JPH03165814A - Method for removing impurity from solution after gypsum separation - Google Patents

Method for removing impurity from solution after gypsum separation

Info

Publication number
JPH03165814A
JPH03165814A JP1303193A JP30319389A JPH03165814A JP H03165814 A JPH03165814 A JP H03165814A JP 1303193 A JP1303193 A JP 1303193A JP 30319389 A JP30319389 A JP 30319389A JP H03165814 A JPH03165814 A JP H03165814A
Authority
JP
Japan
Prior art keywords
exchange membrane
solution
impurities
gypsum
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1303193A
Other languages
Japanese (ja)
Other versions
JP2691036B2 (en
Inventor
Yoshiyuki Takeuchi
善幸 竹内
Shigeo Hasegawa
長谷川 繁夫
Susumu Okino
進 沖野
Atsushi Tatani
多谷 淳
Naohiko Ugawa
直彦 鵜川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1303193A priority Critical patent/JP2691036B2/en
Publication of JPH03165814A publication Critical patent/JPH03165814A/en
Application granted granted Critical
Publication of JP2691036B2 publication Critical patent/JP2691036B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PURPOSE:To remarkably remove impurities from a solution after gypsum separation by bringing a solution after the separation of gypsum in a slurry at the outlet of an absorbing column into contact with an anion exchange membrane and a cation exchange membrane to remove Cl<->, F<->, Na<+>, etc., and then circulating the solution into the absorbing column. CONSTITUTION:When a filtrate (e) after gypsum separation in which impurities are accumulated is supplied into a chamber Y in a membrane separation apparatus, anions, such as Cl<-> and F<->, among the impurities are allowed to permeate through the anion exchange membrane (c) side and moved into a left chamber X. On the other hand, cations, such as Na<+>, are allowed to permeate through the cation exchange membrane (d) side and moved into a right chamber Z, and the impurities in the filtrate are diluted and this filtrate is discharged in the form of an impurity-diluted solution (f) from the membrane separation apparatus and used by circulation into the absorbing column. Respective ions allowed to permeate through the anion exchange membrane (c) and the cation exchange membrane (d) are mixed again and concentrated into impurity salts, such as NaCl, and a part is circulated through the chambers X, Z and the rest is taken out of the membrane separation apparatus in the form of an impurity- concentrated solution (g).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は湿式排煙脱硫法における石膏分離濾液中の不純
物を除去する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for removing impurities in a gypsum separation filtrate in a wet flue gas desulfurization method.

〔従来の技術〕[Conventional technology]

現在、排煙脱硫の主流をなしているものにCaCO3や
Ca (OH) 2を吸収剤として排煙脱硫を行い、亜
硫酸カルシウムや硫酸カルシウム(石膏)として回収す
るいわゆる湿式石灰法の排煙脱硫装置があり、例えば、
特開昭57−63117号等の他、多くの刊行物に詳述
されている通りである。
Currently, the main stream of flue gas desulfurization is the so-called wet lime method flue gas desulfurization equipment, which desulfurizes flue gas using CaCO3 or Ca(OH)2 as an absorbent and recovers it as calcium sulfite or calcium sulfate (gypsum). For example,
This is described in detail in many publications including JP-A No. 57-63117.

ここで、第4図によって現在、工業的に広く採用されて
いる湿式石灰法による排煙脱硫装置の例を説明する。
Here, an example of a flue gas desulfurization apparatus using the wet lime method, which is currently widely adopted industrially, will be explained with reference to FIG.

石炭焚きボイラの排煙を脱硝装置、エアーヒー夕、乾式
集塵装置で処理した後、乾式集塵装置を通過したダスト
、l{Cl 、IIP, So3やSO。を含んだ排煙
lは吸収塔本体2に導かれる。吸収塔本体2の下部には
Ca化合物を懸濁したスラリを受けるタンク3が設けて
あり、攪拌機4によりスラリを攪拌して固形物の沈澱を
防止する。
After treating the flue gas from a coal-fired boiler with a denitrification device, an air heater, and a dry dust collector, the dust that passes through the dry dust collector contains l{Cl, IIP, So3, and SO. The flue gas l containing the is led to the absorption tower main body 2. A tank 3 for receiving slurry in which Ca compounds are suspended is provided at the bottom of the absorption tower body 2, and the slurry is stirred by a stirrer 4 to prevent precipitation of solids.

