JPH0316466B2 - - Google Patents

Info

Publication number
JPH0316466B2
JPH0316466B2 JP5607882A JP5607882A JPH0316466B2 JP H0316466 B2 JPH0316466 B2 JP H0316466B2 JP 5607882 A JP5607882 A JP 5607882A JP 5607882 A JP5607882 A JP 5607882A JP H0316466 B2 JPH0316466 B2 JP H0316466B2
Authority
JP
Japan
Prior art keywords
synthetic resin
coating
metal plate
flame retardant
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5607882A
Other languages
Japanese (ja)
Other versions
JPS58173244A (en
Inventor
Mitsuhiro Yukinawa
Masahiro Seki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAKAYAMA KOGYO KK
Original Assignee
NAKAYAMA KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAKAYAMA KOGYO KK filed Critical NAKAYAMA KOGYO KK
Priority to JP5607882A priority Critical patent/JPS58173244A/en
Publication of JPS58173244A publication Critical patent/JPS58173244A/en
Publication of JPH0316466B2 publication Critical patent/JPH0316466B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Roof Covering Using Slabs Or Stiff Sheets (AREA)
  • Panels For Use In Building Construction (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、金属板を成形してその表面に彩色し
た鉱物の粒子を全面的に接着させた屋根材および
その製造方法に関するものである。 [従来の技術] 従来、金属板の平板面もしくは凹凸を形成させ
た面に彩色鉱物粒子を、アスフアルト、合成樹脂
エマルジヨン、あるいは合成樹脂塗料によつ接着
させた屋根材があるが屋根材としての耐食性、耐
候性に劣り、また化粧鋼板として建築基準法に基
づく「不燃材料の認定基準」を維持する製品を生
産することが非常に困難な実情にあり、従つてそ
の使用地域も限定されていた。 即ち、従来の屋根材は、金属板例えば亜鉛鉄板
の上に設けたアスフアルト層に天然砕石または人
工着色砕石等の骨材を吹付け散布してアスフアル
ト層を隠蔽する如くし、さらにその上面に合成樹
脂エマルジヨンを塗布したものであるが、アスフ
アルトはその接着力が弱いため500g/m2程度の
多量の塗布が必要となる。ところが不燃材料とし
ての認定試験に合格するには、屋根材構成部材中
の可燃物質は70g/m2程度でなければならないこ
とが経験上知られているので前記のような屋根材
は到底不燃材料となり得ず、防火地域および準防
火地域では使用できない。 更に、屋根材におけるアスフアルト系接着剤
は、紫外線、乾湿寒暖の繰返し、積雪や降雨によ
る水の透湿等の影響で比較的速く接着力が劣化し
て砕石が脱落する欠点がある。また劣化の結果生
じたクラツクやピンホールから雨水が浸透して下
地金属板面の腐蝕を促進し、さらに夏季にはアス
フアルト層が軟化し表面に滲み出てくるので屋根
の美感を著しく損ねる等屋根材として欠点が多
い。 次に、合成樹脂エマルジヨンを骨材の結合材と
して使用する従来製品の場合においては、まず骨
材の散布量は屋根の外観美を維持するために一般
的に1500g/m2程度の散布量が必要であるが、合
成樹脂エマルジヨンと骨材との配合比は接着性お
よび塗装作業性の点から経験的に重量比でほぼ1
対5とされているので、合成樹脂エマルジヨンの
塗装量は不揮発分として約150g/m2(揮発分50
%を除く)を要することとなる。これで可燃物質
が過多となつて不燃材料としては不適格である。
また合成樹脂エマルジヨンはその塗膜中に残留し
ている水溶性の保護コロイドや乳化材が耐水性を
弱め雨水等により再乳化する白化現象を生ずる。
これが下地金属板の腐蝕を促進するので実用に適
されない。 また特公昭50−32728号のように硬化型合成樹
脂を結合材として用いて骨材粒子を被覆し、少な
くとも1mm厚になるように塗布し硬化せしめたも
のであり、その具体的記載内容を要約すると次の
ようである。 (1) 瓦を数枚連結一体化した如き形状である。 (2) 亜鉛鉄板等に必要に応じて防錆処理を施し、
プレス等で所定の瓦形状に成形する。 (3) 着色した鉱物質粒子例えば着色珪砂に結合剤
として硬化型合成樹脂例えば熱硬化型アクリル
樹脂エマルジヨンを混合して、塗膜層厚さが
1.0mm以上になるように均一に吹付け焼付ける。 (4) 鉱物質粒子の粒度分布は、10メツシユ以下、
好ましくは3〜8メツシユ5〜30%、80〜200
メツシユ好ましくは100〜130メツシユ残りであ
る。 (5) 結合剤の混合割合は、鉱物質粒子が結合剤に
よつて完全に被覆され、かつ粒子が表面に露出
しないように調製する。 (6) 鉱物質粒子と硬化型合成樹脂の混合割合は実
施例によれば80重量比対20重量比である。 [発明が解決しようとする課題] 以上のような公知の屋根材においては、例えば
乾燥塗膜厚さが下限の1mmとして、硬化型合成樹
脂の混合必要量は約200g/m2となる。 即ち、乾燥塗膜に含まれる合成樹脂量/m2
(塗膜厚さ×塗膜材比重)×合成樹脂割合×不揮発
分 =(1mm×2.0)×0.2×0.5=0.2(Kg)/m2=200
g/m2 このように可燃物である合成樹脂量が高率であ
るから不燃材料として使用することはできず、ま
た使用する着色鉱物質粒子が0.13〜0.15mmの如き
微細粒子が大部分でその中に2.3〜5.0mmという粗
粒が散在する状態であるから外観上も好ましくな
く、また一種類の塗膜材のみで屋根材に要求され
る各種の品質特性である不燃性、密着性、耐水
性、耐食性、耐薬品性、耐候性、および外観性等
を満足させることは極めて困難である。 本発明は、前述のような従来の金属板屋根材の
欠点を改良し、不燃材料認定試験に合格する如
く、また耐食性、耐候性、密着性、耐水性等に優
れ、また曲げ加工性もよく外観性に優れた屋根材
およびその製造方法を提供することを目的とする
ものである。 [課題を解決するための手段] 本発明に係る金属板成形不燃性屋根材では、防
錆顔料を添加した熱硬化性合成樹脂、で下塗り塗
装され且つ所定の屋根材形状に成形された金属板
の前記下塗り塗装被膜の上に、難燃剤を添加した
熱硬化性合成樹脂又は熱可塑性合成樹脂からなる
中塗り塗料の塗布層が形成され、 前記中塗り塗装層の上に、粒度分布が8〜35メ
ツシユの彩色鉱物の粗粒子80〜90%と35〜200メ
ツシユの彩色鉱物の細粒子10〜20%とが接着さ
れ、 前記粒子接着層を被つて、難燃剤を添加した透
明な熱硬化性合成樹脂又は熱可塑性合成樹脂の上
塗り塗料の塗膜が形成されているものである。 また、別の発明に係る金属板成形不燃性屋根材
の製造方法では、防錆顔料を添加した熱硬化性合
成樹脂で金属板に下塗り塗装した後、 該下塗り塗装面が表面になる如く前記金属板を
所定の屋根材形状にプレス成形し、 前記下塗り塗装面に難燃剤を添加した熱硬化性
合成樹脂又は熱化塑性合成樹脂からなる中塗り塗
料を塗布した後、直ちに8〜35メツシユの彩色鉱
物の粗粒子を80〜90%散布し、次いで35〜200メ
ツシユの彩色鉱物の細粒子を10〜20%前記粗粒子
の間隙を埋める如く散布して焼付乾燥し、 更にその上面を、難燃剤を添加した透明な熱硬
化性合成樹脂又は熱可塑性合成樹脂からなる上塗
り塗料によつて被覆塗装して焼付する方法であ
る。 [作用] 本発明においては、防錆顔料を添加した熱硬化
性合成樹脂で下塗り塗装され且つ所定の屋根材形
状に成形された金属板の前記下塗り塗装被膜の上
に、難燃剤を添加した熱硬化性合成樹脂又は熱可
塑性合成樹脂からなる中塗り塗料の塗布層が形成
され、前記中塗り塗装層の上に、粒度分布が8〜
35メツシユの彩色鉱物の粗粒子80〜90%と35〜
200メツシユの彩色鉱物の細粒子10〜20%とが接
着され、前記粒子接着層を被つて、難燃剤を添加
した透明な熱硬化性合成樹脂又は熱可塑性合成樹
脂の上塗り塗料の塗膜が形成されているものであ
るため、不燃性、耐衝撃性、曲げ加工性、耐食性
に優れており、また彩色鉱物の粒子は中塗り及び
上塗りの両塗料で接着されているので密着性が優
れ、且つ粒度分布の限定によつて外観性等を満足
させる屋根材が得られる。 また、具体的な屋根材の製造方法は、防錆顔料
を添加した熱硬化性合成樹脂で金属板に下塗り塗
装した後、該下塗り塗装面が表面になる如く前記
金属板を所定の屋根材形状にプレス成形し、前記
下塗り塗装面に難燃剤を添加した熱硬化性合成樹
脂又は熱可塑性合成樹脂からなる中塗り塗料を塗
布した後、直ちに8〜35メツシユの彩色鉱物の粗
粒子を80〜90%散布し、次いで35〜200メツシユ
の彩色鉱物の細粒子を10〜20%前記粗粒子の間隙
を埋める如く散布して焼付乾燥し、更にその上面
を難燃剤を添加した透明な熱硬化性合成樹脂又は
熱可塑性合成樹脂からなる上塗り塗料によつて被
覆塗装して焼付する方法で作成するため、粗粒子
間の間隙を細粒子で完全にうめることができ、そ
の粒子接着層を難燃剤を添加した透明な上塗り塗
料の塗膜で被つているため、粒子の脱落および耐
食性の低下を防止でき、また優れた外観を維持す
ることができる。 また各塗料とも、焼付乾燥作業を行なうので、
密着性、耐候性、耐水性、耐食性に優れた塗装面
を形成することができる。また中塗りおよび上塗
り工程で難燃剤を添加し、かつ塗布量を限定した
塗装を行なうので極めて不燃性の高い屋根材を製
造することができる。 尚、本発明で彩色鉱物粒子とは、天然または人
工の無機鉱物粒子の自然着色のものもしくは人工
着色したものであつて以下「粒子」と省略する。
また中塗り塗料を塗布したウエツトな塗料面を以
下「中塗り塗装」という。 本発明の屋根材は素材金属板、下塗り塗装、成
形、中塗り塗装、粒子の接着、上塗り塗膜の多量
構成から成るもので、各構成要素について不燃材
料試験、付着力試験、耐食性試験、耐候性試験等
必要な性能試験を重ねた結果、改良されたもの
で、以下それぞれについて詳細に説明する。 素材(芯材)である金属板は0.4〜0.5mm厚の亜
鉛鉄板が多く使用されるが、必要に応じアルミニ
ウム板、アルミメツキ鋼板、アルミ−亜鉛合金・
メツキ鋼板、ステンレス板等の金属材料を使用し
得る。これらは通常塗装前処理として、防錆およ
び塗料密着性向上のためりん酸塩等により化成処
理され化成皮膜層を形成させる。 下塗り塗装は耐食性付与が主目的であり、その
効果を向上させるためにクロム酸系等の防錆顔料
を添加した熱硬化性合成樹脂塗料を前記金属板に
薄く塗布し、焼付け乾燥する。下塗り塗料として
はアクリル樹脂塗料、エポキシ樹脂塗料およびポ
リエステル樹脂塗料等が密着性、耐食性の点で望
ましい。 前記の処理を施した金属板の成形は、例えば油
圧プレスによつて第1図〜第4図の如き瓦状に形
成する。第1図は7山連結瓦の平面図、第2図は
軒先瓦の斜視図、第3図は袖瓦の斜視図、第4図
は13山連結瓦の平面図であるが、前記下塗り塗料
は密着性に優れているので、細かい細工を必要と
する形状に支障なく加工することができる。 次に中塗り塗装は、後述する粒子との付着力を
確保すること及び不燃性を付与することを主目的
とするが、塗料付着力に関する試験結果を示す第
1表から、熱硬化性に属するポリエステル樹脂塗
料および熱可塑性に属するフツ素樹脂塗料が望ま
しいことが判明した。
