JPH03164697A - Controlling device for airframe - Google Patents

Controlling device for airframe

Info

Publication number
JPH03164697A
JPH03164697A JP1304028A JP30402889A JPH03164697A JP H03164697 A JPH03164697 A JP H03164697A JP 1304028 A JP1304028 A JP 1304028A JP 30402889 A JP30402889 A JP 30402889A JP H03164697 A JPH03164697 A JP H03164697A
Authority
JP
Japan
Prior art keywords
flying object
data
airframe
vector
planned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1304028A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Murai
村井 善幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1304028A priority Critical patent/JPH03164697A/en
Publication of JPH03164697A publication Critical patent/JPH03164697A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To fly an airframe strictly in accordance with a planned course and substantially reduce a fatigue of a controlling person by a method wherein a vector of the airframe is compared with a planned vector, a difference between both vectors is used as a guiding control signal for the airframe. CONSTITUTION:In a control device, a planned flying lotus of an airframe is displayed on a plotter 1 expressing an X-Y coordinate and its position and vector are stored in a data memory 5 at a certain specified time interval. Position data of the airframe converted in the X-Y coordinate system is displayed on the plotter 1 and stored in the data memory 5 as data of instantaneous time. In addition, data is inputted to a data processor 6 and a speed vector of the airframe is calculated in reference to this data. A comparison between the speed vector and a planned speed vector stored in the data memory 5 in advance is calculated and then a controlling amount U for the airframe is determined. The controlling amount U is transmitted to the airframe through a data converter 4 and a data transmittance cable 3 and further via an antenna 7 of the control device as an electromagnetic wave 2b applied as a guiding signal.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は飛翔体の管制装置に関し、特に無人飛行機など
の飛翔体を地上、艦上あるいは機上などから無線によシ
遠隔操縦する飛翔体の管制装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a control system for flying objects, and in particular to control devices for flying objects such as unmanned aircraft that are remotely controlled by radio from the ground, aboard a ship, or an aircraft. Regarding control equipment.

〔従来の技術〕[Conventional technology]

従来から行われている無人機の管制方式を第3図及び第
4図に示す。第3図は、飛翔体と地上の管制装置との関
係を示し、管制装置8は飛翔体の位置を追跡するアンテ
ナ7を有し、飛翔体9から発せられる電波10をこのア
ンテナ7によって捕捉することによシ、時時刻刻変化す
る飛翔体9の位置を追跡している。一方、管制装置8を
操作するコントローラ(パイロット)は、この管制装置
8によって捕捉追跡された飛翔体9の位置情報をもとに
電波11による飛翔体の遠隔操縦を行っている。
Conventional unmanned aircraft control systems are shown in Figures 3 and 4. FIG. 3 shows the relationship between a flying object and a control device on the ground. The control device 8 has an antenna 7 that tracks the position of the flying object, and the antenna 7 captures radio waves 10 emitted from the flying object 9. In particular, the position of the flying object 9, which changes with time, is tracked. On the other hand, a controller (pilot) operating the control device 8 remotely controls the flying object using radio waves 11 based on the position information of the flying object 9 captured and tracked by the control device 8 .

第4図は、第3図の管制装置8に懺示される予定の成行
軌跡と、管制装置8によって追跡される飛翔体の位置す
なわち、実際の飛行軌跡とを対比して示した図である。
FIG. 4 is a diagram showing a comparison between the planned trajectory displayed on the control device 8 of FIG. 3 and the position of the flying object tracked by the control device 8, that is, the actual flight trajectory.

管制装置8には、第4図のようなX−Y座標平面をもっ
たプロッタ、あるいはデイスプレィ装置が配設され、飛
翔体9を誘導制御するコントローラの前面に置かれる。
The control device 8 is equipped with a plotter or a display device having an X-Y coordinate plane as shown in FIG. 4, and is placed in front of a controller that guides and controls the flying object 9.