Ca化合物を懸濁したスラリは吸収塔循環ポンプ5によ
って塔頂に送られ、塔内に散布されて排煙と接触しなが
ら流下し再びタンク3に戻る。
The slurry in which the Ca compound is suspended is sent to the top of the tower by the absorption tower circulation pump 5, spread inside the tower, flows down while coming into contact with flue gas, and returns to the tank 3 again.

スラリと接触してダスト、IICl 、HPSSO.や
S02を除去された排煙はミストエリミネータ6を通っ
て浄化ガス7として排出される。一方、タンク3へはS
02吸収量に見合ってCaCO3やCa (Otl) 
2のスラリをライン8より供給すると共に、吸収剤がS
O。を吸収して生或した亜硫酸カルシウムを含むスラリ
をライン9から酸化塔10へ導く。
In contact with the slurry, dust, IICl, HPSSO. The exhaust gas from which S02 and S02 have been removed passes through a mist eliminator 6 and is discharged as purified gas 7. On the other hand, S to tank 3
02 CaCO3 and Ca (Otl) according to the amount of absorption
2 slurry is supplied from line 8, and the absorbent is
O. A slurry containing calcium sulfite produced by absorbing the oxidation tower 10 is led from line 9 to oxidation tower 10.

スラリ中にはダスト、HCl 、IIFも捕集される。Dust, HCl, and IIF are also collected in the slurry.

酸化塔10では底部に設けた気泡発生器11から空気1
2を吹き込み、ライン13から硫酸を供給して亜硫酸カ
ルシウムを酸化して石膏にすると共に、未反応のCaC
O3やCa (OH) 2を石膏に転化する。酸化塔1
0から出た石膏スラリはライン14を通ってシックナ1
5に導かれ、濃縮石膏スラリはラインl6、タンク17
、ポンプ18、遠心分離機19へ送られ、石膏20を得
ると共に濾過液はタンク21へ導かれ、ポンプ22及び
ライン23を経由してシックナ15へ導かれる。
In the oxidation tower 10, air 1 is supplied from a bubble generator 11 provided at the bottom.
2 is blown in, and sulfuric acid is supplied from line 13 to oxidize calcium sulfite into gypsum, and remove unreacted CaC.
Converts O3 and Ca(OH)2 into gypsum. Oxidation tower 1
The gypsum slurry coming out from 0 passes through line 14 to thickener 1.
5, and the concentrated gypsum slurry goes to line 16 and tank 17.
, a pump 18 and a centrifugal separator 19 to obtain gypsum 20, and the filtrate is led to a tank 21 and then to a thickener 15 via a pump 22 and a line 23.

方、シックナ15の上澄み液はライン24からタンク2
5へ導かれ、ポンプ26から排煙脱硫装置内の例えば吸
収剤の調製用に使用されると同時に一部は排水される。
On the other hand, the supernatant liquid of thickener 15 is transferred from line 24 to tank 2.
5, and is used for preparing an absorbent in the flue gas desulfurization equipment through a pump 26, and at the same time, a portion is drained.

この溶液中には排ガス中から捕集されたHClやHFが
Cl−イオン、F−イオンとして存在しており、系外へ
排水する場合には2次公害防止のための排水処理が必要
である。
HCl and HF collected from the exhaust gas exist in this solution as Cl- ions and F- ions, and when draining out of the system, wastewater treatment is required to prevent secondary pollution. .

なお、前記吸収塔2と酸化塔10の作用を同一の塔で行
わせる場合もある。
Note that the functions of the absorption tower 2 and the oxidation tower 10 may be performed in the same tower.

