JPH03165098A - Cooling system - Google Patents

Cooling system

Info

Publication number
JPH03165098A
JPH03165098A JP1303386A JP30338689A JPH03165098A JP H03165098 A JPH03165098 A JP H03165098A JP 1303386 A JP1303386 A JP 1303386A JP 30338689 A JP30338689 A JP 30338689A JP H03165098 A JPH03165098 A JP H03165098A
Authority
JP
Japan
Prior art keywords
flow rate
flow
cooling
refrigerant
flow velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1303386A
Other languages
Japanese (ja)
Inventor
Nobuyoshi Yamaoka
伸嘉 山岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1303386A priority Critical patent/JPH03165098A/en
Publication of JPH03165098A publication Critical patent/JPH03165098A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors

Abstract

PURPOSE:To control the rate of flow to respective cooling parts so that its flow rate is kept uniform and improve cooling efficiency by detecting each flow velocity in respective branch parts and regulating fluid resistance in respective branch points by detection signals in such a way as to allow a controlling fluid resistance regulating means to move in vertical direction. CONSTITUTION:On the occasion of spraying a cooling medium from a nozzle 6, each flow velocity is detected just before its flow teaches respective branch parts by a flow velocity detecting means 13 which is provided in the vicinity of respective branch points p-t and the flow rate is operated just before its flow reaches respective branch party by each flow rate reading means 14. Signals indicating the flow rate that is operated just before its flow reaches respective branch parts are notified into a drive controlling means 15. Judging comprehensively from the flow rate in respective cooling parts by the use of the above drive controlling means 15, vertical motions of each protrusion 17 for the flow rate resistance adjustment means 22 in each branch part are transmitted to a shaft 16 and then, the flow rate resistance is controlled independently according to the motions of each protrusion.

Description

【発明の詳細な説明】 〔概要〕 冷却システムに係り、特に伝導冷却および浸漬冷却に伴
う、液冷の冷却システムに関し、複数の発熱素子に対す
る各冷却部分における冷媒の流量のバラツキを無くし、
各冷却部公金てが同レベルの流量とすることを目的とし
、少なくとも、基板に実装された複数の発熱素子対応に
冷媒を分岐供給してなる冷媒供給大流路を有する冷却プ
レートAと、該複数の発熱素子の熱を奪った冷媒を帰還
する冷媒帰還大流路を有する冷却プレートBとを有して
なる冷却システムに於いて、前記冷媒が分岐する各々の
地点の手前での流速を検出する流速検出手段と、その上
下動により各分岐点の流体抵抗を調節する手段とを、前
記冷却プレートAに設け、該流速検出手段からの信号を
得て、該流体抵抗調整手段を駆動する駆動制両手段を有
するよう構成する。
[Detailed Description of the Invention] [Summary] This invention relates to a cooling system, particularly a liquid cooling cooling system associated with conduction cooling and immersion cooling, to eliminate variations in the flow rate of a refrigerant in each cooling section for a plurality of heat generating elements,
The purpose is to provide the same level of flow rate in each cooling section, and at least a cooling plate A having a large refrigerant supply flow path that branches and supplies refrigerant to correspond to a plurality of heat generating elements mounted on a board; In a cooling system comprising a cooling plate B having a large refrigerant return flow path that returns the refrigerant that has absorbed heat from a plurality of heating elements, the flow velocity in front of each point where the refrigerant branches is detected. The cooling plate A is provided with a flow velocity detecting means for detecting the flow velocity and a means for adjusting the fluid resistance at each branch point by vertical movement thereof, and a drive for driving the fluid resistance adjusting means by obtaining a signal from the flow velocity detecting means. Constructed to have a means of control.

〔産業上の利用分野〕[Industrial application field]

本発明は、冷却システムに係り、特に伝導冷却および浸
漬冷却に伴う、液冷の冷却システムに関するものである
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to cooling systems, and particularly to liquid-cooled cooling systems associated with conduction cooling and immersion cooling.