一方、管制装置8によって時時刻刻捕捉追跡される飛翔
体9の実際の飛行軌跡13にもとづく位置情報は、管制
装置8内蔵の処理装置によfiX−Y座標に変換され、
前述のプロッタもしくはデイスプレィ上に表示される。
On the other hand, the position information based on the actual flight trajectory 13 of the flying object 9, which is captured and tracked by the control device 8, is converted into fiX-Y coordinates by the processing device built into the control device 8,
Displayed on the aforementioned plotter or display.

コントローラは、このプロッタあるいはデイスプレィ上
に表示された飛翔体9の位置と、予定の飛行軌跡12と
を目視によシ比較、判断し、両者を一致させるよう飛翔
体9の操縦を行っていた。
The controller visually compares and determines the position of the flying object 9 displayed on the plotter or display with the planned flight trajectory 12, and controls the flying object 9 to match the two.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の飛翔体の管制装置では、飛翔体の位置す
なわち飛行軌跡と予定の軌跡とがずれている場合、その
補正のために飛翔体に送出する制御量の決定をコントロ
ーラが行っており、この作業負荷が太きいという欠点が
ある。さらに、この制御量の決定方法は、ある時点での
飛翔体の位置と予定位置との誤差及び飛翔体の速度など
をもとにコントローラの勘によって決められているため
、飛翔体の位置を予定に一致させるには非常に多くの経
験が必要であシ、かつ飛翔体は風等によシ影醤を受ける
ため一般に両者の一致はほとんど困難であるという欠点
がある。
In the conventional flying object control device described above, when the position of the flying object, that is, the flight trajectory, deviates from the planned trajectory, the controller determines the control amount to be sent to the flying object to correct it. This method has the disadvantage that the workload is heavy. Furthermore, the method for determining this control amount is determined by the controller's intuition based on the error between the position of the flying object at a certain point and the planned position, the speed of the flying object, etc. It takes a great deal of experience to match them, and since flying objects are affected by wind and other factors, it is generally difficult to match them.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の管制装置は、無人航空機等の飛翔体を無線で遠
隔操縦する飛翔体の管制装置において、前記飛翔体の予
定飛行軌跡を平面座標における位置及び方向をもったベ
クトルの集合として記憶する手段と、時時刻刻変化する
飛翔体の位置を捕捉する手段と、前記飛翔体の位置に関
する情報を記憶する手段と、前記飛翔体の位置に関する
情報から前記飛翔体の速度ベクトルを計算する手段と、
前記飛翔体の予定のベクトルと現在のベクトルとを比較
し前記飛翔体に対する誘導制御量を計算する手段と、前
記誘導制御量を前記飛翔体に送信する手段とを備えて構
成される。
The control device of the present invention is a control device for a flying object that remotely controls a flying object such as an unmanned aerial vehicle by means of means for storing a planned flight trajectory of the flying object as a set of vectors having a position and direction in plane coordinates. a means for capturing the position of the flying object that changes with time; a means for storing information regarding the position of the flying object; and a means for calculating a velocity vector of the flying object from information regarding the position of the flying object.
The device is configured to include means for comparing a planned vector of the flying object with a current vector and calculating a guidance control amount for the flying object, and a means for transmitting the guidance control amount to the flying object.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は、本発明の飛翔体の管制装置の一実施例の講成
図である。第1図に示す管制装置において、飛翔体の予
定飛行軌跡は、X−Y座標表現のプロッタ1上に表示さ
れるとともに、データメモリ5にある一定の時間間隔で
その位置及びベクトルが記憶される。一方、飛翔体の現
在位置は、飛翔体から発せられる電波23t6る一定の
サンプリング間隔ΔTで管制装置により時時刻刻捕捉し
、次にデータ伝送ケーブル3を介してデータ変換器4に
入力され、ここで飛翔体の時時刻刻の位置データとして
X−Y座標系の値に変換される。X−Y座標系に変換さ
れた飛翔体の位置データは、プロッタ1上に表示される
とともに、時時刻刻のデータとしてデータメモリ5に格
納される。さらに、このデータは、データプロセッサ6
′に入力され、このデータから飛翔体の速度ベクトルを
計算する。
FIG. 1 is a schematic diagram of an embodiment of a control device for a flying object according to the present invention. In the control system shown in FIG. 1, the planned flight trajectory of a flying object is displayed on a plotter 1 in X-Y coordinate representation, and its position and vector are stored in a data memory 5 at regular time intervals. . On the other hand, the current position of the flying object is captured by the control device at a fixed sampling interval ΔT using radio waves 23t6 emitted from the flying object, and then input to the data converter 4 via the data transmission cable 3. The data is converted into values in the X-Y coordinate system as time-and-time position data of the flying object. The position data of the flying object converted into the X-Y coordinate system is displayed on the plotter 1, and is also stored in the data memory 5 as time data. Furthermore, this data is processed by the data processor 6
′, and the velocity vector of the projectile is calculated from this data.