以上のように、従来は排ガス中のSO2を吸収塔で吸収
・除去する工程において排ガス中のHCl 、lII’
も同時に吸収・除去されるため、吸収液中にCl− 、
P−の不純物が混入していた。そして、吸収塔出口スラ
リ中の石膏を分離した後の濾液は、その一部を排水し大
半を吸収塔に戻すために、不純物(Cl一及びF一等)
が高濃度に蓄積されていた。
As mentioned above, conventionally, in the process of absorbing and removing SO2 in exhaust gas with an absorption tower, HCl, lII'
are also absorbed and removed at the same time, so Cl-,
P- impurity was mixed in. After separating the gypsum in the slurry at the outlet of the absorption tower, the filtrate is partially drained and most of it is returned to the absorption tower, so that impurities (such as Cl and F) are removed.
had accumulated at high concentrations.

従って、循環液中の不純物濃度が高く、例えば、Cl−
は5, 000 〜25, OOOppm程度に濃縮さ
れており、その結果、装置の材質として耐食性の高い高
級材料が必要となり装置費が高くなっていた。また、不
純物濃度が高いために、硫黄酸化物の吸収剤であるCa
CO3の反応性が低下する欠点があった。
Therefore, the concentration of impurities in the circulating fluid is high, such as Cl-
is concentrated to about 5,000 to 25,000 ppm, and as a result, a high-grade material with high corrosion resistance is required for the equipment, increasing the cost of the equipment. In addition, due to the high impurity concentration, Ca, which is an absorbent for sulfur oxides,
There was a drawback that the reactivity of CO3 was reduced.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は上記技術水準に鑑み、吸収塔出口のスラリから
石膏を除去した後の溶液中から、不純物(Cl−及びF
一等)を選択的に分離・除去し、■吸収液中の不純物濃
度を低減する、■除去したCl−をHClとして回収し
、排水処理するか、再利用する、■除去したOH一をN
a叶として回収し、再利用することができる方法を提供
しようとするものである。
In view of the above-mentioned state of the art, the present invention has been developed to remove impurities (Cl- and F) from the solution after removing gypsum from the slurry at the outlet of the absorption tower.
1) selectively separates and removes the
The aim is to provide a method that allows the leaves to be collected and reused.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、 〔1)硫黄酸化物及び不純物を含む排ガスを吸収塔内で
炭酸カルシウムまたは水酸化カルシウムスラリと接触さ
せて、排ガス中の硫黄酸化物を吸収・除去する工程にお
いて、吸収塔出口のスラリ中の石膏を分離した後の溶液
から、アニオン交換膜とカチオン交換膜を使用して該溶
液中のCl− , F一及びNa十などを除去した後、
該溶液を前記吸収塔に循環供給することを特徴とする石
膏分離後の溶液の不純物除去方法。
The present invention provides the following features: [1) In the process of bringing exhaust gas containing sulfur oxides and impurities into contact with calcium carbonate or calcium hydroxide slurry in an absorption tower to absorb and remove sulfur oxides from the exhaust gas, After separating the gypsum in the slurry, an anion exchange membrane and a cation exchange membrane are used to remove Cl, F, Na, etc. from the solution.
A method for removing impurities from a solution after gypsum separation, comprising circulating and supplying the solution to the absorption tower.

(2)  アニオン交換膜、カチオン交換膜の外に、H
20をOH一とH+に分離する性能を有する両性イオン
交換膜を使用して不純物であるじIF=及びNa+をH
Cl , IIF及びNaCl溶液として回収する上記
(1)記載の石膏分離後の溶液の不純物除去方法。
(2) In addition to the anion exchange membrane and cation exchange membrane, H
Using an amphoteric ion exchange membrane that has the ability to separate 20 into OH- and H+, the impurities IF= and Na+ are separated into H+.
The method for removing impurities from a solution after gypsum separation according to (1) above, wherein the solution is recovered as a Cl, IIF and NaCl solution.

である。It is.

〔作用〕[Effect]

本発明はイオン交換膜(アニオン交換膜と力チオン交換
膜)を使用することにより、さらには、0■一と旧イオ
ンを選択的に分離・除去する両性イオン交換膜と前記イ
オン交換膜とを組合せることにより効率的に石膏分離濾
液中の不純物を選択的に分離・除去する方法である。
The present invention uses an ion exchange membrane (an anion exchange membrane and a thion exchange membrane), and furthermore, uses an amphoteric ion exchange membrane and the ion exchange membrane that selectively separates and removes 0 and 1 and old ions. By combining these methods, it is possible to efficiently selectively separate and remove impurities in the gypsum separation filtrate.