近年、液冷の冷却システムにおいては、冷媒の供給路と
帰還路とを別個に設けたタイプが用いられる傾向がある
。これは、冷却能力に優れ、高密度実装による素子の発
熱量の増大に伴う冷却に適している。
In recent years, in liquid cooling systems, there has been a tendency to use a type in which a refrigerant supply path and a return path are provided separately. This has excellent cooling ability and is suitable for cooling the increased heat generation of elements due to high-density packaging.

以下、本例においては、冷却の一例として熱伝導冷却に
ついて説明する。
Hereinafter, in this example, thermal conduction cooling will be described as an example of cooling.

〔従来の技術] 以下、従来のシステムを第3図を用いて説明する。[Conventional technology] The conventional system will be explained below with reference to FIG.

その内部に冷媒が循環する冷媒供給大流路41が形成さ
れ、且つその冷媒供給大流路41からは基板31に実装
された複数の発熱素子32に対して冷媒が噴射されるよ
うノズル36が形成された冷却プレートA33及び、複
数の発熱素子32が発する熱を冷媒への熱伝達により供
給時よりも高温となった冷媒が帰還する冷媒帰還大流路
42を有する冷却プレートB34とをシール材 40を
介して図示しない締めつけ固着を行い、1枚の冷却プレ
ートを構成する。
A large refrigerant supply channel 41 through which a refrigerant circulates is formed therein, and a nozzle 36 is provided so that the refrigerant is injected from the large refrigerant supply channel 41 to a plurality of heating elements 32 mounted on the substrate 31. The formed cooling plate A33 and the cooling plate B34 having a large refrigerant return flow path 42 through which the refrigerant whose temperature has become higher than that at the time of supply by transferring the heat generated by the plurality of heat generating elements 32 to the refrigerant return are sealed using a sealing material. Tightening and fixing (not shown) is performed via 40 to form one cooling plate.

一方、冷却プレートA33には、加工時の孔が形成され
るため、その孔に対して封止セン37によりその機密が
保たれ、更に冷却プレートA33゜B34の上部には、
冷媒の配管と接続される接続部品38が設けられている
On the other hand, since a hole is formed in the cooling plate A33 during processing, the hole is kept confidential by a sealing sensor 37, and furthermore, the upper part of the cooling plate A33 and B34 is
A connecting part 38 is provided to be connected to a refrigerant pipe.

更に、冷却プレートB34の発熱素子32側面はコンテ
ナ39を介して基板31とボルト等により固着され、他
方、複数の発熱素子32の実装位置に対応して弾性伝熱
体35が形成され、その弾性伝熱体35の発熱素子32
側一端には伝熱板43がロウ付は等により溶着されてい
る。
Further, the side surface of the heat generating elements 32 of the cooling plate B34 is fixed to the substrate 31 via a container 39 with bolts or the like, and on the other hand, elastic heat transfer bodies 35 are formed corresponding to the mounting positions of the plurality of heat generating elements 32. Heat generating element 32 of heat transfer body 35
A heat transfer plate 43 is welded to one end of the side by brazing or the like.

次に上記のように構成された冷却システムの作用を説明
すると、冷媒供給大流路41からノズル36を介して噴
射された冷媒は、伝熱板43に衝突し、その時に熱伝達
によって発熱素子32が発する熱を奪う。そして、供給
時よりも高温となった冷媒は、先の冷媒供給大流路41
とは別ルートの冷媒帰還大流路42を通って帰還される
Next, to explain the operation of the cooling system configured as described above, the refrigerant injected from the large refrigerant supply flow path 41 through the nozzle 36 collides with the heat exchanger plate 43, and at that time, heat transfer occurs between the heating elements. Removes the heat generated by 32. Then, the refrigerant that has become hotter than when it was supplied is transferred to the large refrigerant supply flow path 41.
The refrigerant is returned through a large refrigerant return flow path 42 which is a different route.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、従来の冷却システムにおいては、流路が
並列タイプだと冷却プレート入り口から出口までの流体
総抵抗は減少するものの、複数の発熱素子に冷媒を供給
する各々の分岐点における冷媒の流量にバラツキが生じ
てしまう。
However, in conventional cooling systems, if the flow paths are parallel, the total fluid resistance from the cooling plate inlet to the outlet is reduced, but the flow rate of the refrigerant at each branch point that supplies refrigerant to multiple heating elements varies. will occur.

