS5885043A (en) Operation control apparatus for cold insulation type air conditioner
JPH09318129A (en) Air-conditioning system
JP2005233475A (en) Heat pump system
JPH05308943A (en) Freezing equipment
JP3195986B2 (en) Helium gas supply method and device
JPH0794926B2 (en) Refrigerating device for both low temperature medium and high temperature medium
JPS6332258A (en) Cryogenic refrigerator
KR840001532Y1 (en) Air separating system
KR100727126B1 (en) Thermal storage airconditioner
JPS6353470B2 (en)
KR20070019275A (en) Thermal storage airconditioner
KR100241440B1 (en) System Load Reduction Device of Air Conditioning Equipment
JPH06201206A (en) Method and apparatus for generating low temperature air
KR950004394Y1 (en) Removing frost by hot fluid
CN113389704A (en) Method for producing compressed gas and compressed gas production system