本発明の作用を以下第2図及び第3図により説明する。The operation of the present invention will be explained below with reference to FIGS. 2 and 3.

第2図はアニオン交換膜とカチオン交換膜のみを使用し
た場合の膜分離装置の構或を示す概要図である。この膜
分離装置は両側に陽極aと陰極bとが設けられ両極間の
室をアニオン交換膜C,カチオン交換膜dにより3室x
,y,zに区画されている。
FIG. 2 is a schematic diagram showing the structure of a membrane separation device using only an anion exchange membrane and a cation exchange membrane. This membrane separator has an anode a and a cathode b on both sides, and the chambers between the two electrodes are divided into three chambers by an anion exchange membrane C and a cation exchange membrane d.
, y, and z.

不純物を蓄積している石膏分離後の濾液eが上記膜分離
装置の真中の室Yに供給されると、不純物のうちアニオ
ン交換膜C側をCl−,P−などの陰イオンが透過して
左室Xに移行し、カチオン交換膜d側をNa+などの陽
イオンが透過して右室Zに移行し、濾液の不純物は希釈
されて不純物希釈濾液fとして膜分離装置より出て行き
、吸収塔に循環使用される。
When the filtrate e after gypsum separation that has accumulated impurities is supplied to the chamber Y in the middle of the membrane separation device, anions such as Cl- and P- among the impurities permeate through the anion exchange membrane C side. It moves to the left ventricle It is recycled to the tower.

一方、アニオン交換膜C,カチオン交換膜dを透過した
各イオン(Cl− , F−, Na+など)は再度混
合して不純物塩(例えばNaClなど〉として濃縮され
、一部は膜分離装置の左右の室X,Zに循環され、残部
は不純物濃縮濾液gとして膜分離装置から取出され、排
水処理されて系外に放出される。
On the other hand, the ions (Cl-, F-, Na+, etc.) that have passed through the anion exchange membrane C and the cation exchange membrane d are mixed again and concentrated as impurity salts (e.g. NaCl), and some of them are transferred to the left and right sides of the membrane separation device. The remainder is taken out from the membrane separator as an impurity-concentrated filtrate g, treated as waste water, and discharged outside the system.

第3図は上記のアニオン交換膜とカチオン交換膜の外に
、叶一とH+を選択的に分離する両性イオン交換膜を使
用した膜分離装置の構或を示す概要図である。
FIG. 3 is a schematic diagram showing the structure of a membrane separation device that uses, in addition to the above-mentioned anion exchange membrane and cation exchange membrane, an amphoteric ion exchange membrane for selectively separating Kanoichi and H+.

第3図の膜分離装置は第2図の左右の室X,Zを両性イ
オン交換膜hによって、それぞれX.X′室及びz,z
’室に2分割され、全体として5室を構或するもので、
不純物含有濾液Cは第2図の膜分離装置と同じように真
中の室Yに供給されるが、左右の室x,x’及びz,z
’には水が供給されるようになっている。
The membrane separator shown in FIG. 3 separates the left and right chambers X and Z in FIG. 2 by amphoteric ion exchange membranes h, respectively. X' room and z, z
It is divided into two rooms, and has five rooms in total.
The impurity-containing filtrate C is supplied to the middle chamber Y in the same way as the membrane separator shown in Figure 2, but the left and right chambers x, x' and z, z
' has been supplied with water.

陽極a側の両性イオン交換膜hでは水はOHとH+に解
離され、解離したH+は室Xに移行し、前記第2図に関
して説明したようにアニオン交換膜Cを透過してくるC
l− , F一などと結合しHCl , HFが生或す
る。一方、陰極b側の両性イオン交換膜hでも水はOH
−とH+に解離され、解離した0■−は室Zに移行し、
前記第2図に関して説明したようにカチオン交換膜dを
透過してくるNa−などと結合しNaOHが生或される
In the amphoteric ion exchange membrane h on the anode a side, water is dissociated into OH and H+, the dissociated H+ moves to chamber
It combines with l-, F-, etc. to produce HCl and HF. On the other hand, even in the amphoteric ion exchange membrane h on the cathode b side, water is OH
- and H+, and the dissociated 0■- moves to chamber Z,
As explained with reference to FIG. 2, NaOH is produced by combining with Na-, etc., which permeate the cation exchange membrane d.

