JPH03164491A - Production of garnet type ferrite single crystal - Google Patents

Production of garnet type ferrite single crystal

Info

Publication number
JPH03164491A
JPH03164491A JP10319590A JP10319590A JPH03164491A JP H03164491 A JPH03164491 A JP H03164491A JP 10319590 A JP10319590 A JP 10319590A JP 10319590 A JP10319590 A JP 10319590A JP H03164491 A JPH03164491 A JP H03164491A
Authority
JP
Japan
Prior art keywords
single crystal
garnet
type ferrite
mol
polycrystalline body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10319590A
Other languages
Japanese (ja)
Other versions
JP2523205B2 (en
Inventor
Minoru Imaeda
美能留 今枝
Emi Asai
浅井 恵美
Katsunori Okamoto
岡本 克憲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2103195A priority Critical patent/JP2523205B2/en
Priority to DE69016699T priority patent/DE69016699T2/en
Priority to EP90304505A priority patent/EP0399665B1/en
Priority to CA002015606A priority patent/CA2015606C/en
Priority to US07/516,907 priority patent/US5256242A/en
Publication of JPH03164491A publication Critical patent/JPH03164491A/en
Application granted granted Critical
Publication of JP2523205B2 publication Critical patent/JP2523205B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • H01F1/346[(TO4) 3] with T= Si, Al, Fe, Ga

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To make it possible to stably grow a single crystal by joining a seed crystal to a specified polycrystalline body and heat-treating the joined body. CONSTITUTION:Two kinds of garnet type ferrite powders having slightly different compsns. are mixed in a prescribed ratio, molded and fired to obtain a garnet type ferrite polycrystalline body having a compsn. controlled to <=+ or -0.1mol% to the desired value. A seed crystal is joined to the polycrystalline body and the joined body is subjected to hot isostatic pressing in an atmosphere contg. 0.1-20% oxygen.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、多結晶体に種単結晶を接合して熱処理するこ
とにより多結晶体を単結晶化するガーネット型フェライ
ト単結晶の製造方法に関し、特に光アイソレークなどの
磁気光学素子として使用するガーネット型フェライト単
結晶の製造方法に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a garnet-type ferrite single crystal in which a polycrystalline body is made into a single crystal by bonding a seed single crystal to the polycrystalline body and heat-treating the polycrystalline body. In particular, the present invention relates to a method for manufacturing a garnet-type ferrite single crystal used as a magneto-optical element such as an optical isolake.

(従来の技術) ガーネット型フェライトは、Y:37゜5モル%、Fe
 :62.5モル%を主な組成とし、必要に応じてYの
一部およびFeの一部を置換した組成として知られてい
る。磁気光学素子として使用するガーネット型フェライ
ト結晶としては、多結晶体は粒界に気孔等が残存し光を
通しにくいため、単結晶体を使用していた。
(Prior art) Garnet type ferrite has Y: 37°5 mol%, Fe
:62.5 mol % is the main composition, and it is known as a composition in which part of Y and part of Fe are substituted as necessary. As a garnet-type ferrite crystal used as a magneto-optical element, a single crystal has been used because polycrystals have pores and the like remaining in the grain boundaries, making it difficult for light to pass through.

従来、ガーネット型フェライト単結晶体を得る方法とし
て、多結晶体に種単結晶を接合して熱処理することによ
り、同相反応を利用して多結晶体を単結晶化し、ガーネ
ット型フェライト単結晶体を製造する方法が、特公昭6
1−1391号公報および特開昭63−35490号公
報において知られている。
Conventionally, the method for obtaining a garnet-type ferrite single crystal is to bond a seed single crystal to a polycrystalline body and heat treat it to make the polycrystalline into a single crystal using an in-phase reaction. The manufacturing method was developed in 1977.
It is known from Japanese Patent Publication No. 1-1391 and Japanese Patent Application Laid-Open No. 63-35490.