さらにこの速度ベクトルと、あらかじめデータメモリ5
中に格納されている予定速度ベクトルとの比較計算を行
い、飛翔体く対する制御量Uが決定される。この制御量
Uは、データ変換器4及びデータ伝送ケーブルを経由し
て管制装置のアンテナ7を介して飛翔体に誘導信号とし
ての電波2bで送信される。
Furthermore, this velocity vector and data memory 5
A control amount U for the flying object is determined by comparison calculation with the planned velocity vector stored in the projector. This control amount U is transmitted via the data converter 4 and the data transmission cable to the flying object via the antenna 7 of the control device as a radio wave 2b as a guidance signal.

第2図は、第1図の実施例におけるデータメモリ5及び
データプロセッサ6で行なわれるデータ処理の説明図で
ある。
FIG. 2 is an explanatory diagram of data processing performed by the data memory 5 and data processor 6 in the embodiment of FIG. 1.

予定の飛行軌跡りは、X−Y座標系において一定間隔Δ
L毎に、位置Ks (”t + ys )及び速度ベク
トルV1.に2及び速度ベクトル■2、・・・・・・位
置Kn及び速度ベクトル■。の集合としてデータメモリ
5に格納される。一方、アンテナ7によシ一定時間間隔
Δ1′で追跡捕捉される飛翔体の位置X(x。
The planned flight trajectory is at constant intervals Δ in the X-Y coordinate system.
For each L, the position Ks ("t + ys) and the velocity vector V1.2 and the velocity vector ■2, . . . are stored in the data memory 5 as a set of the position Kn and the velocity vector ■. , the position X(x) of the flying object that is tracked and captured by the antenna 7 at fixed time intervals Δ1'.

y)は、現在値Xt及びそれよシ1サンプル周期前の値
Xt−t”データメモリ5に記憶される。このXt及び
Xト、を用いて、データプロセッサ6によシ飛翔体の速
度ベクトルXtが計算される。
y) are stored in the data memory 5 as ``the current value Xt and the value Xt-t'' one sample period before.Using this Xt and Xt, the data processor 6 calculates the velocity vector of the flying object. Xt is calculated.

飛翔体の飛行軌跡を予定の飛行軌跡に一致させるために
は、現在の飛翔体の速度ベクトルと予定の速度ベクトル
とを比較し、両者の位置、方向及び大きさを一致させる
ようにすればよい。
In order to match the flight trajectory of the flying object with the planned flight trajectory, it is necessary to compare the current velocity vector of the flying object with the planned velocity vector and match the position, direction, and size of the two. .

飛翔体の位置、方向因子は、飛翔体のロール角φ及びヨ
ー角9でるり、ベクトルの大きさ、すなわち速度を決定
する因子はピッチ角θ及びエンジンの出力Tである。し
たがって、予定の速度ベクトル及び現在の速度ベクトル
を比較し、両者の差から飛翔体に対するロール角φ、ヨ
ー角ψ、ピッチ角θ及びエンジン出力Tを決定し、この
結果を飛翔体に対する誘導制御信号としてフィードバッ
クし、軌跡のずれを極小にすることが本発明の基本的特
徴である。
The position and direction factors of the flying object are the roll angle φ and the yaw angle 9 of the flying object, and the factors determining the magnitude of the vector, that is, the speed, are the pitch angle θ and the output T of the engine. Therefore, the planned speed vector and the current speed vector are compared, and the roll angle φ, yaw angle ψ, pitch angle θ, and engine output T for the flying object are determined from the difference between the two, and these results are used as guidance control signals for the flying object. The basic feature of the present invention is to provide feedback as follows to minimize trajectory deviation.

次に、両ベクトルから飛翔体に対する制御量(φ、ψ、
θ、T)を計算する手法について述べる。
Next, from both vectors, control amounts (φ, ψ,
A method for calculating θ, T) will be described.

位置データX、、、及びX、よシ、ある時刻tでの飛翔
体の速度ベクトルXtを計算した後、Xtベクトルの位
置(Xt−1+Yi−t)との次の(1)式で示す距離
j1 ’ ”  (Xt−1−Xm)2+ 0’1−1− y
m)2−”・(1)の値が最小になる予定軌跡の位置K
m(xm、ym)及びベクトルvmを求める。
Position data X, , and X, after calculating the velocity vector Xt of the flying object at a certain time t, the distance between the Xt vector and the position (Xt-1+Yi-t) as shown in the following equation (1). j1''' (Xt-1-Xm)2+ 0'1-1- y
m) 2-”・Position K of the planned trajectory where the value of (1) is the minimum
Find m(xm, ym) and vector vm.

次にXtベクトルと■□ベクトルとのなす角Aを求める
。Xtベクトルと■□ベクトルとのなす角Aは、ベクト
ルのスカラ積(Xt、vm)ヲ用いて、によシ求めるこ
とができる。
Next, find the angle A between the Xt vector and the ■□ vector. The angle A between the Xt vector and the ■□ vector can be determined by using the scalar product (Xt, vm) of the vectors.

さらにXtベクトルと■□ベクトルとの差はD= 1X
tI −lVml       −−−−(3)により
求めることができる。
Furthermore, the difference between the Xt vector and the ■□ vector is D = 1X
It can be determined by tI -lVml --- (3).

以上で、両ベクトルの位置の差、方向の差、及び大きさ
の差が求められる。
With the above steps, the difference in position, direction, and magnitude of both vectors can be found.

最後に、これらの量から飛翔体に対する制御量(φ、ψ
、θ、T)を定数at−csを用いて以下の(4) 、
 (51式のように決定する。
Finally, from these quantities, control quantities (φ, ψ
, θ, T) using the constant at-cs as follows (4),
(Determine as in formula 51.

〔φ〕=C1〔θ)+C2(J)   ・・・・・・・
・・・・・(4)ψ θ (T ) = Ca (D )        ・・・
・旧・団・(5)このようにしてデータプロセッサ上で
決定されたφ、ψ、θ、Tの飛翔体にフィードバックさ
れる。
[φ] = C1 [θ) + C2 (J) ・・・・・・・・・
...(4) ψ θ (T) = Ca (D) ...
- Old Group - (5) The φ, ψ, θ, and T thus determined on the data processor are fed back to the flying object.

以上の過程を時間△Tごとに行う仁とにより、飛翔体の
飛行軌跡を予定した飛行軌跡に一致させることができる
By performing the above process at intervals of time ΔT, the flight trajectory of the flying object can be made to match the planned flight trajectory.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、飛翔体のもつベクトルと
予定のベクトルとを比較し、この両者の差を飛翔体に対
する誘導制御信号として使用することによシ、飛翔体を
予定のコース通DK飛行させることができ、コントロー
ラの負荷を大幅に軽減できる効果がある。
As explained above, the present invention compares the vector of the flying object with the planned vector, and uses the difference between the two as a guidance control signal for the flying object. It has the effect of significantly reducing the load on the controller.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の飛翔体の管制装置の一実施例の構成図
、第2図は、第1図の実施例におけるデータ処理過程の
説明図、第3図は従来の飛翔体の管制装置の構成図、第
4図は第3図の管制装置のX−Yプロッタに示される予
定の飛行軌跡と実際の飛行軌跡とを対比して示す説明図
である。 1・・・プロッタ、2a、2b・・・電波、3・・・デ
ータ伝送ケーブル、4・・・データ変換器、5・・・デ
ータメモリ、6・・・データプロセッサ、7・・・アン
テナ、8・・・管制装置、9・・・飛翔体、10.11
・・・電波、12・・・予定の飛行軌跡、13・・・実
際の飛行軌跡。
FIG. 1 is a block diagram of an embodiment of the flying object control device of the present invention, FIG. 2 is an explanatory diagram of the data processing process in the embodiment of FIG. 1, and FIG. 3 is a conventional flying object control device. FIG. 4 is an explanatory diagram showing a comparison between the planned flight trajectory shown on the X-Y plotter of the control device in FIG. 3 and the actual flight trajectory. DESCRIPTION OF SYMBOLS 1... Plotter, 2a, 2b... Radio wave, 3... Data transmission cable, 4... Data converter, 5... Data memory, 6... Data processor, 7... Antenna, 8... Control device, 9... Flying object, 10.11
... Radio waves, 12... Planned flight trajectory, 13... Actual flight trajectory.

Claims (1)

【特許請求の範囲】[Claims] 無人航空機等の飛翔体を無線で遠隔操縦する飛翔体の管
制装置において、前記飛翔体の予定飛行軌跡を平面座標
における位置及び方向をもったベクトルの集合として記
憶する手段と、時時刻刻変化する飛翔体の位置を捕捉す
る手段と、前記飛翔体の位置に関する情報を記憶する手
段と、前記飛翔体の位置に関する情報から前記飛翔体の
速度ベクトルを計算する手段と、前記飛翔体の予定のベ
クトルと現在のベクトルとを比較し前記飛翔体に対する
誘導制御量を計算する手段と、前記誘導制御量を前記飛
翔体に送信する手段とを備えて成ることを特徴とする飛
翔体の管制装置。
A control device for a flying object that remotely controls a flying object such as an unmanned aircraft by radio, comprising: means for storing the planned flight trajectory of the flying object as a set of vectors having positions and directions in plane coordinates; means for capturing the position of a flying object; means for storing information regarding the position of the flying object; means for calculating a velocity vector of the flying object from information regarding the position of the flying object; and a planned vector of the flying object. and a current vector to calculate a guidance control amount for the flying object, and means for transmitting the guidance control amount to the flying object.
JP1304028A 1989-11-21 1989-11-21 Controlling device for airframe Pending JPH03164697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1304028A JPH03164697A (en) 1989-11-21 1989-11-21 Controlling device for airframe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1304028A JPH03164697A (en) 1989-11-21 1989-11-21 Controlling device for airframe

Publications (1)

Publication Number Publication Date
JPH03164697A true JPH03164697A (en) 1991-07-16

Family

ID=17928198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1304028A Pending JPH03164697A (en) 1989-11-21 1989-11-21 Controlling device for airframe

Country Status (1)

Country Link
JP (1) JPH03164697A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09203600A (en) * 1996-01-26 1997-08-05 Mitsubishi Electric Corp Airframe guiding apparatus
JP2006048398A (en) * 2004-08-05 2006-02-16 Fujitsu Ltd Robot management apparatus
JP2014092979A (en) * 2012-11-05 2014-05-19 National Institute Of Information & Communication Technology Wireless communication device and flight control device
JP2017538203A (en) * 2015-03-31 2017-12-21 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd Geo-fencing device and method for providing a set of flight controls
JP2018173992A (en) * 2014-04-25 2018-11-08 ソニー株式会社 Information processing device, information processing method, computer readable medium and imaging system
US11094202B2 (en) 2015-03-31 2021-08-17 SZ DJI Technology Co., Ltd. Systems and methods for geo-fencing device communications
US11120456B2 (en) 2015-03-31 2021-09-14 SZ DJI Technology Co., Ltd. Authentication systems and methods for generating flight regulations

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09203600A (en) * 1996-01-26 1997-08-05 Mitsubishi Electric Corp Airframe guiding apparatus
JP2006048398A (en) * 2004-08-05 2006-02-16 Fujitsu Ltd Robot management apparatus
JP2014092979A (en) * 2012-11-05 2014-05-19 National Institute Of Information & Communication Technology Wireless communication device and flight control device
JP2018173992A (en) * 2014-04-25 2018-11-08 ソニー株式会社 Information processing device, information processing method, computer readable medium and imaging system
JP2017538203A (en) * 2015-03-31 2017-12-21 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd Geo-fencing device and method for providing a set of flight controls
US11094202B2 (en) 2015-03-31 2021-08-17 SZ DJI Technology Co., Ltd. Systems and methods for geo-fencing device communications
US11120456B2 (en) 2015-03-31 2021-09-14 SZ DJI Technology Co., Ltd. Authentication systems and methods for generating flight regulations
US11367081B2 (en) 2015-03-31 2022-06-21 SZ DJI Technology Co., Ltd. Authentication systems and methods for generating flight regulations
US11961093B2 (en) 2015-03-31 2024-04-16 SZ DJI Technology Co., Ltd. Authentication systems and methods for generating flight regulations

Similar Documents

Publication Publication Date Title
CN111186549B (en) Course autopilot control system with ship collision avoidance function
EP1365301A2 (en) Method and system for maneuvering a movable object
CA1118101A (en) Digital flight guidance system
US7630798B2 (en) Heading reference command and control algorithm systems and methods for aircraft turn-to-target maneuvers
Jorgensen et al. A neural network baseline problem for control of aircraft flare and touchdown
Oliveira et al. Ground target tracking control system for unmanned aerial vehicles
Wilson et al. A line of sight counteraction navigation algorithm for ship encounter collision avoidance
KR101139790B1 (en) System and waypoint guidance scheme of unammed aerial vehicle
CN105425819A (en) Guidance method for tracking ground target automatically by unmanned plane
US7755011B2 (en) Target maneuver detection
EP3223103A1 (en) Mission parameterization system
JPH03164697A (en) Controlling device for airframe
Jeong et al. Optimal control design for automatic ship berthing by using bow and stern thrusters
KR101408067B1 (en) Method for improving geo-pointing performance of electro-optical device in aircraft
US6038497A (en) Aircraft turn guidance system
Miyazawa et al. Longitudinal landing control law for an autonomous reentry vehicle
KR20200041142A (en) Remote controller device having feedback control of unmanned aerial vehicle
JP2019184138A (en) Guidance device, projectile and guidance system
Dukan et al. Joystick in closed-loop control of rovs with experimental results
RU110069U1 (en) DEVICE FORMING SIGNALS FOR CONTROLLING STEERING BOARDS OF A SYMMETRIC CONTROLLED ROCKET WITH A VERTICAL START AT AN AUTONOMOUS AREA OF ITS FLIGHT
JP2940693B2 (en) Flying object guidance method
JPH07229960A (en) All-round visible display apparatus for aircraft
JP4085816B2 (en) Flying object guidance system, flying object and guidance control device
JPH09236400A (en) Device for guiding missile
RU2571845C1 (en) Control over drone flight path at flyby over terrain relief in vertical plane