生或したIIcI , [’及びNaOHは各々系外に
抜出され、各々目的に応じて使用されるか、排水として
処理され、真中の室Yから出てくる不純物希釈濾液fは
吸収塔に循環使用される。
The raw IIcI, [' and NaOH are each extracted from the system and used depending on the purpose or treated as waste water, and the impurity diluted filtrate f coming out of the middle chamber Y is recycled to the absorption tower. used.

両性イオン交換膜とは、陽イオン交換基と陰イオン基と
を併せもつものであって、更にイオン交換基の分布状態
からみると、一つのイオン交換膜内に均一に陽イオン交
換基及び陰イオン基が分布しているもの、一つの領域に
陽イオン交換基が存在し、他の領域に陰イオン基が存在
し、それぞれの領域がモザイク様の構造をしたもの、更
にモザイク様の構造をしたもの\中に陽イオン交換基を
有する相と陰イオン基を有すq る相がミクロ的に存在する、いわゆるミクロ相分離構造
をしたものがある。
An amphoteric ion exchange membrane is one that has both cation exchange groups and anion exchange groups, and looking at the distribution of the ion exchange groups, the cation exchange groups and anion exchange membranes are uniformly distributed within one ion exchange membrane. Those with ionic groups distributed, those with cation exchange groups in one region and anionic groups in another region, and those with a mosaic-like structure in each region, and those with a mosaic-like structure. Some products have a so-called micro phase separation structure in which a phase with cation exchange groups and a phase with anion groups exist microscopically.

以上のように、特定のイオンを選択分離する性能を有す
る膜分離装置を使用することにより、循環液中の不純物
(Cl− , F一及びNa+など)を分離・除去する
ことにより、不純物の高濃度蓄積を防止することができ
、その結果、装置材質として耐食性が高い高級材料を使
用する必要がなくなる。
As described above, by using a membrane separator that has the ability to selectively separate specific ions, impurities (Cl-, F-, Na+, etc.) in the circulating fluid can be separated and removed, thereby reducing the concentration of impurities. Concentration accumulation can be prevented, and as a result, there is no need to use high-grade materials with high corrosion resistance as the material for the device.

以上の構或の不純物処理方法を使用して行った実験の実
施例により、本発明の効果を説明する。
The effects of the present invention will be explained by examples of experiments conducted using the impurity treatment method having the above structure.

〔実施例1〕 本発明の実施例を第1図に従って説明する。[Example 1] An embodiment of the present invention will be described with reference to FIG.

吸収塔2の上部に排ガス人口41が設けられ、下部側に
は排ガス出口42が設けられている。
An exhaust gas population 41 is provided in the upper part of the absorption tower 2, and an exhaust gas outlet 42 is provided in the lower part.

排ガス出口42より下方の吸収塔2内には容量100β
の吸収液貯蔵タシク3があり、攪拌機4及び空気注入管
8が配置されている。吸収塔2の上部には炭酸カルシウ
ムを含むスラリをス10 プレするスプレノズル43が配置され、スプレノズル4
3は途中に循環ポンプ5を具えた配管9により吸収液貯
蔵タンク3と運通している。
The absorption tower 2 below the exhaust gas outlet 42 has a capacity of 100β.
There is an absorption liquid storage tank 3 in which an agitator 4 and an air injection pipe 8 are arranged. A spray nozzle 43 for spraying a slurry containing calcium carbonate is arranged in the upper part of the absorption tower 2.
3 communicates with the absorption liquid storage tank 3 through a pipe 9 equipped with a circulation pump 5 in the middle.