(発明が解決しようとする課題) しかしながら、上述した単結晶の製造方法においては、
鉄の含有量(一部鉄以外の組成と置換したときは鉄に換
算した値)が目標値である62.5モル%より多い組成
では、単結晶中に酸化鉄の第2相が残留してしまう問題
があった。また、イツトリウムの含有量(一部イットリ
ウム以外の組成と置換したときはイツトリウムに換算し
た値)が目標値である37.5モル%より多い組成では
、単結晶が成長しないという問題もあった。そのため、
このような場合は、安定した単結晶の育成を実施するこ
とができなかった。
(Problem to be solved by the invention) However, in the method for manufacturing a single crystal described above,
If the iron content (value converted to iron when partially replaced with a composition other than iron) is higher than the target value of 62.5 mol%, the second phase of iron oxide will remain in the single crystal. There was a problem. In addition, there was also the problem that single crystals did not grow if the yttrium content (value converted to yttrium when a part of the composition was replaced with a composition other than yttrium) was higher than the target value of 37.5 mol%. Therefore,
In such cases, stable single crystal growth could not be achieved.

本発明の目的は上述した課題を解消して、安定した単結
晶育成が可能なガーネット型フェライト単結晶の製造方
法を提供しようとするものである。
An object of the present invention is to solve the above-mentioned problems and provide a method for manufacturing a garnet-type ferrite single crystal that allows stable single crystal growth.

(課題を解決するための手段) 本発明のガーネット型フェライト単結晶の製造方法は、
多結晶体に種単結晶を接合して熱処理することにより、
多結晶体を単結晶化するガーネット型フェライト単結晶
の製造方法において、多結晶体の組成を目標値に対して
±0.1モル%以下に制御することを特徴とするもので
ある。
(Means for Solving the Problems) The method for producing a garnet-type ferrite single crystal of the present invention includes:
By joining a seed single crystal to a polycrystalline body and heat-treating it,
A method for manufacturing a garnet-type ferrite single crystal in which a polycrystalline body is made into a single crystal is characterized in that the composition of the polycrystalline body is controlled to be within ±0.1 mol % with respect to a target value.

ここで、ガーネット型フェライトとは、一般式A3B6
012で表され、AとしてはY、希土類元素(La、 
Ce、 Pr、 Nd、 Pm、 Sm、 Eu、 G
d、 Tb、 Dy、 Ho。
Here, garnet type ferrite is of the general formula A3B6
012, where A is Y, rare earth elements (La,
Ce, Pr, Nd, Pm, Sm, Eu, G
d, Tb, Dy, Ho.

Er、 Tm、 Yb、 Lu)、 Bi、 Ca、 
Pb等を、BとしてはFeを基本元素として、AA、 
Ga、 In、 Sn、 Zr、 Ti。
Er, Tm, Yb, Lu), Bi, Ca,
Pb etc., B is Fe as the basic element, AA,
Ga, In, Sn, Zr, Ti.

Ge+  Vt Sb、Sc等を含むものである。It includes Ge+Vt Sb, Sc, etc.

また、ここでいう目標値とは、ガーネットの結晶構造(
組成)のA3B5O□2におけるA:B=37.50:
62.50を示すものである。Aに含まれる元素のモル
数の和とBに含まれる元素のモル数の和が、この目標値
に近い場合のみガーネット単一相のものが得られ、それ
以外では第2相が存在する。即ち、固溶範囲が非常に狭
い。
Also, the target value here refers to the crystal structure of garnet (
A:B=37.50 in A3B5O□2 of composition):
62.50. A garnet single phase is obtained only when the sum of the moles of elements contained in A and the sum of the moles of elements contained in B are close to this target value, and in other cases, a second phase is present. That is, the solid solution range is very narrow.

