JPH03164516A - Heating apparatus for vehicle - Google Patents

Heating apparatus for vehicle

Info

Publication number
JPH03164516A
JPH03164516A JP30374889A JP30374889A JPH03164516A JP H03164516 A JPH03164516 A JP H03164516A JP 30374889 A JP30374889 A JP 30374889A JP 30374889 A JP30374889 A JP 30374889A JP H03164516 A JPH03164516 A JP H03164516A
Authority
JP
Japan
Prior art keywords
engine
cooling water
heat exchanger
flow path
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30374889A
Other languages
Japanese (ja)
Inventor
Hiroki Matsuo
弘樹 松尾
Masayoshi Enomoto
榎本 雅好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP30374889A priority Critical patent/JPH03164516A/en
Publication of JPH03164516A publication Critical patent/JPH03164516A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To quickly raise the temperature of cooling water after starting and to shorten the heating stand-by time by controlling a switching valve of a by- pass passage to open, which is adapted to connect an outlet of a water pump and an inlet heat exchanger when the temperature of cooling water of an engine portion is less than a designated value. CONSTITUTION:A heat exchanger 3 is installed in an engine exhaust path E1. There is provided a cooling water passage P which is extended from a water pump 1 through an engine 2 to the heat exchanger 3 and then returned to the water pump 1 through a heater core 4. In the thus constructed apparatus, an engine by-pass passage 6 for connecting an outlet of the water pump 1 and the heat exchanger 3 is added, and a switching valve 81 is disposed in the passage. On the other hand, a flow control valve 82 is disposed in a cooling water passage P1 for connecting the outlet side of the engine and the outlet side of the engine by-pass passage 6. When the temperature of cooling water of an engine portion is less than a designated value, the switching valve 81 is controlled to open by a valve control means 6.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は車両用暖房装置に関し、エンジン始動初期の急
速暖房が可能な車両用暖房装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a vehicle heating system, and more particularly to a vehicle heating system that is capable of rapid heating at the initial stage of engine startup.

[従来の技術] 車両暖房は温水式のものが殆どであり、この場合、エン
ジン始動初期にはエンジン冷却水温が十分に上昇してお
らず、かつその上昇速度も遅いため、暖かい空調風を得
るのに時間を要していた。
[Prior art] Most vehicle heaters are hot water type, and in this case, the engine cooling water temperature does not rise sufficiently at the beginning of the engine startup, and the rate of rise is slow, so it is difficult to obtain warm air conditioned air. It took a long time.

そこで、エンジンの排気路中に熱交換器を設けて、高温
排気ガスによりエンジン冷却水を急速加熱することが試
みられている(例えば実開昭56−43423号公報、
実開昭59−94911号公報)。これを第3図で説明
すると、エンジン冷却水は、ウォータポンプ1よりエン
ジン2に至り、排気バイパス流路E1に設けた熱交換器
3を経てヒータコア4より再びウォータポンプ1に戻る
冷却水流路Pを流通する。図中、Eはエンジン排気主流
路であり、83は電磁切替弁である。また、9はラジェ
ータであり、サーモスタット7はエンジン冷却水温が所
定以上になるとその開度が大きくなって、上記ラジェー
タ9へ向かう冷却水流路P2の流量を増加せしめる。
Therefore, attempts have been made to provide a heat exchanger in the exhaust path of the engine and rapidly heat the engine cooling water using high-temperature exhaust gas (for example, Japanese Utility Model Application Publication No. 56-43423,
Utility Model Application Publication No. 59-94911). To explain this with reference to FIG. 3, engine cooling water reaches the engine 2 from the water pump 1, passes through the heat exchanger 3 provided in the exhaust bypass flow path E1, and returns to the water pump 1 from the heater core 4 through the cooling water flow path P. be distributed. In the figure, E is an engine exhaust main flow path, and 83 is an electromagnetic switching valve. Further, 9 is a radiator, and the thermostat 7 increases its opening degree when the engine cooling water temperature exceeds a predetermined value, thereby increasing the flow rate of the cooling water passage P2 toward the radiator 9.

かかる構造の暖房装置においては、エンジン始励時で未
だ十分に暖機状態にない場合Gこは、切替弁83により
排気バイパス流路E1にエンジン排気を導入し、熱交換
器3において排気ガス熱で直接エンジン冷却水を暖めて
比較的速やかに暖房を開女合することができる。
In a heating system having such a structure, if the engine is not yet sufficiently warmed up when the engine is started, the engine exhaust gas is introduced into the exhaust bypass passage E1 by the switching valve 83, and the exhaust gas heat is transferred to the heat exchanger 3. It is possible to heat the engine cooling water directly and start heating relatively quickly.