ガス流量2 0 0 Nm3/h ,ガス温度110℃
、SO2濃度2,OOOppmの石炭燃焼炉排ガスを排
ガス人口41より導入し、同時にスプレノズル43より
4 m3/hでスラリを噴出させて排ガスと気液接触さ
せ、さらに格子状充填物44より落下するスラリを吸収
液貯蔵タンク3において攪拌機4で攪拌しながら空気注
入管8から供給される空気と気液接触させた。
Gas flow rate 200 Nm3/h, gas temperature 110℃
, a coal combustion furnace exhaust gas with an SO2 concentration of 2,00ppm is introduced from the exhaust gas population 41, and at the same time slurry is spouted from the spray nozzle 43 at a rate of 4 m3/h to bring it into gas-liquid contact with the exhaust gas, and the slurry falling from the lattice-shaped packing 44 is was brought into gas-liquid contact with air supplied from an air injection pipe 8 in the absorption liquid storage tank 3 while stirring with a stirrer 4.

同時に、吸収液貯蔵タンク3と連結しているポンプ5の
吐出スラリの一部を配管12を通ってシックナ15に導
き、濃縮石膏スラリを配管16、タンク17、ポンプ1
8、遠心分離機19へ送り、石膏20を得ると共に濾過
液はタンク21へ導き、ポンプ22及びライン23を経
由してシックナ15へ供給した。
At the same time, a part of the slurry discharged from the pump 5 connected to the absorbent storage tank 3 is led to the thickener 15 through the pipe 12, and the concentrated gypsum slurry is transferred to the pipe 16, the tank 17, and the pump 1.
8. The filtrate was sent to a centrifuge 19 to obtain gypsum 20, and the filtrate was led to a tank 21 and supplied to the thickener 15 via a pump 22 and line 23.

一方、シックナ15の上澄み液はライン24から第2図
に示した膜分離装置46へ導いた。
On the other hand, the supernatant liquid of the thickener 15 was led from the line 24 to the membrane separation device 46 shown in FIG.

11 この膜分離装置46から排出される不純物濃縮濾液はポ
ンプ26により配管27を経て系外に抜出して排水処理
して放出し、不純物希釈濾液はポンプ31により配管3
2を経て吸収塔2上部のスプレノズル43に通ずる配管
9に循環サせた。
11 The impurity-concentrated filtrate discharged from the membrane separator 46 is extracted from the system via the pipe 27 by the pump 26, treated as waste water, and discharged, and the impurity-diluted filtrate is transferred to the pipe 3 by the pump 31.
2 and then circulated through a pipe 9 leading to a spray nozzle 43 at the top of the absorption tower 2.

第1表に膜分離装置を使用しない場合と、第2表と膜分
離装置を使用した場合との各部(第1図の○印の付した
符号部分)る分析結果の1例を示す。
Table 1 shows an example of the analysis results for the case where no membrane separator is used, and Table 2 and the case where a membrane separator is used (the parts marked with ○ in FIG. 1).

1 2 第1表と第2表を比較して明確なように、膜分離装置を
使用することにより循環液中の不純物量を減少すること
ができた。
1 2 As is clear from a comparison of Tables 1 and 2, the amount of impurities in the circulating fluid could be reduced by using the membrane separation device.

〔実施例2〕 実施例1で示した第1図の装置を使用し、膜分離装置4
6としては第3図のものを使用した。
[Example 2] Using the device shown in FIG. 1 shown in Example 1, the membrane separation device 4
6 was used as shown in Fig. 3.

不純物希釈濾液は実施例1と同様に配管9に循環し、生
或した}ICl , IFは排水処理を施して系外に放
出し、NaO旧ま排煙脱硫装置内で使用する吸収剤の調
製用に使用した。
The impurity diluted filtrate is circulated through the pipe 9 in the same manner as in Example 1, and the raw ICl and IF are treated with wastewater and discharged outside the system, and the NaO filtrate is used to prepare an absorbent to be used in the flue gas desulfurization equipment. used for.

第3表に第3図の膜分離装置を使用した場合の各部の分
析結果の1例を示す。
Table 3 shows an example of the analysis results of each part when the membrane separator shown in FIG. 3 is used.

1 5 第1表と第3表を比較して明確なように、この膜分離装
置を使用することにより循環液中の不純物量を減少する
ことができた。
1 5 As is clear from a comparison of Tables 1 and 3, the amount of impurities in the circulating fluid could be reduced by using this membrane separation device.