これは、冷媒供給大流路からノズルへの分岐部分、素子
冷却部分から冷媒帰還大流路への流体抵抗(冷媒同士の
摩擦)によるものが大きい。
This is largely due to fluid resistance (friction between refrigerants) from the large refrigerant supply flow path to the nozzle and from the element cooling portion to the large refrigerant return flow path.

上記のようにバラツキが発生すると、発熱素子の冷却に
もバラツキが発生し、冷却能力に支障をきたす欠点があ
った。
When the above-mentioned variations occur, variations also occur in the cooling of the heating elements, which has the drawback of hindering the cooling capacity.

従って、本発明は、複数の発熱素子に対する各分岐点に
おける冷媒の流量のバラツキを抑え、各分岐点での流量
を均一化することを目的とするものである。
Therefore, an object of the present invention is to suppress variations in the flow rate of refrigerant at each branch point to a plurality of heating elements, and to equalize the flow rate at each branch point.

〔課題を解決するための手段〕[Means to solve the problem]

かかる目的は、少なくとも、基板1に実装された複数の
発熱素子2対応に冷媒を分岐供給してなる冷媒供給大流
路11を有する冷却プレートA3と、 該複数の発熱素子2の熱を奪った冷媒を帰還する冷媒帰
還大流路12を有する冷却プレートB4とを有してなる
冷却システムに於いて、前記冷媒が分岐する各々の地点
の手前での流速を検出する流速検出手段13と、 その上下動により各分岐点の流体抵抗を調節する手段2
2とを、前記冷却プレートA3に設け、該流速検出手段
13からの信号を得て、該流体抵抗調整手段22を駆動
する駆動制御手段15を有することを特徴とする冷却シ
ステム、により達成される。
This purpose is at least to provide a cooling plate A3 having a large refrigerant supply flow path 11 that branches and supplies refrigerant to a plurality of heat generating elements 2 mounted on a substrate 1, and to remove heat from the plurality of heat generating elements 2. In a cooling system comprising a cooling plate B4 having a large refrigerant return flow path 12 for returning refrigerant, a flow velocity detection means 13 for detecting the flow velocity in front of each point where the refrigerant branches; Means 2 for adjusting fluid resistance at each branch point by vertical movement
2 is achieved by a cooling system characterized by having a drive control means 15 provided on the cooling plate A3 and driving the fluid resistance adjustment means 22 by obtaining a signal from the flow velocity detection means 13. .

〔作用〕[Effect]

冷却プレート内に流れる冷媒総流量をQとすると、各ノ
ズル6(総数0本、なお本例ではn=5)内、すなわち
各々の素子冷却部分に流れる流量はQ/nが理想的であ
る。冷媒供給大流路で分岐部分以外の流量はミ 1nlet−p間:Q p−q間;Q・(n−1)/n q−r間:Q・(n−2)/n r−s間:Q・2 / n s−を間:Q/n と必然的に定められる。
When the total flow rate of coolant flowing in the cooling plate is Q, the flow rate flowing in each nozzle 6 (total number: 0, n=5 in this example), that is, in each element cooling portion, is ideally Q/n. The flow rate other than the branch part in the large refrigerant supply flow path is between 1nlet and p: Q between p and q; Q・(n−1)/n between qr: Q・(n−2)/n r−s The interval: Q・2/n s- is necessarily defined as the interval: Q/n.

本発明においては、この定められた値を得るために、各
分岐部分の各流速を検出して、その検出信号により各分
岐点の流体抵抗を、調節流体抵抗調整手段22を上下動
に移動させて調整することによって、冷媒の冷却部分へ
の流量のバラツキをなくすことができる。
In the present invention, in order to obtain this predetermined value, each flow velocity at each branch point is detected, and the fluid resistance adjustment means 22 is moved up and down to adjust the fluid resistance at each branch point based on the detection signal. By adjusting the amount, it is possible to eliminate variations in the flow rate of the refrigerant to the cooling section.

〔実施例〕〔Example〕

以下、本発明の実施例を第1図および第2図を用いて詳
細に説明する。
Embodiments of the present invention will be described in detail below with reference to FIGS. 1 and 2.