[Industrial Application Field] The present invention relates to a roofing material in which a metal plate is formed and colored mineral particles are adhered to the entire surface thereof, and a method for manufacturing the same. [Prior Art] Conventionally, there are roofing materials in which colored mineral particles are adhered to the flat or uneven surface of a metal plate using asphalt, synthetic resin emulsion, or synthetic resin paint. It has poor corrosion resistance and weather resistance, and it is extremely difficult to produce decorative steel sheets that meet the "certification standards for noncombustible materials" based on the Building Standards Act, and the areas where they can be used are therefore limited. . In other words, conventional roofing materials are made by spraying aggregate such as natural crushed stone or artificially colored crushed stone onto an asphalt layer provided on a metal plate, such as a galvanized iron plate, to hide the asphalt layer, and then adding synthetic material to the top surface of the asphalt layer. Although it is coated with a resin emulsion, asphalt has weak adhesive strength, so a large amount of coating of about 500 g/m 2 is required. However, it is known from experience that in order to pass the certification test as a noncombustible material, the combustible substance in the roofing material components must be around 70g/m 2 , so there is no way that the above roofing material is a noncombustible material. cannot be used in fire prevention areas or semi-fire prevention areas. Furthermore, asphalt-based adhesives used in roofing materials have the disadvantage that their adhesive strength deteriorates relatively quickly due to the effects of ultraviolet rays, repeated drying, wetness, and cold temperatures, and water permeation due to snowfall and rainfall, causing crushed stones to fall off. In addition, rainwater penetrates through cracks and pinholes that occur as a result of deterioration, promoting corrosion of the underlying metal plate surface.Furthermore, in the summer, the asphalt layer softens and oozes to the surface, significantly impairing the aesthetic appearance of the roof. It has many drawbacks as a material. Next, in the case of conventional products that use synthetic resin emulsion as a binding material for aggregate, the amount of aggregate spread is generally around 1500g/m2 in order to maintain the aesthetic appearance of the roof. However, from the viewpoint of adhesion and painting workability, the mixing ratio of synthetic resin emulsion and aggregate is approximately 1 by weight based on experience.
5, the coating amount of synthetic resin emulsion is approximately 150g/m 2 (volatile content: 50 g/m 2 ).
(excluding %). This results in too much combustible material, making it unsuitable as a noncombustible material.
In addition, the water-soluble protective colloid and emulsifying agent remaining in the synthetic resin emulsion reduce the water resistance and cause a whitening phenomenon in which the emulsion is re-emulsified by rainwater or the like.
This promotes corrosion of the underlying metal plate and is therefore not suitable for practical use. In addition, as in Japanese Patent Publication No. 50-32728, aggregate particles are coated with a curable synthetic resin as a binder, coated to a thickness of at least 1 mm, and cured.The specific contents are summarized. Then it looks like this: (1) It has a shape that looks like several roof tiles connected and integrated. (2) Apply anti-rust treatment to galvanized iron plates, etc. as necessary.
Form it into a predetermined tile shape using a press or the like. (3) Colored mineral particles, such as colored silica sand, are mixed with a curable synthetic resin, such as a thermosetting acrylic resin emulsion, as a binder, so that the thickness of the coating layer can be adjusted.
Spray and bake evenly to a thickness of 1.0 mm or more. (4) The particle size distribution of mineral particles is 10 mesh or less;
Preferably 3-8 meshes 5-30%, 80-200
Preferably 100 to 130 meshes remain. (5) The mixing ratio of the binder is adjusted so that the mineral particles are completely covered with the binder and the particles are not exposed on the surface. (6) According to the example, the mixing ratio of mineral particles and hardening synthetic resin is 80 weight ratio to 20 weight ratio. [Problems to be Solved by the Invention] In the known roofing materials as described above, for example, assuming that the dry coating thickness is the lower limit of 1 mm, the required amount of curable synthetic resin to be mixed is approximately 200 g/m 2 . In other words, the amount of synthetic resin contained in the dry coating film/m 2 =
(Coating film thickness x coating material specific gravity) x synthetic resin ratio x non-volatile content = (1 mm x 2.0) x 0.2 x 0.5 = 0.2 (Kg)/m 2 = 200
g/ m2 Because the amount of synthetic resin, which is combustible, is high, it cannot be used as a noncombustible material, and most of the colored mineral particles used are fine particles with a size of 0.13 to 0.15 mm. It is in a state where coarse particles of 2.3 to 5.0 mm are scattered, which makes it unfavorable in terms of appearance.In addition, only one type of coating material has various quality characteristics required for roofing materials, such as nonflammability and adhesion. It is extremely difficult to satisfy water resistance, corrosion resistance, chemical resistance, weather resistance, appearance, etc. The present invention improves the shortcomings of the conventional metal sheet roofing materials as described above, passes the noncombustible material certification test, has excellent corrosion resistance, weather resistance, adhesion, water resistance, etc., and has good bending workability. The object of the present invention is to provide a roofing material with excellent appearance and a method for manufacturing the same. [Means for Solving the Problems] The metal plate molded noncombustible roofing material according to the present invention includes a metal plate that is undercoated with a thermosetting synthetic resin containing anticorrosive pigments and is formed into a predetermined roofing material shape. A coating layer of an intermediate coating made of a thermosetting synthetic resin or a thermoplastic synthetic resin to which a flame retardant has been added is formed on the undercoat coating film, and a particle size distribution of 8 to 8 is formed on the intermediate coating layer. 