〔発明の効果〕〔Effect of the invention〕

本発明により湿式排煙脱硫法における石膏分離濾液中の
不純物(Cl− , F一及びNa” )が大幅に除去
され、該濾液を吸収剤であるCaCOsスラリの母液と
する際に不純物の蓄積のために生じていたCaCロ,の
反応性の低下が防止されると共に、C1−が低下するた
め装置の腐食の問題が激減する効果を発揮させることが
できる。
According to the present invention, impurities (Cl-, F1, and Na'') in the gypsum separation filtrate in the wet flue gas desulfurization method are largely removed, and when the filtrate is used as a mother liquor for the CaCOs slurry that is an absorbent, the accumulation of impurities can be avoided. This prevents a decrease in the reactivity of CaC, which would otherwise have occurred due to this, and also reduces C1-, thereby making it possible to exhibit the effect of drastically reducing the problem of corrosion of the equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施態様の説明図、第2図は本発明の
ア二オン交換膜、カチオン交換膜を使用する膜分離装置
の不純物除去機構の説明図、第3図は本発明のアニオン
交換膜、カチオン交換膜及び複合膜を使用する膜分#l
装置の不純物除去機構の説明図、第4図は従来の湿式排
煙脱硫法の説明図である。 17
FIG. 1 is an explanatory diagram of an embodiment of the present invention, FIG. 2 is an explanatory diagram of an impurity removal mechanism of a membrane separation device using an anion exchange membrane and a cation exchange membrane of the present invention, and FIG. Membrane fraction #l using anion exchange membrane, cation exchange membrane and composite membrane
An explanatory diagram of the impurity removal mechanism of the apparatus, and FIG. 4 is an explanatory diagram of the conventional wet flue gas desulfurization method. 17

Claims (2)

【特許請求の範囲】[Claims] (1)硫黄酸化物及び不純物を含む排ガスを吸収塔内で
炭酸カルシウムまたは水酸化カルシウムスラリと接触さ
せて、排ガス中の硫黄酸化物を吸収・除去する工程にお
いて、吸収塔出口のスラリ中の石膏を分離した後の溶液
から、アニオン交換膜とカチオン交換膜を使用して該溶
液中のCl^−、F^−及びNa^+などを除去した後
、該溶液を前記吸収塔に循環供給することを特徴とする
石膏分離後の溶液の不純物除去方法。
(1) In the process of absorbing and removing sulfur oxides from the exhaust gas by bringing the exhaust gas containing sulfur oxides and impurities into contact with calcium carbonate or calcium hydroxide slurry in the absorption tower, gypsum is present in the slurry at the outlet of the absorption tower. After separating Cl^-, F^-, Na^+, etc. from the solution using an anion exchange membrane and a cation exchange membrane, the solution is circulated and supplied to the absorption tower. A method for removing impurities from a solution after gypsum separation, characterized by:
(2)アニオン交換膜、カチオン交換膜の外に、H_2
OをOH^−とH^+に分離する性能を有する両性イオ
ン交換膜を使用して不純物であるCl^−、F^−及び
Na^+をHCl、HF及びNaCl溶液として回収す
ることを特徴とする請求項(1)記載の石膏分離後の溶
液の不純物除去方法。
(2) In addition to the anion exchange membrane and cation exchange membrane, H_2
The feature is that impurities Cl^-, F^- and Na^+ are recovered as HCl, HF and NaCl solutions using an amphoteric ion exchange membrane that has the ability to separate O into OH^- and H^+. A method for removing impurities from a solution after gypsum separation according to claim (1).
JP1303193A 1989-11-24 1989-11-24 Method for removing impurities from solution after gypsum separation Expired - Fee Related JP2691036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1303193A JP2691036B2 (en) 1989-11-24 1989-11-24 Method for removing impurities from solution after gypsum separation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1303193A JP2691036B2 (en) 1989-11-24 1989-11-24 Method for removing impurities from solution after gypsum separation

Publications (2)

Publication Number Publication Date
JPH03165814A true JPH03165814A (en) 1991-07-17
JP2691036B2 JP2691036B2 (en) 1997-12-17

Family

ID=17918000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1303193A Expired - Fee Related JP2691036B2 (en) 1989-11-24 1989-11-24 Method for removing impurities from solution after gypsum separation

Country Status (1)