第1図は、本発明の詳細な説明する図であり、第2図は
、第1図におけるA−A”断面図である。
FIG. 1 is a diagram explaining the present invention in detail, and FIG. 2 is a cross-sectional view taken along line A-A'' in FIG.

図において、1は基板、2は発熱素子、3は冷却プレー
トA、4は冷却プレートB、5は弾性伝熱体、6はノズ
ル、7は封止セン、8は接続部品。
In the figure, 1 is a substrate, 2 is a heating element, 3 is a cooling plate A, 4 is a cooling plate B, 5 is an elastic heat transfer body, 6 is a nozzle, 7 is a sealing sensor, and 8 is a connecting part.

9はコンテナ、10はシール材、11は冷媒供給大流路
、12は冷媒帰還大流路、13は流速検出手段、14は
流量読取器、15は駆動制御手段。
9 is a container, 10 is a sealing material, 11 is a large refrigerant supply flow path, 12 is a large refrigerant return flow path, 13 is a flow rate detection means, 14 is a flow rate reader, and 15 is a drive control means.

16はシャフト、17は突起、18はベローズ。16 is a shaft, 17 is a protrusion, and 18 is a bellows.

19はスライダ、20はフランジ、21は伝熱板。19 is a slider, 20 is a flange, and 21 is a heat exchanger plate.

22は流体抵抗調整手段をそれぞれ示す。Reference numeral 22 indicates fluid resistance adjusting means.

尚、図において、同一符号を付したものは同一対象物を
それぞれ示す。
In the figures, the same reference numerals indicate the same objects.

第1図に示されるように、その内部に冷媒が循環する冷
媒供給大流路11が形成され、且つその冷媒供給大流路
11からは基板1に実装された複数の発熱素子2に対し
て冷媒が噴射されるようノズル6が形成された冷却プレ
ートA3及び、複数の発熱素子2が発する熱を冷媒との
熱伝達により供給時よりも高温となった冷媒が帰還する
冷媒帰還大流路2を有する冷却プレートB4とをシール
材10を介して図示しない締めつけ固着を行い、1枚の
冷却プレートを構成する。
As shown in FIG. 1, a large refrigerant supply channel 11 through which a refrigerant circulates is formed inside the large refrigerant supply channel 11, and a plurality of heating elements 2 mounted on a substrate 1 are supplied from the large refrigerant supply channel 11. A cooling plate A3 in which nozzles 6 are formed so that the refrigerant is injected, and a large refrigerant return flow path 2 in which the refrigerant, which has become hotter than when it was supplied, returns through heat transfer between the heat generated by the plurality of heating elements 2 and the refrigerant. A single cooling plate is formed by tightening and fixing the cooling plate B4 (not shown) through the sealing material 10.

この冷却プレートA3には、各分岐部分に対してその分
岐部分の手前での流速を検出する、例えば円錐台状の物
体の底面に箔が取りつけられ、この箔に冷媒供給大流路
11を流れる冷媒が衝突し、そのたわみによる流体力に
より流速を求める流速検出手段13が設けられる。
In this cooling plate A3, a foil is attached to the bottom of a truncated cone-shaped object, for example, to detect the flow velocity in front of each branch part, and the coolant flows through the large coolant supply channel 11 on this foil. A flow velocity detection means 13 is provided which determines the flow velocity by the fluid force caused by the deflection of the refrigerant when it collides with the refrigerant.

その流速検出手段13の出力光には流速検出手段13が
求めた流速を流量に変換演算する流量読取器14が設け
られている。
The output light of the flow velocity detection means 13 is provided with a flow rate reader 14 that converts the flow velocity determined by the flow velocity detection means 13 into a flow rate.

その流量読取手段14の出力光には、後述説明する流体
抵抗調整手段22をシャフト16を介して各々独立に、
且つ基板1方向に対して上下動方向に駆動させる駆動制
御手段15に接続されている。
The output light of the flow rate reading means 14 is transmitted through a shaft 16 to a fluid resistance adjusting means 22 which will be described later.
It is also connected to a drive control means 15 that drives the substrate 1 in a vertical direction.

この流体抵抗調整手段22は第2図にその具体的構造を
示す通り、シャフト16の先にフランジ20を介して円
形状の突起17が固着されており、その突起17の両側
を弾性体であるベローズ18によって被覆されている。
As shown in FIG. 2, the fluid resistance adjusting means 22 has a circular projection 17 fixed to the tip of the shaft 16 via a flange 20, and both sides of the projection 17 are made of elastic material. It is covered by a bellows 18.

実際に突起17を上昇/下降させる時はこのベローズ1
8の伸縮によってその動作がなされる。更にこのベロー
ズ18の両側には、ベローズ18をガイドするよう一端
はフランジ20と接触し、他端は冷却プレートA3と固
着されるスライダ19が形成されている。上述した突起
17は通常時は冷媒供給大流路11の内路に先端が若干
入り込む程度に設定されている。
When actually raising/lowering the protrusion 17, use this bellows 1.
The movement is performed by the expansion and contraction of 8. Furthermore, sliders 19 are formed on both sides of the bellows 18, one end of which contacts the flange 20 to guide the bellows 18, and the other end of which is fixed to the cooling plate A3. The above-mentioned protrusion 17 is set so that its tip slightly enters the inner path of the large refrigerant supply flow path 11 under normal conditions.

最も縮まった時のベローズ18の内径が突起17の断面
積よりも大きいものである。
The inner diameter of the bellows 18 when it is most contracted is larger than the cross-sectional area of the projection 17.

更に、冷却プレートA3には、加工時の孔が形成される
ため、その孔に対して封止セン7によりその機密が保た
れ、更に冷却プレートA3.B4の上部には、冷媒の配
管と接続される接続部品8が設けられている。
Further, since a hole is formed in the cooling plate A3 during processing, the hole is kept confidential by the sealing sensor 7, and further, the cooling plate A3. A connecting part 8 connected to a refrigerant pipe is provided on the upper part of B4.

また、冷却プレートB4の発熱素子2側面はコンテナ9
を介して基板1とボルト等により固着され、他方、複数
の発熱素子2の実装位置に対応して弾性伝熱体5が形成
され、その弾性伝熱体5の発熱素子2側一端には伝熱板
21がロウ付は等により溶着されている。
Also, the side of the heating element 2 of the cooling plate B4 is connected to the container 9.
Elastic heat transfer bodies 5 are formed corresponding to the mounting positions of the plurality of heat generating elements 2, and one end of the elastic heat transfer body 5 on the side of the heat generating elements 2 is fixed to the substrate 1 by bolts or the like. The hot plate 21 is welded by brazing or the like.

次に上記のように構成された冷却システムの作用を説明
すると、冷媒供給大流路11からノズル6を介して噴射
された冷媒は、伝熱板21に衝突し、その時に熱伝達に
よって発熱素子2が発する熱を奪う。そして、供給時よ
りも高温となった冷媒は、先の冷媒供給大流路11とは
別ルートの冷媒帰還大流路12を通って帰還される。
Next, to explain the operation of the cooling system configured as described above, the refrigerant injected from the large refrigerant supply channel 11 through the nozzle 6 collides with the heat exchanger plate 21, and at that time, the heat transfer occurs between the heating elements. Take away the heat generated by 2. The refrigerant, which has a higher temperature than when it was supplied, is returned through the refrigerant return large flow path 12 which is a different route from the previous refrigerant supply large flow path 11.

上記のようにノズル6から冷媒を噴射するにあたって、
各分岐点p−を点付近に設けられた上述の流速検出手段
13により各分岐部分の手前での流速を検出し、各々流
量読取手段14により各分岐部分の手前での流量を演算
する。その演算した各分岐部分の手前での流量を示す信
号を駆動制御手段15に通知し、この駆動制御手段15
で各冷却部分の流量から総合的に判断して各分岐部分に
おける流量抵抗調整手段22の突起17の上下動の動き
をシャフト16に伝動して各突起対応に独立に制御する
。具体的には、その流量が大であればシャフト16を駆
動してベローズ18を縮め突起17を下降して流体抵抗
を大とし、一方、流量が小であればシャフト 16を駆
動してベローズ18を伸ばして突起17を上昇させ流体
抵抗を小なるものになるよう制御して各分岐部分の流体
抵抗を殆ど同一にして、冷媒における各分岐部分の流量
のバラツキをなくす。
In injecting the refrigerant from the nozzle 6 as described above,
The above-mentioned flow velocity detecting means 13 provided near each branch point p- detects the flow velocity before each branch part, and the flow rate reading means 14 calculates the flow rate before each branch part. A signal indicating the calculated flow rate before each branch portion is notified to the drive control means 15, and the drive control means 15
Then, the vertical movement of the protrusion 17 of the flow resistance adjusting means 22 in each branched part is transmitted to the shaft 16 and controlled independently for each protrusion based on a comprehensive judgment based on the flow rate of each cooling part. Specifically, if the flow rate is large, the shaft 16 is driven to contract the bellows 18 and the protrusion 17 is lowered to increase the fluid resistance.On the other hand, if the flow rate is small, the shaft 16 is driven to contract the bellows 18. The protrusion 17 is extended to raise the protrusion 17, and the fluid resistance is controlled to be small, so that the fluid resistance of each branch part is almost the same, and the variation in the flow rate of the refrigerant in each branch part is eliminated.

従って、流量のバラツキが無くなり、基板1に実装され
た発熱素子2の冷却を均一に行うことができる。
Therefore, there is no variation in the flow rate, and the heating elements 2 mounted on the substrate 1 can be uniformly cooled.

尚、上記本実施例においては、伝導液冷の場合について
説明したが、なにもこれに限定されるものでなく、その
他衝突噴流型の浸漬冷却にも適用可能である。
In this embodiment, the case of conductive liquid cooling has been described, but the present invention is not limited to this, and is also applicable to impingement jet type immersion cooling.

〔発明の効果〕 以上詳細に説明したように本発明においては、各々の冷
却部分への流量が均一に制御されるので、冷却効率が向
上する。
[Effects of the Invention] As described in detail above, in the present invention, the flow rate to each cooling section is controlled uniformly, so that the cooling efficiency is improved.

また、何らかの原因により冷媒の物性が変化しても(例
えば、冷媒温度が低温から高温に移った)このシステム
で各冷却部への流量配分が制御でき、システムの保守性
が向上する。
Furthermore, even if the physical properties of the refrigerant change for some reason (for example, the refrigerant temperature changes from low to high temperature), this system can control the flow rate distribution to each cooling section, improving the maintainability of the system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の詳細な説明する図であり、第2図は
、第1図におけるA−A”断面図であり、 第3図は、従来の構造を示す図である。 図において、 1 −−−−−−−・・・・基板、 2−−−−−−−
−−−−一発熱素子。 3 ・・・〜・−・−・冷却プレートA。 4−−−一−・−・・・冷却プレートB。 11−−−−−−−−一・−・−冷媒供給大流路。 12・・−・・・・−・・・−冷媒帰還大流路。 13 −−−−−−−−−−一流速検出手段。 15−−−−−−−−・・−駆動制御手段。 2 −・・−・−流体抵抗調整手段。 をそれぞれ示す。
FIG. 1 is a diagram explaining the present invention in detail, FIG. 2 is a sectional view taken along line A-A'' in FIG. 1, and FIG. 3 is a diagram showing a conventional structure. , 1 -----------... substrate, 2 -----------
------1 heating element. 3...〜・−・−・Cooling plate A. 4---1--...Cooling plate B. 11---------1.---Refrigerant supply large flow path. 12...--...--Large refrigerant return flow path. 13 ----------First-stream speed detection means. 15----------Drive control means. 2 -...--Fluid resistance adjustment means. are shown respectively.

Claims (1)

【特許請求の範囲】  少なくとも、基板(1)に実装された複数の発熱素子
(2)対応に冷媒を分岐供給してなる冷媒供給大流路(
11)を有する冷却プレートA(3)と、 該複数の発熱素子(2)の熱を奪った冷媒を帰還する冷
媒帰還大流路(12)を有する冷却プレートB(4)と
を有してなる冷却システムに於いて、 前記冷媒が分岐する各々の地点の手前での流速を検出す
る流速検出手段(13)と、 その上下動により各分岐点の流体抵抗を調節する手段(
22)とを、前記冷却プレートA(3)に設け、 該流速検出手段(13)からの信号を得て、該流体抵抗
調整手段(22)を駆動する駆動制御手段(15)を有
することを特徴とする冷却システム。
[Claims] At least a large refrigerant supply channel (
11); and a cooling plate B (4) having a large refrigerant return flow path (12) for returning the refrigerant that has taken the heat from the plurality of heating elements (2). A cooling system comprising: flow velocity detection means (13) for detecting the flow velocity in front of each point where the refrigerant branches; and means (13) for adjusting fluid resistance at each branch point by vertical movement of the flow velocity detection means (13).
22) is provided on the cooling plate A (3), and includes a drive control means (15) that receives a signal from the flow rate detection means (13) and drives the fluid resistance adjustment means (22). Features a cooling system.
JP1303386A 1989-11-24 1989-11-24 Cooling system Pending JPH03165098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1303386A JPH03165098A (en) 1989-11-24 1989-11-24 Cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1303386A JPH03165098A (en) 1989-11-24 1989-11-24 Cooling system

Publications (1)

Publication Number Publication Date
JPH03165098A true JPH03165098A (en) 1991-07-17

Family

ID=17920396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1303386A Pending JPH03165098A (en) 1989-11-24 1989-11-24 Cooling system

Country Status (1)

Country Link
JP (1) JPH03165098A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0480750A2 (en) * 1990-10-11 1992-04-15 Nec Corporation Liquid cooling system for LSI packages
US5293754A (en) * 1991-07-19 1994-03-15 Nec Corporation Liquid coolant circulating system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0480750A2 (en) * 1990-10-11 1992-04-15 Nec Corporation Liquid cooling system for LSI packages
US5522452A (en) * 1990-10-11 1996-06-04 Nec Corporation Liquid cooling system for LSI packages
EP0817263A2 (en) * 1990-10-11 1998-01-07 Nec Corporation Liquid cooling system for LSI packages
EP0817263A3 (en) * 1990-10-11 1998-01-14 Nec Corporation Liquid cooling system for LSI packages
US5293754A (en) * 1991-07-19 1994-03-15 Nec Corporation Liquid coolant circulating system

Similar Documents

Publication Publication Date Title
CN100390978C (en) Electronic device cooler, electronic device cooling method, and electronic device cooling control program
US4896172A (en) Liquid injection recording apparatus including recording liquid circulation control
JP5651317B2 (en) Semiconductor manufacturing apparatus and temperature control method
US5522452A (en) Liquid cooling system for LSI packages
EP0451740A2 (en) Temperature control system for semiconductor wafer or substrate
JPH03165098A (en) Cooling system
SE513258C2 (en) Method and apparatus for controlling a temperature in a cabinet
US5501388A (en) Wire bonding apparatus
US6484975B1 (en) Method and apparatus to achieve uniform ink temperatures in printheads
JPS6310512Y2 (en)
CN113020742B (en) Improve welding wire machine of welding precision
CN112144033B (en) Base assembly and semiconductor processing equipment
JPH0595064A (en) Semiconductor cooling device
JPH0557415A (en) Sensor for controlling secondary cooled condition of continuous casting device and method for controlling dummy bar provided with said sensor and said continuous casting device
US7766211B2 (en) Temperature control of a bonding stage
KR20060004315A (en) Apparatus for maintaining constant temperature for quality of water measuring instrument
CN213435347U (en) Spraying valve for welding solar cell
CA1223727A (en) Ultrahigh velocity water cooling
JPH0641610B2 (en) Converter exhaust gas cooling device
CN110465433A (en) A kind of ceramic coating scraper leather coating spraying device
JP7178098B2 (en) Transient heat measurement method and device
JP2536957Y2 (en) Die bonding equipment
US4446995A (en) Ultrahigh velocity water-cooled copper trough
JPH102647A (en) Heating and cooling device
CN217009130U (en) Semiconductor processing equipment