80 to 90% of coarse colored mineral particles of 35 mesh and 10 to 20% of fine colored mineral particles of 35 to 200 mesh are adhered, and the particle adhesive layer is covered with a transparent thermosetting material containing a flame retardant. A coating film of synthetic resin or thermoplastic synthetic resin top coat is formed. In addition, in a method for producing a metal plate molded noncombustible roofing material according to another invention, after a metal plate is undercoated with a thermosetting synthetic resin added with an anticorrosive pigment, the metal plate is coated so that the undercoated surface becomes the surface. After press-forming the board into the specified roof material shape and applying an intermediate coating made of thermosetting synthetic resin or thermoplastic synthetic resin containing a flame retardant to the undercoated surface, immediately paint 8 to 35 meshes. Sprinkle 80 to 90% of coarse mineral particles, then 10 to 20% of colored mineral fine particles of 35 to 200 mesh to fill the gaps between the coarse particles, bake and dry, and then coat the top surface with flame retardant. This is a method in which the material is coated with a top coat made of a transparent thermosetting synthetic resin or thermoplastic synthetic resin, and then baked. [Function] In the present invention, a flame retardant-added heat treatment layer is applied on the undercoat film of a metal plate that has been undercoated with a thermosetting synthetic resin containing anti-rust pigments and formed into a predetermined roof material shape. A coating layer of an intermediate coating made of a curable synthetic resin or a thermoplastic synthetic resin is formed, and a particle size distribution of 8 to 8 is applied on the intermediate coating layer.
35 mesh colored mineral coarse particles 80~90% and 35~
200 mesh of colored mineral fine particles of 10 to 20% are adhered, and a coating film of a transparent thermosetting synthetic resin or thermoplastic synthetic resin top coat containing a flame retardant is formed, covering the particle adhesive layer. It has excellent nonflammability, impact resistance, bending workability, and corrosion resistance.Also, since the colored mineral particles are bonded with both intermediate and top coats, it has excellent adhesion. By limiting the particle size distribution, a roofing material that satisfies the appearance, etc. can be obtained. In addition, a specific method for producing roofing materials is to apply an undercoat to a metal plate with a thermosetting synthetic resin containing anti-rust pigments, and then shape the metal plate into a predetermined roofing material shape so that the undercoated surface becomes the surface. Immediately after applying an intermediate coating made of thermosetting synthetic resin or thermoplastic synthetic resin containing a flame retardant to the undercoated surface, immediately apply 80 to 90 mesh of coarse particles of colored mineral. %, and then 10 to 20% fine particles of colored minerals of 35 to 200 mesh are sprinkled so as to fill the gaps between the coarse particles, baked and dried, and the upper surface is coated with a transparent thermosetting compound with a flame retardant added. Since it is created by coating and baking with a top coat made of resin or thermoplastic synthetic resin, the gaps between coarse particles can be completely filled with fine particles, and the adhesive layer of the particles is coated with a flame retardant. Since it is coated with a clear topcoat film, particles can be prevented from falling off and corrosion resistance can be prevented, and an excellent appearance can be maintained. In addition, each paint requires baking and drying, so
It is possible to form a painted surface with excellent adhesion, weather resistance, water resistance, and corrosion resistance. Furthermore, since a flame retardant is added in the intermediate coating and top coating steps, and the amount of coating is limited, roofing materials with extremely high noncombustibility can be manufactured. In the present invention, colored mineral particles refer to naturally colored or artificially colored natural or artificial inorganic mineral particles, and are hereinafter abbreviated as "particles."
In addition, the wet paint surface coated with intermediate paint is hereinafter referred to as "intermediate paint." The roofing material of the present invention is made up of a large amount of metal plates, undercoat, molding, intermediate coat, particle adhesion, and topcoat. These improvements have been made as a result of repeated performance tests such as performance tests, and each will be explained in detail below. The metal plate that is the material (core material) is often a galvanized iron plate with a thickness of 0.4 to 0.5 mm, but if necessary, aluminum plates, aluminized steel plates, aluminum-zinc alloys, etc.
Metal materials such as plated steel plates and stainless steel plates can be used. These are usually subjected to a chemical conversion treatment with phosphate or the like as a pre-painting treatment to prevent rust and improve paint adhesion to form a chemical conversion film layer. The main purpose of undercoating is to impart corrosion resistance, and to improve this effect, a thermosetting synthetic resin paint containing a rust-preventing pigment such as chromic acid is applied thinly to the metal plate and baked to dry. As the undercoating paint, acrylic resin paint, epoxy resin paint, polyester resin paint, etc. are preferable from the viewpoint of adhesion and corrosion resistance. The metal plate subjected to the above treatment is formed into a tile shape as shown in FIGS. 1 to 4 using, for example, a hydraulic press. Fig. 1 is a plan view of a 7-pitch tile, Fig. 2 is a perspective view of an eaves tile, Fig. 3 is a perspective view of a side tile, and Fig. 4 is a plan view of a 13-pitch tile. Because it has excellent adhesion, it can be processed into shapes that require fine workmanship without any problems. Next, the main purpose of the intermediate coating is to ensure adhesion with the particles described later and to provide nonflammability, but from Table 1 showing the test results regarding paint adhesion, it is classified as thermosetting. It has been found that polyester resin paints and fluororesin paints belonging to the thermoplastic category are desirable.