U発明が解決しようとする課題] 上記従来装置は排気ガス熱を利用することにより、それ
以前の装置に較べると暖房開始時期をある程度は早める
ことができるが、未だ十分ではなかった。これは以下の
理由によるものである。
U Problems to be Solved by the Invention] By utilizing exhaust gas heat, the above-mentioned conventional device can advance the heating start time to some extent compared to previous devices, but it is still not sufficient. This is due to the following reasons.

すなわち、エンジンの発熱量および排気ガスからの回収
熱量をそれぞれQE 、 QH、エンジンとヒータコア
側の熱容量をそれぞれCE 、CHとし冷却水温の上昇
速度をdT/dtとすると、dT/dt=1/C・(Q
E +QH>となる。ここで、C=CE +CHである
That is, if the calorific value of the engine and the amount of heat recovered from exhaust gas are QE and QH, respectively, the heat capacities of the engine and heater core are CE and CH, respectively, and the rate of increase in cooling water temperature is dT/dt, then dT/dt=1/C.・(Q
E +QH>. Here, C=CE+CH.

エンジンの熱容量CEは通常がなり大きく、したがって
、排気ガスの回収熱量QHが寄与しても温度上昇は緩慢
なものとなる。
The heat capacity CE of the engine is usually large, so even if the recovered heat QH of the exhaust gas contributes, the temperature rise will be slow.

本発明はかかる課題を解決するもので、エンジン冷機時
には冷却水加熱系よりエンジンを切り離して、速やかな
暖房開始を可能とした車両用暖房装置を提供することを
目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve this problem, and it is an object of the present invention to provide a heating system for a vehicle that disconnects the engine from the cooling water heating system when the engine is cold, thereby making it possible to start heating quickly.

[課題を解決するための手段] 本発明の詳細な説明すると、エンジン排気路E1(第1
図)に熱交換器3を設けるとともに、ウォータポンプ1
よりエンジン2を経て上記熱交換器3に至り、さらにヒ
ータコア4を経て上記ウォータポンプ1に戻る冷却水流
路Pを有する車両用暖房装置において、上記ウォータポ
ンプ1の出口と熱交換器3の入口を連通ずるエンジンバ
イパス流路6を設け、該エンジンバイパス流路6中に開
閉弁81を設けるとともに、エンジンの出口側と上記エ
ンジンバイパス流路6の出口側とを接続する冷却水流路
P1中に流量制御弁82を設け、かつ、上記エンジン部
の冷却水温度が所定値以下の時に、上記開閉弁81を開
放作動する弁制御手段5を設けたものである。
[Means for Solving the Problems] To explain the present invention in detail, the engine exhaust path E1 (first
) is equipped with a heat exchanger 3 and a water pump 1.
In a vehicle heating system having a cooling water passage P which reaches the heat exchanger 3 via the engine 2 and returns to the water pump 1 via the heater core 4, the outlet of the water pump 1 and the inlet of the heat exchanger 3 are connected. A communicating engine bypass flow path 6 is provided, an on-off valve 81 is provided in the engine bypass flow path 6, and a flow rate is provided in a cooling water flow path P1 connecting the outlet side of the engine and the outlet side of the engine bypass flow path 6. A control valve 82 is provided, and a valve control means 5 is provided which opens the on-off valve 81 when the temperature of the cooling water in the engine section is below a predetermined value.

[作用] 上記構成の暖房装置において、エンジン始動直後には、
エンジン冷却水温度は所定値より低く、弁制御手段5は
開閉弁81を開放する。これにより、ウォータポンプ1
より吐出されたエンジン冷却水はその大部分が、エンジ
ン2を経由することなく、バイパス流路6を経て直接熱
交換器3に至り、排気ガス熱で暖められる。
[Function] In the heating device with the above configuration, immediately after starting the engine,
The engine coolant temperature is lower than a predetermined value, and the valve control means 5 opens the on-off valve 81. As a result, water pump 1
Most of the engine cooling water discharged from the exhaust gas directly reaches the heat exchanger 3 through the bypass passage 6 without passing through the engine 2, and is warmed by exhaust gas heat.

この場合の冷却水加熱系には熱容量の大きいエンジン2
が含まれないため、エンジン冷却水温度は急速に上昇し
、ヒータコア4で暖められた空調風により速やかな暖房
が可能となる。
In this case, the cooling water heating system uses an engine 2 with a large heat capacity.
is not included, the temperature of the engine cooling water rises rapidly, and the conditioned air warmed by the heater core 4 enables rapid heating.