(作 用) 上述した構成において、多結晶体の組成を、それぞれ目
標値に対して±0.1モル%以下好ましくは±0.05
モル%以下に制御することにより、多結晶体に種単結晶
を接合して熱処理することによる固相反応により単結晶
を得る・場合に、酸化鉄の第2相の残留もなく、単結晶
の育成の成長距離が良好なガーネット型フェライト単結
晶を得ることができることを見出したことによる。
(Function) In the above-mentioned configuration, the composition of the polycrystalline body is adjusted to ±0.1 mol% or less, preferably ±0.05 mol%, with respect to each target value.
By controlling the mol% or less, when a single crystal is obtained by a solid phase reaction by joining a seed single crystal to a polycrystal and heat treating it, there is no residual iron oxide second phase and the single crystal is This is due to the discovery that it is possible to obtain a garnet-type ferrite single crystal with a good growth distance.

その際、組成制御の方法として、2種類の組成の近似し
て異なるガーネット型フェライト粉末、すなわちある元
素の含有量が多い粉末と少ない粉末を、そのうちの一方
は目標とする組成より高く他の一方が低いフェライト粉
末を所定比で混合すると、本発明で目標とする±0.1
0%程度の精度をより簡単に達成できるため好ましい。
At that time, as a composition control method, two types of garnet-type ferrite powders with approximately different compositions, one with a high content of a certain element and one with a low content, are used, one of which is higher than the target composition and the other with a lower content. When ferrite powder with low
This is preferable because accuracy of about 0% can be achieved more easily.

なお、上記調合補正のほかに、工程の安定化等により上
記精度に組成を制御できる場合はその方法でも組成制御
できる。
In addition to the above-mentioned formulation correction, if the composition can be controlled to the above-mentioned accuracy by stabilizing the process, the composition can also be controlled by that method.

また、熱処理を熱間静水圧プレス処理(以下、HIP又
はHIP処理と記す)で行うと、さらに安定した単結晶
育成が可能になるため好ましいとともに、酸素を含む雰
囲気ガス好ましくは酸素を0.1%以上20%以下含有
する雰囲気ガス中で熱処理すると、ガーネットの分解溶
融温度が上昇するためより焼結温度も高くでき焼結しや
すくなり、さらに各組成が分解しにく(なり他の相の発
生を防止できるため好ましい。
In addition, it is preferable to perform the heat treatment by hot isostatic pressing (hereinafter referred to as HIP or HIP treatment) because it enables more stable single crystal growth. When heat-treated in an atmospheric gas containing garnet % to 20%, the decomposition and melting temperature of garnet increases, making the sintering temperature higher and sintering easier. This is preferable because it can prevent occurrence.

なお、ここで光吸収係数αは、以下の式より得ることが
できる。
Note that the light absorption coefficient α can be obtained from the following formula.

■0 ここで Io:入射光の強度(反射を除く)■ =出射
光の強度 l :多結晶体の厚さ(cm) である。
■0 Here, Io: Intensity of incident light (excluding reflection)■ =Intensity of outgoing light l: Thickness of polycrystal (cm).

(実施例) 以下、本発明について詳細に説明する。(Example) The present invention will be explained in detail below.

まず、原料となるガーネット型フェライト粉末の製造法
について説明する。本発明においては所定組成のガーネ
ット型フェライト粉末が得られればどのような製造法で
あっても問題はないが、特に以下に述べる共沈法による
2方法が好ましい。
First, a method for producing garnet-type ferrite powder, which is a raw material, will be explained. In the present invention, any manufacturing method may be used as long as a garnet-type ferrite powder having a predetermined composition can be obtained, but the two methods using the coprecipitation method described below are particularly preferred.

すなわち、(1)少なくとも2価の鉄イオンとイツトリ
ウムまたは希土類金属イオンを含む混合水溶液から、塩
基により水酸化物を共沈させ、次いで鉄を3価に酸化し
つつ共沈物を合成した後、分離・乾燥・仮焼する方法、
および(2)少なくとも3価の硝酸鉄とイツトリウムま
たは希土類金属の硝酸塩を含む混合水溶液を原料とし、
この金属塩混合水溶液を塩基の水溶液中に滴下すること
により水酸化物を共沈させた後、分離・乾燥・仮焼する
方法が好ましい。
That is, (1) from a mixed aqueous solution containing at least divalent iron ions and yttrium or rare earth metal ions, a hydroxide is coprecipitated with a base, and then a coprecipitate is synthesized while oxidizing the iron to trivalent, and then Separation, drying, and calcining methods;
and (2) using a mixed aqueous solution containing at least trivalent iron nitrate and yttrium or rare earth metal nitrate as a raw material,
A preferred method is to drop the metal salt mixed aqueous solution into an aqueous base solution to coprecipitate the hydroxide, followed by separation, drying, and calcining.

次に、このようにして得られた粉末を目標値に対して±
0.10モル%以下好ましくは±0.05モル%以下と
なるよう制御する。本発明においては、その精度が目標
値の±0.lOモル%以下となるよう調合できればどの
ような方法でもよいが、以下に述べる調合補正方法が好
ましい。すなわち、例えばY3F2501zの結晶でY
37.5モル%、 Fe62.5モル%の組成を目標と
した場合について説明する。この場合は、粉末A (Y
38モル%+ Fe62モル%)と粉末B (Y37モ
ル%、 Fe63モル%)を準備し、この粉末Aと粉末
Bを割合を変えて混合することにより、目標値(Y37
.5モル%、 Fe62.5モル%)に対してそれぞれ
の値のずれが±0.05モル%の範囲に入るように制御
している。粉末Aと粉末Bとのモル%の差は出来るだけ
小さい方が望ましい。差が大きいと粉末特性が大きく異
なり成形性、焼結性が良くないことが考えられる。調合
補正のような工程をとらない場合、工程中の組成変動要
因、特に粉砕工程での鉄分の混合やビスマス置換体では
仮焼によるビスマス成分の揮発のため±0.10モル%
以下での組成制御は難しい。
Next, the powder obtained in this way is ±
It is controlled to be 0.10 mol% or less, preferably ±0.05 mol% or less. In the present invention, the accuracy is ±0.0 of the target value. Any method may be used as long as it can be formulated so that the concentration is 10 mol % or less, but the formulation correction method described below is preferred. That is, for example, in a Y3F2501z crystal, Y
A case where the target composition is 37.5 mol % and Fe62.5 mol % will be explained. In this case, powder A (Y
38 mol% + Fe62 mol%) and powder B (Y37 mol%, Fe63 mol%), and by mixing powder A and powder B in different proportions, the target value (Y37
.. 5 mol% and Fe62.5 mol%), the deviation of each value is controlled to be within the range of ±0.05 mol%. It is desirable that the difference in mol% between powder A and powder B is as small as possible. If the difference is large, the powder properties will be greatly different and the moldability and sinterability may be poor. If a process such as formulation correction is not taken, composition fluctuation factors during the process, especially the mixing of iron in the pulverization process and the volatilization of bismuth components due to calcination in the case of bismuth substitutes, will result in ±0.10 mol%.
It is difficult to control the composition below.

次に、調合補正の終了したガーネット型フェライト粉末
を所定形状に成形した後、焼成し、ガーネット型フェラ
イト多結晶体を得ることができる。
Next, the garnet-type ferrite powder that has been subjected to blending correction is molded into a predetermined shape and then fired to obtain a garnet-type ferrite polycrystal.

その後、得られたガーネット型フェライト多結晶体から
単結晶体を得るには、固相反応による方法、その−例と
して例えば本願人による特開昭63−35490号公報
に開示された単結晶ガーネット体の製造法が好適に使用
できる。
Thereafter, in order to obtain a single crystal from the obtained garnet type ferrite polycrystal, a solid phase reaction method is used. The manufacturing method can be suitably used.

以下、実際の例について説明する。An actual example will be explained below.

実施例1 硫酸鉄、硝酸イツトリウムを出発原料とする共沈法によ
り、2種類の合成粉末A(モル比でFe : Y=62
.O:  38.0)およびB(モル比でFe:Y= 
63. O二37. O)を製造し、これらの粉末を以
下に述べるように混合比を変えて調合補正することによ
りY3FesO+2を目標組成とした。
Example 1 Two types of synthetic powder A (molar ratio of Fe:Y=62) were prepared by a coprecipitation method using iron sulfate and yttrium nitrate as starting materials.
.. O: 38.0) and B (Fe:Y= in molar ratio
63. O237. Y3FesO+2 was set as the target composition by manufacturing Y3FesO+2 and correcting the formulation by changing the mixing ratio of these powders as described below.

すなわち、合成粉末AおよびBを乾燥弓200°Cで仮
焼・粉砕後、2種の粉末を第1表に示す割合で湿式混合
した後乾燥した。これらの混合粉末を成形し、1400
℃で8時間焼成した。焼成後の成形体を5 mm X 
10+++m X 10mmのブロックに切り出し、Y
aFesO+□単結晶から作製した種単結晶を接合し、
常圧で酸素雰囲気、1500atmのHIPでAr雰囲
気および1500atmのHIPで20%酸素雰囲気で
それぞれ1500°Cにおいて単結晶育成を行った。
That is, synthetic powders A and B were calcined and pulverized at 200°C in a drying oven, and then the two types of powders were wet mixed in the proportions shown in Table 1, and then dried. These mixed powders were molded and heated to 1400
It was baked at ℃ for 8 hours. The molded body after firing is 5 mm
Cut into 10+++m x 10mm blocks, Y
A seed single crystal made from aFesO+□ single crystal is joined,
Single crystals were grown at 1500° C. in an oxygen atmosphere at normal pressure, an Ar atmosphere in 1500 atm HIP, and a 20% oxygen atmosphere in 1500 atm HIP.

その後、得られたガーネット型フェライト単結晶の接合
面からの成長距離と第2相が存在するか否かを調べた。
Thereafter, the growth distance from the bonding surface of the obtained garnet-type ferrite single crystal and the presence or absence of a second phase were investigated.

結果を第1表に示す。第1表には、あわせて各試料の目
標値に対する制御の結果を示す。
The results are shown in Table 1. Table 1 also shows the control results for the target values of each sample.

第1表の結果から、固相反応を利用した単結晶の育成に
おいて、多結晶体の調合補正により組成を目標値に対し
て±0.1モル%以下に制御した場合は、いずれの雰囲
気においても単結晶の育成距離が長(また第2相が存在
せず、安定した単結晶育成が可能なことがわかった。な
お、HIPにより育成した単結晶は、密度99.99%
以上で磁気光学単結晶特有の磁区の迷図パターンの認め
られる結晶性のよいものであった。なおこ・の単結晶は
、1.3.czmの波長でファラデー回転角200de
g/cm %吸収係数は、Ar雰囲気では1.2cm’
、02雰囲気では0.5cm”−’であった。これに対
し、鉄過剰では、酸化鉄を主成分とする第2相が生成し
、鉄不足では単結晶が成長しなかった。
From the results in Table 1, in growing single crystals using solid-phase reactions, if the composition is controlled to within ±0.1 mol% of the target value by correcting the polycrystalline mixture, in any atmosphere It was also found that stable single crystal growth was possible due to the long single crystal growth distance (and no second phase).The single crystal grown by HIP had a density of 99.99%.
As described above, the crystallinity was good and the labyrinthine pattern of magnetic domains peculiar to magneto-optical single crystals was observed. Naoko's single crystal is 1.3. Faraday rotation angle 200 de at wavelength of czm
g/cm % absorption coefficient is 1.2 cm' in Ar atmosphere
, 0.5 cm"-' in the 02 atmosphere. On the other hand, in an iron excess, a second phase containing iron oxide as a main component was formed, and in an iron deficiency, a single crystal did not grow.

実施例2 硝酸ビスマス、硝酸鉄、硝酸イツトリウムを出発原料と
する共沈法により、2種類の合成粉末A(モル比でBi
:Fe:Y = 12.0:62.5:25.0)及び
B(モル比でBi:Fe:Y = 13.0:62.5
:25.0)を製造し、これらの粉末を以下に述べるよ
うに混合比を変えて調合補正することによりBiYzF
esO+z(Bi 12.5モル%、Fe62.5モル
%、Y25.0モル%)を目標組成とした。
Example 2 Two types of synthetic powders A (with a molar ratio of Bi
:Fe:Y = 12.0:62.5:25.0) and B (Bi:Fe:Y = 13.0:62.5 in molar ratio
:25.0) and corrected the formulation by changing the mixing ratio of these powders as described below.
The target composition was esO+z (Bi 12.5 mol%, Fe 62.5 mol%, Y 25.0 mol%).

すなわち、合成粉末AおよびBを乾燥800℃で仮焼・
粉砕後、2種の粉末を第1表に示す割合で湿式混合した
後乾燥した。これらの混合粉末を成形し、950℃で1
0時間焼成した。
That is, synthetic powders A and B were calcined and dried at 800°C.
After pulverization, the two types of powder were wet mixed in the proportions shown in Table 1 and then dried. These mixed powders were molded and heated at 950°C for 1
It was baked for 0 hours.

焼成後の成形体を5 mmX 10mmX 10mmの
ブロックに切り出し、Bi+YzFesOu単結晶から
作製した種単結晶を接合し、常圧で酸素雰囲気、150
0atmのHIPでA「雰囲気および1500atmの
旧Pで20%酸素雰囲気でそれぞれ1000°Cにおい
て単結晶育成を行った。
The molded body after firing was cut into blocks of 5 mm x 10 mm x 10 mm, a seed single crystal made from Bi + YzFesOu single crystal was joined, and the blocks were heated in an oxygen atmosphere at normal pressure for 150 mm.
Single crystal growth was performed at 1000°C in an A atmosphere with HIP at 0 atm and a 20% oxygen atmosphere with old P at 1500 atm.

その後、得られたガーネット型フェライト単結晶の接合
面からの成長距離と第2相が存在するか否かを調べた。
Thereafter, the growth distance from the bonding surface of the obtained garnet-type ferrite single crystal and the presence or absence of a second phase were investigated.

結果を第2表に示す。第2表には、あわせて各試料の目
標値に対する制御の結果を示す。
The results are shown in Table 2. Table 2 also shows the control results for the target values of each sample.

第2表の結果から、実施例1とは組成の異なるガーネッ
ト型フェライト単結晶の製造方法においても、本発明に
よれば実施例1と同様に安定した単結晶育成が可能なこ
とがわかった。この単結晶は、密度が99.99%以上
で磁気光学単結晶特有の磁区の迷図パターンの認められ
る結晶性のよいものであった。なおこの単結晶は、ファ
ラデー回転角が2200dge/cm、光吸収係数は、
A「雰囲気では1゜3cm−’、0□雰囲気では0.6
cm−’であった。なお、鉄過剰では酸化鉄を主成分と
する第2相が生成し、鉄不足ではビスマス酸化物を主成
分とする第2相が生成した。
From the results in Table 2, it was found that even in a method for producing a garnet-type ferrite single crystal having a composition different from that in Example 1, stable single crystal growth was possible in the same manner as in Example 1 according to the present invention. This single crystal had a density of 99.99% or more and had good crystallinity with a stray pattern of magnetic domains unique to magneto-optical single crystals. This single crystal has a Faraday rotation angle of 2200 dge/cm and a light absorption coefficient of
A: 1°3cm-' in the atmosphere, 0.6 in the 0□ atmosphere
cm-'. Note that in the case of iron excess, a second phase containing iron oxide as the main component was produced, and in the case of iron deficiency, the second phase containing bismuth oxide as the main component was produced.

(発明の効果) 以上の説明から明らかなように、本発明のガーネット型
フェライト単結晶の製造方法によれば、固相反応を利用
した単結晶の製造において、多結晶体の原料となるフェ
ライト粉末の組成を好ましくは調合補正により所定の範
囲内の誤差にするとともに、好ましくはHIP処理を酸
化雰囲気内で実施することにより、第2相の残留もなく
十分に育成された単結晶を得ることができる。
(Effects of the Invention) As is clear from the above description, according to the method for producing a garnet-type ferrite single crystal of the present invention, ferrite powder, which is a raw material for a polycrystal, is used in the production of a single crystal using a solid phase reaction. It is possible to obtain a sufficiently grown single crystal without any residual second phase by adjusting the composition of the material preferably within a predetermined range by correcting the composition and preferably performing HIP treatment in an oxidizing atmosphere. can.

Claims (1)

【特許請求の範囲】 1、多結晶体に種単結晶を接合して熱処理することによ
り、多結晶体を単結晶化するガーネット型フェライト単
結晶の製造方法において、多結晶体の組成を目標値に対
して±0.1モル%以下に制御することを特徴とするガ
ーネット型フェライト単結晶の製造方法。 2、前記組成制御の方法として、2種類の組成の異なる
ガーネット型フェライト粉末を所定比で混合した後、成
形し焼成することを特徴とする請求項1記載のガーネッ
ト型フェライト単結晶の製造方法。 3、前記熱処理を、熱間静水圧プレス処理で行うことを
特徴とする請求項1記載のガーネット型フェライト単結
晶の製造方法。 4、酸素を含有する雰囲気ガスを用いることを特徴とす
る請求項3記載のガーネット型フェライト単結晶の製造
方法。
[Claims] 1. A method for manufacturing a garnet-type ferrite single crystal in which a polycrystalline body is made into a single crystal by bonding a seed single crystal to the polycrystalline body and heat-treating the polycrystalline body, wherein the composition of the polycrystalline body is set to a target value. A method for producing a garnet-type ferrite single crystal, characterized in that the ferrite is controlled to ±0.1 mol% or less. 2. The method for producing a garnet-type ferrite single crystal according to claim 1, wherein the method for controlling the composition comprises mixing two types of garnet-type ferrite powders having different compositions at a predetermined ratio, followed by molding and firing. 3. The method for producing a garnet-type ferrite single crystal according to claim 1, wherein the heat treatment is performed by hot isostatic pressing. 4. The method for producing a garnet type ferrite single crystal according to claim 3, characterized in that an atmospheric gas containing oxygen is used.
JP2103195A 1989-04-28 1990-04-20 Method for producing garnet-type ferrite single crystal Expired - Lifetime JP2523205B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2103195A JP2523205B2 (en) 1989-08-29 1990-04-20 Method for producing garnet-type ferrite single crystal
DE69016699T DE69016699T2 (en) 1989-04-28 1990-04-26 Process for the production of ferrite crystals and process for the production of preferably used ferrite powders.
EP90304505A EP0399665B1 (en) 1989-04-28 1990-04-26 Method of manufacturing ferrite crystals and method of producing ferrite powders preferably used therefor
CA002015606A CA2015606C (en) 1989-04-28 1990-04-27 Method of manufacturing shaped body made of ferrite crystals of garnet polycrystal structure
US07/516,907 US5256242A (en) 1989-04-28 1990-04-30 Method of manufacturing ferrite crystals

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-220178 1989-08-29
JP22017889 1989-08-29
JP2103195A JP2523205B2 (en) 1989-08-29 1990-04-20 Method for producing garnet-type ferrite single crystal

Publications (2)

Publication Number Publication Date
JPH03164491A true JPH03164491A (en) 1991-07-16
JP2523205B2 JP2523205B2 (en) 1996-08-07