【表】【table】

【表】 尚、中塗り塗料には、紫外線による劣化を防止
するために耐候性の良好な顔料を添加するのが望
ましく、また顔料の色は後述する粒子の吹付け接
着後下地の隠蔽効果を高めるため粒子と同系色と
するのがよい。 本発明においては、屋根材の吹燃性を強化する
ことが主目的の一つであり、中塗り塗料に難燃剤
を添加する。難燃剤化合物としては三酸化アンチ
モン(Sb2O3)、ハロゲンりん化合物、水酸化ア
ルミニウム[Al(OH)3]、臭化化合物のうちから
選んだ1種または2種以上の混合物を、中塗り塗
料の固定分に対して20〜45重量%の範囲で添加す
る。上記難燃材の添加率が20重量%以下では実験
の結果、不燃材料認定試験に合格し得ないことが
判明した。また45重量%を越すと中塗り塗膜の耐
水性の低下をまねき、さらに粒子との前記付着力
の低下を生ずることが判明した。 上記中塗り塗料は、下塗りして成形された金属
板に静電塗装吹付機、エアースプレー塗装機また
はエアススプレー塗装機等で吹付け塗装される
が、その塗布量(以下塗布量とはすべて乾燥塗膜
重量をいう)は20〜60g/m2の範囲内でなければ
ならない。即ち中塗りは前述の如く粒子の付着を
一つの目的としているため塗装直後のウエツトな
状態で該粒子を散布するが、塗布量が20g/m2
下では粒子の付着力の面で不充分な量であり、ま
た60g/m2を越すと上塗り塗布量と関連でその合
計塗布量が100g/m2を越えるため不燃材料認定
試験で不合格となる恐れがある。 次に、中塗り塗料に接着させる粒子について述
べる。本発明における特徴は粒子の粒度分布と散
布方法およびその散布量にある。粒子を散布接着
する目的は屋根材としての美観の面および耐候
性、耐食性および雨音などに対する遮音性をもた
せることにあるが、そのために必要な品質条件は
次のようである。 (1) 彩色し易く、かつ長期間の屋根使用の間に変
色、褪色しないこと。 (2) 石灰分含有が少ないこと(耐薬品性があり溶
解し難いこと)。 (3) 硬度が高いこと(衝撃でつぶれないこと)。 (4) 水分を吸収しないこと(吸収すると付着力を
損なう)。 (5) ほこりの発生がないこと。 以上の条件で好ましいのは例えば着色珪砂およ
び着色玄武岩であるが、その他天然色、人工着色
の無機砿物粒子を使用することができる。また粒
度分布については、屋根材の外観意匠の面では8
〜35メツシユ(粒度2.36〜0.42mm)(以下タイラ
ー標準篩のメツシユをいう)の範囲のものを一面
に散布するのが好ましいが、この粒度で粒子間の
間隙を完全に埋めて中塗り塗膜層が露出しない様
に完全に隠蔽することは困難である。中塗り塗装
面の露出部は、長期間の屋外使用によつて紫外線
による劣化を生じ、粒子の付着力低下による粒子
脱落現象の発生、塗膜の剥離やさびの発生で耐食
性が低下する。 従つて中塗り塗装面において前記8〜35メツシ
ユの粒子の間隙を埋めるために、本発明ではこれ
に35〜200メツシユ(粒径0.42〜0.07mm)の粒子
を混合するものである。その混合比率は前者の粗
粒子80〜90%に対し後者の細粒子10〜20%が作業
面に、目的面から適当である。また粒子の散布方
法については製造方法で後述するが、合計散布量
が1200g/m2より少ないと中塗り塗膜を充分に被
覆することが困難となり、また1600g/m2を越す
と粒子が重合し、極めて弱い付着箇所が生じ好ま
しくない。尚、粒子は中塗り塗装直後の末乾燥面
に散布して充分に接着せしめ、次いで約200℃、
3分間の焼付け乾燥によつて強固な接着構造とす
る。 次いで本発明においては前記の接着粒子面を外
的条件から保護し、屋根材にさらに不燃性を付与
し、さらに耐水性、耐候性の向上および粒子をよ
り強固に接着させる等の目的で、難燃剤を添加し
た透明な熱硬化性合成樹脂又は熱可塑性合成樹脂
の上塗り塗膜を形成させる。この上塗り塗料とし
て必要な品質条件は次の様である。 (1) 耐候性良好であること、即ち紫外線による黄
変や劣化による塗膜のチエツキング(塗表面に
発生する細い割れ)およびクラツキングの発生
が少ないこと。 (2) 耐水性が良好で汚染し難いこと。 (3) 粒子との接着性がよいこと。 以上の条件を満足するものとして、熱硬化性の
ポリエステル樹脂クリヤー塗料、熱可塑性のフツ
素樹脂クリヤー塗料が望ましい。 添加する難燃剤としては三酸化アンチモン
(Sb2O3)およびハロゲンリン化合物の混合物が
効果的であり、上塗り塗料固形分比で15〜18重量
%わ混合する。添加量が15%以下では不燃性認定
試験に合格し難く、また18%を越すと酸化アンチ
モンの混合割合にもよるがその影響で、クリヤー
塗膜層が白味を帯ひるようになるので外観意匠的
に好ましくない。 また上塗り塗料の塗布量は、30g/m2以下では
粒子層を完全に覆う如く塗布し難く、また50g/
m2を越すと、中塗り塗料との関連で塗布合量が
100g/m2以上となることがあり不燃材料認定試
験に不合格の恐れがあると同時に、上塗り過多に
よる塗料のタレ現象が発生し易くなる。従つて塗
布量は30〜50g/m2の範囲が適当である。 以上、本発明の屋根材の構成を図示すると第5
図の様である。第5図において1は素材金属板、
例えば亜鉛鉄板、カラー鉄板等、2は化成皮膜
層、3は下塗り塗膜層、4は中塗り塗膜層、5は
彩色鉱物粒子、6は上塗りクリヤー塗膜層、7は
裏面塗膜層である。 尚、裏面塗膜層7は防錆を目的としてアクリル
系塗料をうすく塗布したものである。また、本発
明の主目的である不燃性の効果を確認するために
行なつた試験結果を第2表に示す。 第2表から判明したことは、本発明の構成及び
数値限定および望ましい各樹脂塗料を使用した場
合は不燃材料認定試験に合格することが確実であ
り、アクリル樹脂の如き塗料を中塗りおよび上塗
りに使用した場合は不合格となる確立が高く(実
験3および6)、また適正な塗料を使用した場合
でも上塗り塗布量が50g/m2を越えると試験成績
は一部不良となる。
[Table] In addition, it is desirable to add pigments with good weather resistance to the intermediate coating paint in order to prevent deterioration due to ultraviolet rays, and the color of the pigment should be determined to have a concealing effect on the base after spray adhesion of the particles, which will be described later. It is best to use a similar color to the particles to enhance the appearance. In the present invention, one of the main purposes is to enhance the flame-blowing properties of the roofing material, and a flame retardant is added to the intermediate coating. As a flame retardant compound, one or a mixture of two or more selected from antimony trioxide (Sb 2 O 3 ), halogen phosphorus compounds, aluminum hydroxide [Al(OH) 3 ], and bromide compounds is used as an intermediate coating. It is added in a range of 20 to 45% by weight based on the fixed content of the paint. As a result of experiments, it was found that if the addition rate of the above-mentioned flame retardant material was less than 20% by weight, it would not be possible to pass the non-combustible material qualification test. It has also been found that when the content exceeds 45% by weight, the water resistance of the intermediate coating film decreases, and furthermore, the adhesion force with the particles decreases. The above-mentioned intermediate coating paint is spray-painted onto a metal plate that has been primed and formed using an electrostatic paint sprayer, air sprayer, or air sprayer. dry coating weight) must be within the range of 20 to 60 g/ m2 . In other words, as mentioned above, one purpose of intermediate coating is the adhesion of particles, so the particles are dispersed in a wet state immediately after coating, but if the coating amount is less than 20g/ m2 , the adhesion of the particles may be insufficient. Moreover, if the amount exceeds 60 g/m 2 , the total amount applied in relation to the amount of top coat applied exceeds 100 g/m 2 , and there is a risk of failing the noncombustible material qualification test. Next, the particles to be adhered to the intermediate paint will be described. The features of the present invention lie in the particle size distribution, the method of dispersion, and the amount of dispersion. The purpose of spraying and adhering particles is to provide a roofing material with aesthetics, weather resistance, corrosion resistance, and sound insulation against rain noise, etc., and the quality conditions necessary for this purpose are as follows. (1) It is easy to color and does not discolor or fade during long-term roof use. (2) Low lime content (chemical resistance and difficult to dissolve). (3) High hardness (will not be crushed by impact). (4) Do not absorb moisture (adhesion will be impaired if absorbed). (5) No dust generation. Under the above conditions, for example, colored silica sand and colored basalt are preferable, but other natural colored or artificially colored inorganic grout particles can be used. In addition, regarding particle size distribution, in terms of the exterior design of roofing materials, 8
It is preferable to spray particles in the range of ~35 mesh (particle size 2.36 to 0.42 mm) (hereinafter referred to as Tyler standard sieve mesh) over the entire surface, but this particle size completely fills the gaps between particles and forms an intermediate coating film. It is difficult to completely hide the layers so that they are not exposed. Exposed areas of the intermediate coated surface deteriorate due to ultraviolet rays due to long-term outdoor use, and corrosion resistance decreases due to particles falling off due to decreased adhesion of particles, peeling of the paint film, and occurrence of rust. Therefore, in order to fill the gaps between the particles of 8 to 35 mesh on the intermediate coating surface, in the present invention, particles of 35 to 200 mesh (particle size of 0.42 to 0.07 mm) are mixed therein. The mixing ratio of the former coarse particles at 80 to 90% and the latter fine particles at 10 to 20% is appropriate for the work surface and purpose. The method of dispersing particles will be described later in the manufacturing method, but if the total amount of spraying is less than 1200g/ m2 , it will be difficult to sufficiently cover the intermediate coating, and if it exceeds 1600g/ m2 , the particles will polymerize. However, this is undesirable as it causes extremely weak adhesion points. In addition, the particles were sprinkled on the dry surface immediately after the intermediate coating to ensure sufficient adhesion, and then heated at approximately 200°C.
A strong adhesive structure is created by baking and drying for 3 minutes. Next, in the present invention, in order to protect the adhesive particle surface from external conditions, further impart non-combustibility to the roofing material, further improve water resistance and weather resistance, and bond the particles more firmly, difficult A top coat of transparent thermosetting synthetic resin or thermoplastic synthetic resin to which a retardant has been added is formed. The quality conditions required for this top coat are as follows. (1) It has good weather resistance, that is, there is little checking (thin cracks that occur on the painted surface) and cracking of the coating film due to yellowing and deterioration caused by ultraviolet rays. (2) Good water resistance and resistance to contamination. (3) Good adhesion to particles. As materials that satisfy the above conditions, thermosetting polyester resin clear paints and thermoplastic fluororesin clear paints are desirable. A mixture of antimony trioxide (Sb 2 O 3 ) and a halogen phosphorus compound is effective as a flame retardant to be added, and is mixed in an amount of 15 to 18% by weight based on the solid content of the top coat. If the amount added is less than 15%, it will be difficult to pass the nonflammability certification test, and if it exceeds 18%, the clear coating layer will become whitish, depending on the mixing ratio of antimony oxide, resulting in poor appearance. It is undesirable in terms of design. In addition, if the amount of top coat paint is less than 30g/ m2 , it will be difficult to coat it completely covering the particle layer, and if the amount is less than 30g/m2,
If it exceeds m 2 , the total coating amount will increase due to the intermediate coating.
If the amount exceeds 100 g/m 2 , there is a risk of failing the noncombustible material certification test, and at the same time, the phenomenon of paint sagging due to overcoating is likely to occur. Therefore, the appropriate coating amount is in the range of 30 to 50 g/m 2 . The above is a fifth diagram illustrating the structure of the roofing material of the present invention.
It is as shown in the figure. In Fig. 5, 1 is a material metal plate;
For example, in galvanized iron plates, colored iron plates, etc., 2 is a chemical conversion coating layer, 3 is an undercoat coating layer, 4 is an intermediate coating layer, 5 is colored mineral particles, 6 is a topcoat clear coating layer, and 7 is a back coating layer. be. Note that the back coating layer 7 is a thin layer of acrylic paint applied for the purpose of rust prevention. Further, Table 2 shows the results of tests conducted to confirm the nonflammability effect, which is the main objective of the present invention. What is clear from Table 2 is that if the configuration and numerical limitations of the present invention and each desirable resin paint are used, it is certain that it will pass the nonflammable material qualification test, and that paints such as acrylic resin can be used as an intermediate coat and top coat. If used, there is a high probability of failure (Experiments 3 and 6), and even if an appropriate paint is used, if the amount of top coat exceeds 50 g/m 2 , some test results will be poor.

【表】 [実施例] 次に本発明の実施例とその品質試験結果につい
て説明する。 実施例 1 金属板:0.4mm厚の亜鉛鉄板をりん酸処理剤を
用いて化成処理し、防錆顔料7〜8%添加したア
クリル樹脂塗料をロールコーターで下塗り塗装し
焼付けたものをプレスで第1図の如く成形した。 中塗り塗装:難燃剤として、酸化アンチモン、
ハロゲンりん化合物、水酸化アルミニウムを塗料
固定分比でそれぞれ15、15、10重量%、計40重量
%添加したフツ素樹脂塗料を35g/m2塗布し、ウ
エツトな状態のとき粒子を散布した。 粒子:着色珪砂(商品名アルベル、粒度分布8
〜35me′87.5%、35〜200me′12.5%)の1400g/
m2を各粒子均一に散布し、200℃3分間焼付け乾
燥した。 上塗り塗膜:熱可塑性フツ素樹脂クリヤー塗料
に難燃剤として酸化アンチモン、ハロゲンりん化
合物を塗料固定分比でそれぞれ5、10重量%添加
したものを、塗布量36g/m2として均一に吹付
け、200℃3分間乾燥処理して塗膜を形成した。 実施例 2 (実施例1と相違するデータのみ記載) 金属板:下塗りはポリエステル樹脂塗料 塗布
量40g/m2とした。 中塗り塗装:難燃剤 酸化アンチモン20重量% ハロゲンりん化合物 15 〃 水酸化アルミニウム 10 〃 を添加したポリエステル樹脂塗料を使用し、塗布
量40g/m2使用した。 粒子:着色珪砂を1490g/m2散布し、焼付け乾
燥した。 上塗り塗膜:熱硬化性ポリエステルクリヤー塗
料を使用した。 難燃剤 酸化アンチモン 5重量% ハロゲンりん化合物 12重量% 塗布量 40g/m2を使用した。 上記実施例及び比較品の品質試験結果を次の第
3表に示す。
[Table] [Example] Next, examples of the present invention and their quality test results will be explained. Example 1 Metal plate: A 0.4 mm thick galvanized iron plate was chemically treated using a phosphoric acid treatment agent, and an acrylic resin paint containing 7 to 8% anti-corrosion pigment was applied as an undercoat using a roll coater, and the plate was baked using a press. It was molded as shown in Figure 1. Intermediate coating: As a flame retardant, antimony oxide,
A fluororesin paint containing a halogen phosphorus compound and aluminum hydroxide added at a fixed ratio of 15, 15, and 10% by weight, respectively, for a total of 40% by weight, was applied at 35g/m 2 and particles were sprinkled on it when it was wet. Particles: Colored silica sand (trade name Albel, particle size distribution 8
~35me′87.5%, 35~200me′12.5%) 1400g/
m 2 was uniformly distributed on each particle and baked at 200°C for 3 minutes to dry. Top coat: 5% and 10% by weight of antimony oxide and halogen phosphorus compounds as flame retardants are added to the thermoplastic fluororesin clear paint, respectively, in a fixed proportion of the paint, and sprayed uniformly at a coating amount of 36g/ m2 . A coating film was formed by drying at 200°C for 3 minutes. Example 2 (Only data different from Example 1 are listed) Metal plate: The undercoat was a polyester resin paint with a coating amount of 40 g/m 2 . Intermediate coating: A polyester resin paint containing 20% by weight of antimony oxide as a flame retardant and 15% of a halogen phosphorus compound and 10% of aluminum hydroxide was used in a coating amount of 40 g/m 2 . Particles: Colored silica sand was sprinkled at 1490 g/m 2 and baked to dry. Top coat film: A thermosetting polyester clear paint was used. Flame retardants Antimony oxide 5% by weight Halogen phosphorus compound 12% by weight Coating amount 40g/m 2 were used. The quality test results of the above examples and comparative products are shown in Table 3 below.

【表】 尚、各々の比較例の作成条件は次の通りであ
る。 比較品1……市販品屋根剤、 金属板……0.27mm厚亜鉛鉄板、化成処理済、 中塗り……アクリル樹脂塗料に着色石英粒子を
被覆、 上塗り……アクリル樹脂クリヤー塗料、 比較品2……輸入品屋根材、 金属板……0.45mm厚亜鉛鉄板、 中塗り……アルフアルト系接着剤に天然砕石を
被覆、 上塗り……合成樹脂系クリヤー塗料、 以上の実施例1、2で明らかなように、本発明
の屋根材は不燃材料認定試験合格品であり、耐衝
撃性、曲げ加工性に優れ、特に耐食性において従
来品より優れており、また粒子は前述したように
中塗りおよび上塗りの両塗料で接着されているの
で密着性が優れ、かつ粒度分布の限定によつて美
観意匠性にも優れた金属屋根材であり、従来の屋
根材の問題点および欠点を殆んど解決することが
できた。 次に、本発明の一実施例の製造方法を製造工程
順に説明する。
[Table] The preparation conditions for each comparative example are as follows. Comparison product 1...Commercially available roofing material, metal plate...0.27mm thick zinc iron plate, chemical conversion treated, intermediate coating...acrylic resin paint coated with colored quartz particles, top coating...acrylic resin clear paint, comparative product 2... ...Imported roofing material, Metal plate...0.45mm thick galvanized iron plate, Intermediate coating...Natural crushed stone coated with Alpha Alto adhesive, Top coating...Synthetic resin clear paint, As is clear from Examples 1 and 2 above. In addition, the roofing material of the present invention has passed the noncombustible material certification test, has excellent impact resistance and bending workability, and is particularly superior to conventional products in corrosion resistance. This metal roofing material has excellent adhesion because it is bonded with paint, and has an excellent aesthetic design due to its limited particle size distribution, and can solve most of the problems and drawbacks of conventional roofing materials. did it. Next, a manufacturing method according to an embodiment of the present invention will be explained in order of manufacturing steps.

【表】【table】

【表】 尚、中塗り、上塗りの各塗装工程における吹付
けは静電塗装、エアースプレー、エアレススプレ
ー等任意の方法でよく、また手動、自動等任意に
選定できるが、粒子の散布は中塗り塗布後10分以
内で完了する必要がある。 粒子の散布における本発明の特徴は、粗粒子の
散布と細粒子の散布を二工程に別けて行なうもの
で、これによつて粗粒子間の間隙を細粒子で完全
にうめることができ、中塗り塗装面が露出せず、
塗装の劣化による粒子の脱落および耐食性の低下
を防止でき、また優れた外観を維持することがで
きる。 また各塗料共、焼付乾燥作業を行なうので、密
着性、耐候性、耐水性、耐食性に優れた塗装面を
形成することができる。また中塗りおよび上塗り
工程で難燃剤を添加し、かつ塗布量を限定した塗
装を行なうので極めて不燃性の高い屋根材を製造
することができる。 [発明の効果] 本発明は以上説明したとおり、防錆顔料を添加
した熱硬化性合成樹脂で下塗り塗装され且つ所定
の屋根材形状に成形された金属板の前記下塗り塗
装被膜の上に、難燃剤を添加した熱硬化性合成樹
脂又は熱可塑性合成樹脂からなる中塗り塗料の塗
布層が形成され、前記中塗り塗装層の上に、粒度
分布が8〜35メツシユの彩色鉱物の粗粒子80〜90
%と35〜200メツシユの彩色鉱物の細粒子10〜20
%とが接着され、前記粒子接着層を被つて、難燃
剤を添加した透明な熱硬化性合成樹脂又は熱可塑
性合成樹脂の上塗り塗料の塗膜が形成されている
ものであるため、不燃性、耐衝撃性、曲げ加工
性、耐食性に優れており、また彩色鉱物の粒子は
中塗り及び上塗りの両塗料で接着されているので
密着性が優れ、且つ粒度分布の限定によつて外観
性等を満足させる屋根材が得られる。 また、屋根材は、防錆顔料を添加した熱硬化性
合成樹脂で金属板に下塗り塗装した後、該下塗り
塗装面が表面になる如く前記金属板を所定の屋根
材形状にプレス成形し、前記下塗り塗装面に難燃
材を添加した熱硬化性合成樹脂又は熱可塑性合成
樹脂からなる中塗り塗料を塗布した後、直ちに8
〜35メツシユの彩色鉱物の粗粒子を80〜90%散布
し、次いで35〜200メツシユの彩色鉱物の細粒子
を10〜20%前記粗粒子の間隙を埋める如く散布し
て焼付乾燥し、更にその上面を難燃剤を添加した
透明な熱硬化性合成樹脂又は熱可塑性合成樹脂か
らなる上塗り塗料によつて被覆塗装して焼付する
方法で作成するため、粗粒子間の間隙を細粒子で
完全にうめることができ、その粒子接着層を難燃
剤を添加した透明な上塗り塗料の塗膜で被つてい
るため、粒子の脱落および耐食性の低下を防止で
き、また優れた外観を維持することができる。 また各塗料とも、焼付乾燥操作を行なうので、
密着性、耐候性、耐水性、耐食性に優れた塗装面
を形成することができる。また中塗りおよび上塗
り工程で難燃剤を添加し、かつ塗布量を限定した
塗装を行なうので極めて不燃性の高い屋根材を製
造することができるという効果がある。
[Table] In addition, spraying in each painting process of intermediate coating and top coating may be done by any method such as electrostatic coating, air spray, airless spray, etc., and can be selected manually or automatically, but the spraying of particles is performed during intermediate coating. It must be completed within 10 minutes after application. A feature of the present invention in dispersing particles is that the dispersion of coarse particles and the dispersion of fine particles are carried out in two separate steps, thereby making it possible to completely fill the gaps between coarse particles with fine particles, The painted surface is not exposed,
It is possible to prevent particles from falling off and a decrease in corrosion resistance due to paint deterioration, and to maintain an excellent appearance. Furthermore, since each paint is baked and dried, it is possible to form a painted surface with excellent adhesion, weather resistance, water resistance, and corrosion resistance. Furthermore, since a flame retardant is added in the intermediate coating and top coating steps, and the amount of coating is limited, roofing materials with extremely high noncombustibility can be manufactured. [Effects of the Invention] As explained above, the present invention provides a coating that is difficult to apply on top of the undercoat film of a metal plate that has been undercoated with a thermosetting synthetic resin containing anti-corrosion pigments and formed into a predetermined roofing material shape. A coating layer of an intermediate coating made of a thermosetting synthetic resin or a thermoplastic synthetic resin to which a retardant has been added is formed, and on the intermediate coating layer, coarse particles of a colored mineral having a particle size distribution of 8 to 35 mesh are applied. 90
Fine particles of colored minerals of 10-20% and 35-200 mesh
% are adhered to each other, and a coating film of a transparent thermosetting synthetic resin or thermoplastic synthetic resin top coat containing a flame retardant is formed covering the particle adhesive layer, so it is non-flammable, It has excellent impact resistance, bending workability, and corrosion resistance, and since the colored mineral particles are bonded with both intermediate and top coats, it has excellent adhesion, and the limited particle size distribution improves appearance. You can obtain roofing materials that satisfy your needs. Further, the roofing material is prepared by applying an undercoat to a metal plate with a thermosetting synthetic resin containing anti-rust pigments, and then press-molding the metal plate into a predetermined roofing shape so that the undercoated surface becomes the surface. Immediately after applying an intermediate coat of thermosetting synthetic resin or thermoplastic synthetic resin containing a flame retardant to the undercoated surface,
Sprinkle 80-90% of colored mineral coarse particles of ~35 mesh, then sprinkle 10-20% of 35-200 mesh of colored mineral fine particles to fill the gaps between the coarse particles, bake and dry, and then The upper surface is coated with a top coat of transparent thermosetting synthetic resin or thermoplastic synthetic resin containing flame retardant and baked, so the gaps between coarse particles are completely filled with fine particles. Since the particle adhesion layer is covered with a transparent topcoat film containing a flame retardant, it is possible to prevent particles from falling off and deterioration of corrosion resistance, and to maintain an excellent appearance. In addition, each paint undergoes a baking drying process, so
It is possible to form a painted surface with excellent adhesion, weather resistance, water resistance, and corrosion resistance. Furthermore, since a flame retardant is added in the intermediate coating and top coating steps, and the amount of coating is limited, it is possible to produce roofing materials with extremely high nonflammability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第4図はのこ発明における下塗り金
属板の成形後の形状の1例を示す平面図および斜
視図、第5図は本発明屋根材の構成を示す断面図
である。 1……素材金属板、2……化成皮膜層、3……
下塗り塗膜層、4……中塗り塗膜層、5……彩色
鉱物粒子、6……上塗り塗膜層。
1 to 4 are a plan view and a perspective view showing an example of the shape of the undercoated metal plate after molding in the present invention, and FIG. 5 is a sectional view showing the structure of the roofing material of the present invention. 1... Material metal plate, 2... Chemical conversion film layer, 3...
Undercoat film layer, 4... Intermediate coat layer, 5... Colored mineral particles, 6... Top coat film layer.

Claims (1)

【特許請求の範囲】 1 防錆顔料を添加した熱硬化性合成樹脂で下塗
で塗装され且つ所定の屋根材形状に成形された金
属板の前記下塗り塗装被膜の上に、難燃剤を添加
した熱硬化性合成樹脂又は熱可塑性合成樹脂から
なる中塗り塗料の塗布層が形成され、 前記中塗り塗装層の上に、粒度分布が8〜35メ
ツシユの彩色鉱物の粗粒子80〜90%と35〜200メ
ツシユの彩色鉱物の細粒子10〜20%とが接着さ
れ、 前記粒子接着層を被つて、難燃剤を添加した透
明な熱硬化性合成樹脂又は熱可塑性合成樹脂の上
塗り塗料の塗膜が形成されていることを特徴とす
る金属板成形不燃性屋根材。 2 前記中塗り塗布層が、酸化アンチモン、ハロ
ゲンりん化合物、水酸化アルミニウム、臭化化合
物のうちから選んだ1種または2種以上の混合物
で且つ塗料固定分比で20〜45重量%の難燃剤を含
む前記中塗り塗料によつて、塗布量20〜60g/m2
で形成されていることを特徴とする特許請求の範
囲第1項記載の金属板成形不燃性屋根材。 3 前記上塗り塗膜が、三酸化アンチモンとハロ
ゲンりん化合物の混合物でかつ塗料固定分比で15
〜18重量%の難燃材を含む前記上塗り塗料によつ
て、塗布量30〜50g/m2で形成されていることを
特徴とする特許請求の範囲第1項又は第2項記載
に金属板成形不燃性屋根材。 4 防錆顔料を添加した熱硬化性合成樹脂で金属
板に下塗り塗装した後、 該下塗り塗装面が表面になる如く前記金属板を
所定の屋根材形状にプレス成形し、 前記下塗り塗装面に難燃剤を添加した熱硬化性
合成樹脂又は熱可塑性合成樹脂からなる中塗り塗
料を塗布した後、直ちに8〜35メツシユの彩色鉱
物の粗粒子を80〜90%散布し、次いで35〜200メ
ツシユの彩色鉱物と細粒子を10〜20%前記粗粒子
の間隙を埋める如く散布して焼付乾燥し、 更にその上面を、難燃剤を添加した透明な熱硬
化性合成樹脂又は熱可塑性合成樹脂からなる上塗
り塗料によつて被覆塗装して焼付することを特徴
とする金属板成形不燃性屋根材の製造方法。 5 前記中塗り塗料が、酸化アンチモン、ハロゲ
ンりん化合物、水酸化アルミニウム、臭化化合物
のうちから選んだ1種または2種以上の混合物で
かつ塗料固定分比で20〜45重量%である難燃剤を
含み、且つその塗布量を20〜60g/m2とすること
を特徴とする特許請求の範囲第4項記載の金属板
成形不燃性屋根材の製造方法。 6 前記上塗り塗料が、三酸化アンチモンとハロ
ゲンりん化合物の混合物でかつ塗料固定分比で15
〜18重量%である難燃材を含み、且つその塗布量
を30〜50g/m2とすることを特徴とする特許請求
の範囲第4項又は第5項記載の金属板成形不燃性
屋根材の製造方法。 7 前記粗粒子と細粒子との散布量の合計が、
1200〜1600g/m2となるように散布することを特
徴とする特許請求の範囲第4〜6項の何れかに記
載の金属板成形不燃性屋根材の製造方法。
[Scope of Claims] 1. Heat treatment with a flame retardant added on top of the undercoat film of a metal plate coated with an undercoat of a thermosetting synthetic resin added with anti-corrosion pigments and molded into a predetermined roof material shape. A coating layer of an intermediate coating made of a curable synthetic resin or a thermoplastic synthetic resin is formed, and on the intermediate coating layer, 80 to 90% coarse particles of a colored mineral with a particle size distribution of 8 to 35 mesh and 35 to 35 mesh are applied. 200 mesh of colored mineral fine particles of 10 to 20% are adhered, and a coating film of a transparent thermosetting synthetic resin or thermoplastic synthetic resin top coat containing a flame retardant is formed, covering the particle adhesive layer. A metal plate molded noncombustible roofing material characterized by: 2. The intermediate coating layer is made of one or a mixture of two or more selected from antimony oxide, halogen phosphorus compounds, aluminum hydroxide, and bromide compounds, and contains a flame retardant of 20 to 45% by weight as a fixed proportion of the paint. Depending on the intermediate coating material containing
The metal plate molded noncombustible roofing material according to claim 1, characterized in that it is formed of a metal sheet. 3. The top coat is a mixture of antimony trioxide and a halogen phosphorus compound, and the fixed ratio of the paint is 15.
The metal plate according to claim 1 or 2, characterized in that the metal plate is formed with the top coat containing ~18% by weight of flame retardant at a coating amount of 30~50g/ m2 . Molded noncombustible roofing material. 4. After applying an undercoat to a metal plate with a thermosetting synthetic resin added with anti-corrosion pigments, press-form the metal plate into a predetermined roofing material shape so that the undercoat surface becomes the surface, and apply an undercoat coating to the undercoat surface. After applying an intermediate coat of thermosetting synthetic resin or thermoplastic synthetic resin containing a repellent, immediately sprinkle 80 to 90% of coarse particles of colored minerals in 8 to 35 meshes, and then apply 35 to 200 meshes of coloring. 10 to 20% of minerals and fine particles are sprinkled to fill the gaps between the coarse particles, baked and dried, and the top surface is coated with a top coat of transparent thermosetting synthetic resin or thermoplastic synthetic resin containing a flame retardant. 1. A method for producing a noncombustible roofing material formed from a metal sheet, the method comprising coating and baking the metal sheet. 5. A flame retardant in which the intermediate coating is a mixture of one or more selected from antimony oxide, halogen phosphorus compounds, aluminum hydroxide, and bromide compounds, and the fixed proportion of the paint is 20 to 45% by weight. 5. The method for manufacturing a noncombustible roofing material formed from a metal sheet according to claim 4, characterized in that the coating amount is 20 to 60 g/m 2 . 6 The top coat is a mixture of antimony trioxide and a halogen phosphorus compound, and the fixed ratio of the paint is 15.
The metal sheet molded noncombustible roofing material according to claim 4 or 5, which contains a flame retardant in an amount of ~18% by weight and has an application amount of 30 to 50 g/ m2 . manufacturing method. 7 The total amount of spraying of the coarse particles and fine particles is
7. The method for manufacturing a metal sheet molded noncombustible roofing material according to any one of claims 4 to 6, characterized in that the metal sheet is sprayed at a density of 1200 to 1600 g/ m2 .
JP5607882A 1982-04-06 1982-04-06 Metal plate molded non-combustion roof material and production thereof Granted JPS58173244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5607882A JPS58173244A (en) 1982-04-06 1982-04-06 Metal plate molded non-combustion roof material and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5607882A JPS58173244A (en) 1982-04-06 1982-04-06 Metal plate molded non-combustion roof material and production thereof

Publications (2)

Publication Number Publication Date
JPS58173244A JPS58173244A (en) 1983-10-12
JPH0316466B2 true JPH0316466B2 (en) 1991-03-05

Family

ID=13017045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5607882A Granted JPS58173244A (en) 1982-04-06 1982-04-06 Metal plate molded non-combustion roof material and production thereof

Country Status (1)

Country Link
JP (1) JPS58173244A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61148046A (en) * 1984-12-24 1986-07-05 大洋製鋼株式会社 Surface-treated metallic plate and manufacture thereof
JPS637450A (en) * 1986-06-27 1988-01-13 川鉄建材工業株式会社 Macadam decorative surface finish panel and its production
JP6720496B2 (en) * 2015-10-22 2020-07-08 凸版印刷株式会社 Non-combustible moisture-proof decorative board and fittings

Also Published As

Publication number Publication date
JPS58173244A (en) 1983-10-12

Similar Documents

Publication Publication Date Title
US9511566B2 (en) Building construction material with high solar reflectivity
US4745032A (en) Roofing and similar materials
US7368150B2 (en) Method of applying a heat reflective coating to a substrate sheet
US6383560B1 (en) Method of applying a textured coating
CN104140707A (en) Thick section steel structure fireproof coating and construction technology thereof
US20120270015A1 (en) Colored metal flake surfaced roofing materials
US5916392A (en) Method of application and composition of coating for building surfaces
CA2500594A1 (en) Metal flake-surfaced roofing materials
US4876142A (en) Fluid resistant coating composition
US4241107A (en) Roof coating process
JP5797482B2 (en) Laminated body
JPH0316466B2 (en)
KR102633115B1 (en) Self-healing waterproofing method using microcapsule powder
KR101393731B1 (en) Ceiling tile with non uniform binder compositon
JP3285510B2 (en) Multi-painted plaster-like finish coating material
JP2001003002A (en) Coating material for decorating surface of building or structure
US2507020A (en) Imitation stucco finished metal
WO1988007930A1 (en) Fluid resistant coating composition
KR102617132B1 (en) A Eco-Friendly Multi-functional Building Finishing Decorative Material With Anti-Sliding Waterproofing Film And A Building Finishing Decorative Material Forming Method Thereof
JP3302713B2 (en) Highly durable coated metal plate having both scratch resistance and workability and continuous production method thereof
KR102684121B1 (en) Coating materials for building construction using wood particles and method for the same
JPH10238072A (en) Stone-patterned decorative panel
JPH0123436B2 (en)
JP4605353B2 (en) Thermal insulation waterproof sheet and method for manufacturing the same
JPH11156818A (en) Decorative board with pattern and manufacture thereof