し実施例コ 第1図において、ウォータポンプ1よりエンジン2を経
て熱交換器3に至り、さらにヒータコア4を経て戻る冷
却水流路Pが設けられ、かつ、ウォータポンプ1の出口
と熱交換器3の入口を結んでエンジンバイパス流路6を
設けて、該バイパス流路6中に電磁開閉弁81が設けで
ある。また、エンジン2の出口より上記バイパス流路6
の接続点に至るエンジン部冷却水流路P1中には流量制
御弁82が設けである。
In the embodiment shown in FIG. 1, a cooling water passage P is provided from the water pump 1 to the heat exchanger 3 via the engine 2, and further returns via the heater core 4, and the outlet of the water pump 1 is connected to the heat exchanger 3. An engine bypass flow path 6 is provided by connecting the inlets of the engine, and an electromagnetic on-off valve 81 is provided in the bypass flow path 6. Further, from the outlet of the engine 2, the bypass flow path 6
A flow control valve 82 is provided in the engine cooling water flow path P1 leading to the connection point.

他の装置構成は上記従来例と同様であり、さらに上記電
磁開閉弁81、流量制御弁82、電磁切替弁83の作動
を制御する弁制御回路5が設けられ、該回路5には、冷
却水温が所定温度に至った時に作動するサーモスタット
7より作動開始信号が入力している。
Other device configurations are the same as those of the conventional example, and are further provided with a valve control circuit 5 that controls the operations of the electromagnetic on-off valve 81, the flow rate control valve 82, and the electromagnetic switching valve 83. An operation start signal is input from the thermostat 7, which operates when the temperature reaches a predetermined temperature.

上記構成の暖房装置において、エンジン始動直後で冷却
水温度が所定値に達していない場合には、弁制御回路5
は、切替弁83を作動せしめてエンジン排気ガスを排気
バイパス流#IE1へ導入するとともに、開閉弁81を
全開となし、流量制御弁82はエンジン2内で冷却水が
沸騰しない程度の量(例えば2000cc級水冷ガソリ
ンエンジンで1ρ/ m i n程度)を流すように設
定する。
In the heating device configured as described above, if the cooling water temperature has not reached the predetermined value immediately after the engine starts, the valve control circuit 5
In this case, the switching valve 83 is operated to introduce the engine exhaust gas into the exhaust bypass flow #IE1, the on-off valve 81 is fully opened, and the flow rate control valve 82 is set to a level that prevents the cooling water from boiling in the engine 2 (e.g. Set to flow about 1ρ/min with a 2000cc class water-cooled gasoline engine.

この状態では、エンジン冷却水はその大部分が、エンジ
ン2を通過することなく、エンジンバイパス流路6を経
て直接熱交換器3に至り、排気ガス熱で加熱される。こ
の経路における熱方程式は、冷却水温変化をdTH/d
tとして、dTH/dt=QH/CHで表され、一方、
エンジン部冷却水流路P1における熱方程式は、冷却水
温変化をdTE/dtとして、dTE /d t =Q
E /CFで表される。ここで、QE 、QHはそれぞ
れエンジン2の発熱量および排気ガスからの回収熱量、
CE 、CHはそれぞれエンジン2の熱容量とヒータコ
ア4の熱容量である。
In this state, most of the engine cooling water does not pass through the engine 2, but directly reaches the heat exchanger 3 via the engine bypass passage 6, where it is heated by exhaust gas heat. The heat equation in this path is dTH/d
t is expressed as dTH/dt=QH/CH, while
The heat equation in the engine cooling water flow path P1 is dTE /d t =Q, where the change in cooling water temperature is dTE/dt.
It is expressed as E/CF. Here, QE and QH are the calorific value of engine 2 and the amount of heat recovered from exhaust gas, respectively.
CE and CH are the heat capacity of the engine 2 and the heat capacity of the heater core 4, respectively.

したがって、CH<QHCE /QEが成立すれば、熱
交換器3による冷却水温の上昇率dTH/dtがエンジ
ン部冷却水流路P1における冷却水温の上昇率dTE/
dtを上回る。水冷ガソリンエンジンでは、排気損失は
エンジン始動QEと同等と考えられ、熱交換器3の熱回
収効率を50%とすると、回収熱量QHはQH=0.5
QEとなる。また、2000cc級のエンジンの熱容量
CEは一般に10Kcal/℃程度であるから、結局、
ヒータコア4の熱容量CHをCH<5 (Kca 1.
 /”C)に設計すれば良い。
Therefore, if CH<QHCE /QE holds true, the rate of increase in the cooling water temperature by the heat exchanger 3 dTH/dt is equal to the rate of increase in the cooling water temperature in the engine cooling water flow path P1 dTE/
Exceeds dt. In a water-cooled gasoline engine, the exhaust loss is considered to be equivalent to the engine starting QE, and if the heat recovery efficiency of the heat exchanger 3 is 50%, the recovered heat amount QH is QH = 0.5
It becomes QE. Also, the heat capacity CE of a 2000cc class engine is generally around 10Kcal/℃, so after all,
The heat capacity CH of the heater core 4 is CH<5 (Kca 1.
/”C).

かくして、エンジン冷却水はバイパス流路6を経て熱交
換器3で急速加熱され、温度上昇したエンジン冷却水に
よりヒータコア4を流通する空調風が加熱されて、速や
かな暖房が開始される。
In this way, the engine cooling water passes through the bypass flow path 6 and is rapidly heated by the heat exchanger 3, and the engine cooling water whose temperature has increased heats the conditioned air flowing through the heater core 4, thereby quickly starting heating.

エンジン1の暖機が進行し、エンジン出口の冷却水温が
上昇してサーモスタット7が作動を開始すると、弁制御
回路5は電磁開閉弁81を閉じるとともに、流量制御弁
82を全開となし、さらに電磁切替弁83により排気ガ
スの流れを排気主流路Eへ戻す。以後は、十分に温度上
昇したエンジン2により冷却水が加熱されて暖房状態が
維持される。
As the engine 1 warms up, the cooling water temperature at the engine outlet rises, and the thermostat 7 starts operating, the valve control circuit 5 closes the electromagnetic on-off valve 81, fully opens the flow control valve 82, and then The flow of exhaust gas is returned to the exhaust main flow path E by the switching valve 83. Thereafter, the cooling water is heated by the engine 2 whose temperature has risen sufficiently, and the heating state is maintained.

第2図には本発明の効果を示し、図中線Xが本発明、線
yは熱交換器を設けた従来例、線Zは熱交換器を設けな
い場合である。図より知られる如く、エンジン始動f&
 1分で、空調吹出湯度は熱交換器を設けた従来装置に
比して13℃程度も上昇している。
FIG. 2 shows the effects of the present invention, in which line X is the present invention, line y is the conventional example with a heat exchanger, and line Z is the case without the heat exchanger. As can be seen from the figure, engine starting f&
In one minute, the temperature of hot water discharged from the air conditioner increases by about 13 degrees Celsius compared to conventional equipment equipped with a heat exchanger.

なお、上記実施例において、冷却水流路を切替えるのに
サーモスタット7の信号に代えて、エンジンバイパス流
路6とエンジン部冷却水流路P1にそれぞれサーミスタ
センサを設けて、エンジン部冷却水温がバイパス部冷却
水温を越えた時点で電磁開閉弁81を閉じるようにして
も良い。
In the above embodiment, instead of using the signal from the thermostat 7 to switch the cooling water flow path, a thermistor sensor is provided in the engine bypass flow path 6 and the engine cooling water flow path P1, respectively, so that the temperature of the engine cooling water changes depending on the bypass cooling water temperature. The electromagnetic on-off valve 81 may be closed when the water temperature exceeds the water temperature.

[発明の効果] 以上の如く、本発明の暖房装置によれば、エンジン始動
俊速やかにエンジン冷却水温を上昇せしめることができ
、暖房待機時間が大幅に短縮される。
[Effects of the Invention] As described above, according to the heating device of the present invention, the engine cooling water temperature can be raised quickly when the engine is started, and the heating standby time can be significantly shortened.

【図面の簡単な説明】 第1図および第2図は本発明の一実施例を示し、第1図
は装置の全体系統図、第2図は空調吹出温度の経時変化
を示す特性図、第3図は従来装置の全体系統図である。 1・・・ウォータポンプ 2・・・エンジン 3・・・熱交換器 4・・・ヒータコア 5・・・弁制御回路(弁制御手段) 6・・・エンジンバイパス流路 81・・・開閉弁 82・・・流量制御弁 El・・・排気バイパス流路(エンジン排気路)・・冷
却水流路 Pl・・・エンジン部冷却水流路 虐調吹出空気;1′+a度 ta(’C)
[Brief Description of the Drawings] Fig. 1 and Fig. 2 show an embodiment of the present invention, Fig. 1 is an overall system diagram of the device, Fig. 2 is a characteristic diagram showing changes over time in air conditioner outlet temperature, and Fig. Figure 3 is an overall system diagram of the conventional device. 1...Water pump 2...Engine 3...Heat exchanger 4...Heater core 5...Valve control circuit (valve control means) 6...Engine bypass flow path 81...Opening/closing valve 82 ...Flow rate control valve El...Exhaust bypass flow path (engine exhaust path)...Cooling water flow path Pl...Engine part cooling water flow path malfunctioning air; 1'+a degrees ta ('C)

Claims (1)

【特許請求の範囲】[Claims] エンジン排気路に熱交換器を設けるとともに、ウォータ
ポンプよりエンジンを経て上記熱交換器に至り、さらに
ヒータコアを経て上記ウォータポンプに戻る冷却水流路
を有する車両用暖房装置において、上記ウォータポンプ
の出口と熱交換器の入口とを連通するエンジンバイパス
流路を設け、該エンジンバイパス流路中に開閉弁を設け
るとともに、エンジンの出口側と上記エンジンバイパス
流路の出口側とを接続する冷却水流路中に流量制御弁を
設け、かつ、上記エンジン部の冷却水温度が所定値以下
の時に、上記開閉弁を開放作動する弁制御手段を設けた
車両用暖房装置。
In a vehicle heating system, a heat exchanger is provided in an engine exhaust path, and a cooling water flow path is provided from a water pump through the engine to the heat exchanger, and further returns to the water pump via a heater core. An engine bypass flow path communicating with the inlet of the heat exchanger is provided, an on-off valve is provided in the engine bypass flow path, and a cooling water flow path connects the outlet side of the engine and the outlet side of the engine bypass flow path. A heating system for a vehicle, comprising: a flow rate control valve; and a valve control means for opening the opening/closing valve when the temperature of the cooling water in the engine section is below a predetermined value.
JP30374889A 1989-11-22 1989-11-22 Heating apparatus for vehicle Pending JPH03164516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30374889A JPH03164516A (en) 1989-11-22 1989-11-22 Heating apparatus for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30374889A JPH03164516A (en) 1989-11-22 1989-11-22 Heating apparatus for vehicle

Publications (1)

Publication Number Publication Date
JPH03164516A true JPH03164516A (en) 1991-07-16

Family

ID=17924800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30374889A Pending JPH03164516A (en) 1989-11-22 1989-11-22 Heating apparatus for vehicle

Country Status (1)

Country Link
JP (1) JPH03164516A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5551384A (en) * 1995-05-23 1996-09-03 Hollis; Thomas J. System for heating temperature control fluid using the engine exhaust manifold
US5724931A (en) * 1995-12-21 1998-03-10 Thomas J. Hollis System for controlling the heating of temperature control fluid using the engine exhaust manifold
US5934360A (en) * 1996-05-29 1999-08-10 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Cooling and heating system for vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5551384A (en) * 1995-05-23 1996-09-03 Hollis; Thomas J. System for heating temperature control fluid using the engine exhaust manifold
US5724931A (en) * 1995-12-21 1998-03-10 Thomas J. Hollis System for controlling the heating of temperature control fluid using the engine exhaust manifold
US5934360A (en) * 1996-05-29 1999-08-10 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Cooling and heating system for vehicle

Similar Documents

Publication Publication Date Title
JPH10103203A (en) Cooling device for water cooling engine
CN104736811B (en) Cooling control device and cooling control method for internal combustion engine
JPH02227315A (en) Operation method for vehicle-heating system and heating system for vehicle
WO1999053178A1 (en) Fluid circuit arrangement
JPH08218873A (en) Cooling device for internal combustion engine
JPS591998A (en) Heat medium pressure control device for waste heat restrieving device
JPH03164516A (en) Heating apparatus for vehicle
GB2234343A (en) Engine cooling system
JP2004301032A (en) Engine cooling system
JPH11107754A (en) Cooling system of internal combustion engine
JPS597139Y2 (en) Vehicle engine cooling mechanism
JPH1113471A (en) Engine cooling device
JP2646600B2 (en) Internal combustion engine cooling system
JPS6157984B2 (en)
JP2019031923A (en) Engine temperature adjusting device
JPS60248945A (en) Hot water supplying device
JPH02120119A (en) Heating apparatus for automobile
JPH0541213Y2 (en)
JPH0559946A (en) Engine cooling device of heat recovery type engine
JP2783827B2 (en) Heating system
JPH0426820Y2 (en)
KR100209023B1 (en) A quick heating device of a vehicle
JPS6232087Y2 (en)
JPH08177491A (en) Cooling device for internal combustion engine
JPS6356223A (en) Temperature control system for hydroponic greenhouse