Family

ID=26443844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2103195A Expired - Lifetime JP2523205B2 (en) 1989-04-28 1990-04-20 Method for producing garnet-type ferrite single crystal

Country Status (1)

Country Link
JP (1) JP2523205B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0702259A1 (en) 1994-09-16 1996-03-20 Ngk Insulators, Ltd. Material for wide-band optical isolators and process for producing the same
CN114133235A (en) * 2021-11-03 2022-03-04 中国科学院上海硅酸盐研究所 Axial hot-pressing sintering preparation method of rare earth iron garnet magneto-optical ceramic with good infrared permeability

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5926994A (en) * 1982-08-05 1984-02-13 Matsushita Electric Ind Co Ltd Preparation of oxide single crystal
JPS6335490A (en) * 1986-07-30 1988-02-16 Ngk Insulators Ltd Production of single crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5926994A (en) * 1982-08-05 1984-02-13 Matsushita Electric Ind Co Ltd Preparation of oxide single crystal
JPS6335490A (en) * 1986-07-30 1988-02-16 Ngk Insulators Ltd Production of single crystal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0702259A1 (en) 1994-09-16 1996-03-20 Ngk Insulators, Ltd. Material for wide-band optical isolators and process for producing the same
US5584928A (en) * 1994-09-16 1996-12-17 Ngk Insulators, Ltd. Material for wide-band optical isolators and process for producing the same
CN114133235A (en) * 2021-11-03 2022-03-04 中国科学院上海硅酸盐研究所 Axial hot-pressing sintering preparation method of rare earth iron garnet magneto-optical ceramic with good infrared permeability

Also Published As

Publication number Publication date
JP2523205B2 (en) 1996-08-07

Similar Documents

Publication Publication Date Title
JP5151477B2 (en) Semiconductor porcelain composition and method for producing the same
US20070270304A1 (en) Powder for black zirconia sintered body, production method thereof, and sintered body thereof
US4886768A (en) Toughened ceramics
Bokov et al. Compositional ordering and phase transitions in Pb (Yb0. 5Nb0. 5) O3
US4721547A (en) Process for producing single crystal of garnet ferrite
JPH03218963A (en) Production of transparent yttrium-aluminumgarvent-ceramics
Parkin et al. Self‐propagating high temperature synthesis of hexagonal ferrites MFe12O19 (M= Sr, Ba)
Hodorowicz et al. The Yb2O3 and Lu2O3 BaO (BaCO3) CuO systems: compounds and phase compatibilities in air at 940–980° C
JPH03164491A (en) Production of garnet type ferrite single crystal
De Guire et al. Coprecipitation synthesis of doped lanthanum chromite
JPH02225367A (en) Production of dielectric ceramics
JPH08319162A (en) Dielectric ceramic and its production
US6593263B2 (en) Method for preparing dielectric ceramic compositions
JPH0822772B2 (en) Method for producing translucent ferrite polycrystalline body
JPH0761821A (en) Production of garnet-type magnetic material
JPS6389495A (en) Production of garnet ferrite single crystal
Duran et al. Densification and phase formation in seeded, reactively sintered Sr 0.53 Ba 0.47 Nb 2 O 6 ceramics
Afqir et al. Structure and Dielectric Properties of V and Y Disorder Doped SrBi 2 Nb 2 O 9 Ceramics
Singh et al. Effect of preparative parameters on the formation of perovskite PMN ceramic
JP2791409B2 (en) Method for producing target material for forming oxide superconducting thin film
JPH03103321A (en) Raw material for superconductor, production thereof and production of superconductor using same raw material
JPH04175223A (en) Production of multi-component composite perovskite solid solution
KR0161814B1 (en) Method of manufacturing y-lialo2 powder
JPH05194017A (en) Production of dielectric porcelain
JPS6389493A (en) Production of garnet ferrite single crystal