Country Link
JP (1) JP2691036B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112354332A (en) * 2020-11-03 2021-02-12 江南环保集团股份有限公司 Method for applying membrane separation device to ammonia desulphurization
CN112607707A (en) * 2020-12-16 2021-04-06 浙江天采云集科技股份有限公司 Separation and purification method of FTrPSA refined from industrial-grade high-concentration HF into electronic grade
CN113860552A (en) * 2021-10-11 2021-12-31 紫金矿业集团股份有限公司 Method for removing fluorine and chlorine in mine smelting wastewater

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53123555A (en) * 1977-04-04 1978-10-28 Tokuyama Soda Kk Method of regenerating drainage
JPS62244427A (en) * 1986-04-17 1987-10-24 Kureha Chem Ind Co Ltd Treatment for flue gas desulfurization absorption liquid

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53123555A (en) * 1977-04-04 1978-10-28 Tokuyama Soda Kk Method of regenerating drainage
JPS62244427A (en) * 1986-04-17 1987-10-24 Kureha Chem Ind Co Ltd Treatment for flue gas desulfurization absorption liquid

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112354332A (en) * 2020-11-03 2021-02-12 江南环保集团股份有限公司 Method for applying membrane separation device to ammonia desulphurization
CN112607707A (en) * 2020-12-16 2021-04-06 浙江天采云集科技股份有限公司 Separation and purification method of FTrPSA refined from industrial-grade high-concentration HF into electronic grade
CN112607707B (en) * 2020-12-16 2022-05-20 浙江天采云集科技股份有限公司 Separation and purification method for FTrPSA (fluorine-doped silica gel) refined from industrial high-concentration HF (hydrogen fluoride) into electronic grade
CN113860552A (en) * 2021-10-11 2021-12-31 紫金矿业集团股份有限公司 Method for removing fluorine and chlorine in mine smelting wastewater

Also Published As

Publication number Publication date
JP2691036B2 (en) 1997-12-17

Similar Documents

Publication Publication Date Title
US4687649A (en) Flue gas desulfurization process
CA1309840C (en) Process for desulfurization of sulfur dioxide-containing gas streams
US4102982A (en) Process for treating stack gases
CA1049752A (en) Process for removing sulfur oxides from gas streams
CN102755823B (en) Method for desulfurizing high-sulphur boiler flue gas to prepare high-purity ammonium bisulfite
JPH0536085B2 (en)
CA1106152A (en) Process for removing so.sub.2 from effluent gases and for removing heat stable salts from systems in which they accumulate
US4170628A (en) Process for removing SO2 from effluent gases and for removing heat stable salts from systems in which they accumulate using an anion exchange resin
GB1602923A (en) Removal of hydrogen sulphide and recovery of sulphur from a gas containing hydrogen sulphide
US4000991A (en) Method of removing fly ash particulates from flue gases in a closed-loop wet scrubbing system
JPS60179120A (en) Process for treating waste gas with separation and recovery of gypsum and dust
US5645807A (en) Magnesium-enhanced sulfur dioxide scrubbing with gypsum formation
BG63154B1 (en) Method for wet scrubbing with single passage through an open lime-stone anticurrent scrubber tower for reducing the sulphur oxide concentrations
JPH0788325A (en) Treatment of waste gas and device therefor
JPH03165814A (en) Method for removing impurity from solution after gypsum separation
CN109550338A (en) A kind of flue gas desulfurization denitration dust-removing technique
JP7196575B2 (en) Method for detoxifying exhaust gas containing sulfur dioxide
JP2002191934A (en) Wet flue-gas desulfurization facility
US4021202A (en) Apparatus for removing sulfur dioxide from stack gases
EA032440B1 (en) Method for removing dust and sulphur oxides from process gases
CN109529588A (en) A kind of anhydrous hydrogen fluoride production technology tail gas absorption method and device
EP0437941B1 (en) Fossil fuel flue gas scrubbing
JPS62225226A (en) Wet stack-gas desulfurization facility
CN219489796U (en) Desulfurization liquid zero release system
DK174369B1 (en) Flue gas desulphurisation process - uses absorption in limestone slurry, producing gypsum in different grades and treating effluent internally

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees