JPH03164489A - Composition for weter-in-oil emulsion explosive - Google Patents

Composition for weter-in-oil emulsion explosive

Info

Publication number
JPH03164489A
JPH03164489A JP2205522A JP20552290A JPH03164489A JP H03164489 A JPH03164489 A JP H03164489A JP 2205522 A JP2205522 A JP 2205522A JP 20552290 A JP20552290 A JP 20552290A JP H03164489 A JPH03164489 A JP H03164489A
Authority
JP
Japan
Prior art keywords
explosive composition
explosive
comparative example
agent
retaining agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2205522A
Other languages
Japanese (ja)
Other versions
JP3019375B2 (en
Inventor
Fumihiko Sumiya
文彦 角谷
Akio Torii
彰夫 鳥居
Yukio Kato
幸夫 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil and Fats Co Ltd filed Critical Nippon Oil and Fats Co Ltd
Priority to CA002065848A priority Critical patent/CA2065848C/en
Priority to EP90912461A priority patent/EP0598115B1/en
Priority to PCT/JP1990/001068 priority patent/WO1991002706A1/en
Priority to DE69032230T priority patent/DE69032230T2/en
Priority to KR1019920700405A priority patent/KR960010098B1/en
Publication of JPH03164489A publication Critical patent/JPH03164489A/en
Application granted granted Critical
Publication of JP3019375B2 publication Critical patent/JP3019375B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B47/00Compositions in which the components are separately stored until the moment of burning or explosion, e.g. "Sprengel"-type explosives; Suspensions of solid component in a normally non-explosive liquid phase, including a thickened aqueous phase
    • C06B47/14Compositions in which the components are separately stored until the moment of burning or explosion, e.g. "Sprengel"-type explosives; Suspensions of solid component in a normally non-explosive liquid phase, including a thickened aqueous phase comprising a solid component and an aqueous phase
    • C06B47/145Water in oil emulsion type explosives in which a carbonaceous fuel forms the continuous phase
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B47/00Compositions in which the components are separately stored until the moment of burning or explosion, e.g. "Sprengel"-type explosives; Suspensions of solid component in a normally non-explosive liquid phase, including a thickened aqueous phase
    • C06B47/14Compositions in which the components are separately stored until the moment of burning or explosion, e.g. "Sprengel"-type explosives; Suspensions of solid component in a normally non-explosive liquid phase, including a thickened aqueous phase comprising a solid component and an aqueous phase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Colloid Chemistry (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Fireproofing Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To improve underwater explosion energy by compounding a carbonaceous fuel component, an aq. inorg. oxidized acid salt soln., an emulsifier, a sensitive agent, an org. bubble holding agent having a specific average grain size and Al powder. CONSTITUTION:The aq. soln. is prepd. by dissolving 5 to 90wt.% inorg. oxidized acid salt, such as NH4NO3 [hereafter %, the compounding ratio in the water- in-oil type emulsion explosive (hereafter W/O explosive)] and 1 to 40% total of the sensitive agent, such as hydrazine nitrate and chelating agent into hot water at 60 to 100 deg.C. On the other hand, 0.5 to 10% carbonaceous fuel, such as microcrystalline wax and 0.1 to 10% emulsifier, such as sorbitan monolaurate, are melted and mixed at 70 to 90 deg.C to form a combustible mixture. The aq. soln. of the inorg. oxidized acid salt, etc., and the combustible mixture are then stirred at a high speed to form the W/O type emulsion and in succession, 1 to 50% bubble bulding agent, such as PS foam, having 10 to 4000mu average grain size and 10 to 70% Al powder having <=1mm average grain size are mixed to obtain the W/O explosive compsn.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、水中爆発エネルギーが高い油中水型エマルシ
ョン爆薬(以下、W10爆薬と略記する)組成物に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a water-in-oil emulsion explosive (hereinafter abbreviated as W10 explosive) composition having high underwater explosion energy.

〔従来の技術〕[Conventional technology]

従来、爆薬の威力を評価する項目のうち殉爆度、弾道臼
砲比、爆速等が研究されているが、さらに近年水中爆発
エネルギーについても研究が行われている。
Traditionally, research has been conducted on items used to evaluate the power of explosives, such as martyrdom, ballistic mortar ratio, and detonation velocity, but in recent years, research has also been conducted on underwater explosion energy.

W10爆薬にアルミニウム粉を含有させたものとしては
、特開昭54−110308号、米国特許第37705
22号、米国特許第3447978号等の公報に記載さ
れたものがあり、これらは気泡保持剤にガラスマイクロ
バルーン(GMB)を使用し、さらにアルミニウム粉を
配合している。
Examples of W10 explosive containing aluminum powder include JP-A-54-110308 and U.S. Patent No. 37705.
22 and US Pat. No. 3,447,978, these use glass microballoons (GMB) as a bubble retaining agent and further contain aluminum powder.

また、W10爆薬組成物の水中爆発エネルギーを高める
方法として、硝酸アンモニウム、硝酸ナトリウム、硝酸
カリウム等の無機酸化酸塩の含有量を増加させる方法が
考えられている。
Furthermore, as a method of increasing the underwater explosion energy of the W10 explosive composition, a method of increasing the content of inorganic oxide salts such as ammonium nitrate, sodium nitrate, potassium nitrate, etc. has been considered.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、上記従来の3件の発明のW10爆薬組成物は
、爆速、殉爆度、弾道臼砲比等の威力は向上するが、G
MBとアルミニウム粉との併用では製造の点からアルミ
ニウム粉の配合量に限界があり、その含有量は20重量
%程度である。そして、アルミニウム粉の含有量を増加
させると不爆発となってしまうという問題点があった。
However, although the W10 explosive compositions of the three conventional inventions described above improve detonation speed, detonation rate, and power compared to ballistic mortar,
When using MB and aluminum powder in combination, there is a limit to the amount of aluminum powder to be blended from the viewpoint of manufacturing, and the content is about 20% by weight. Furthermore, there was a problem in that increasing the content of aluminum powder resulted in non-explosion.

また、無機酸化酸塩の含有量の増加は、製造上限界があ
り、従ってその効果も小さい。
In addition, increasing the content of the inorganic oxidized salt has a manufacturing limit, and therefore its effect is small.

本発明の目的は、特に水中爆発エネルギーの高いW10
爆薬組成物を提供することにある。
The object of the present invention is to use W10, which has particularly high underwater explosion energy.
An object of the present invention is to provide an explosive composition.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明の第1の発明では炭
素質燃料成分からなる連続相、無機酸化酸塩の水溶液か
らなる分散相、乳化剤、鋭感剤及び気泡保持剤からなる
油中水型エマルション爆薬組成物において、前記気泡保
持剤が有機質気泡保持剤であり、さらにアルミニウム粉
を含有するという手段を採用している。
In order to achieve the above object, the first aspect of the present invention provides a continuous phase consisting of a carbonaceous fuel component, a dispersed phase consisting of an aqueous solution of an inorganic oxide salt, and a water-in-oil consisting of an emulsifier, a sensitizer, and a bubble retaining agent. In the type emulsion explosive composition, the cell retaining agent is an organic cell retaining agent and further contains aluminum powder.

また、第2の発明では、炭素質燃料成分からなる連続相
、無機酸化酸塩の水溶液からなる分散相、乳化剤及び気
泡保持剤からなる油中水型エマルション爆薬組成物にお
いて、前記気泡保持剤が平均粒径IO〜4000μmの
有機質気泡保持剤であり、アルミニウム粉が平均粒径L
 mm以下で、かつその含有量が10〜70重量%であ
るという手段を採用している。
Further, in a second invention, in a water-in-oil emulsion explosive composition comprising a continuous phase consisting of a carbonaceous fuel component, a dispersed phase consisting of an aqueous solution of an inorganic oxide salt, an emulsifier and a bubble retaining agent, the bubble retaining agent is It is an organic air bubble retaining agent with an average particle size of IO ~ 4000 μm, and the aluminum powder has an average particle size of L.
mm or less and the content thereof is 10 to 70% by weight.

また、第3の発明では、上記第2の発明の油中水型エマ
ルション爆薬組成物に鋭感剤を配合してなるという手段
を採用している。
Further, in a third invention, a method is adopted in which a sensitizing agent is blended into the water-in-oil emulsion explosive composition of the second invention.

〔手段の詳細な説明〕[Detailed explanation of means]

炭素質燃料は、連続相を形成し、従来からW10爆薬に
用いられているものが使用される。例えば、第1の発明
においては、マイクロクリスタリンワックス、パラフィ
ンワックス、ポリエチレンワックス等のワックス類、2
号軽油等の燃料油等の従来からW10爆薬に用いられて
いるものが使用できるが、それらのうち硬さ等の薬質の
点からワックス類が好ましい。また、第2の発明及び第
3の発明においては、例えばパラフィン系炭化水素、オ
レフィン系炭化水素、ナフテン系炭化水素、芳香族系炭
化水素、飽和又は不飽和炭化水素、石油精製鉱油、潤滑
油、流動パラフィン等の炭化水素、ニトロ炭化水素等の
炭化水素誘導体、燃料油及び/又は石油から誘導される
未精製もしくは精製マイクロクリスタリンワックス、パ
ラフィンワックス、ペトロラタム等、鉱物性ワックスで
あるセンクンワックス等動物性ワックスである鯨ロウ、
昆虫ワックスである密ロウ等のワックス類等であり、こ
れらは単独又は混合物として用いることができる。これ
らの炭素質燃料のうち、経時安定性の面からマイクロク
リスタリンワックス、ペトロラクタムが好ましく、マイ
クロクリスタリンワックスが特に好ましい。
The carbonaceous fuel forms the continuous phase and is conventionally used in W10 explosives. For example, in the first invention, waxes such as microcrystalline wax, paraffin wax, polyethylene wax, etc.
Although fuel oils conventionally used for W10 explosives, such as fuel oils such as No. Further, in the second invention and the third invention, for example, paraffinic hydrocarbons, olefinic hydrocarbons, naphthenic hydrocarbons, aromatic hydrocarbons, saturated or unsaturated hydrocarbons, refined petroleum oil, lubricating oil, Hydrocarbons such as liquid paraffin, hydrocarbon derivatives such as nitrohydrocarbons, unrefined or purified microcrystalline wax derived from fuel oil and/or petroleum, paraffin wax, petrolatum, etc., mineral wax such as Senkun wax, etc. Whale wax, which is a sex wax;
Waxes such as beeswax, which is an insect wax, can be used alone or as a mixture. Among these carbonaceous fuels, microcrystalline wax and petrolactam are preferred from the viewpoint of stability over time, and microcrystalline wax is particularly preferred.

また、薬質調整のため、石油樹脂、低分子量ポリエチレ
ン、低分子量ポリプロピレン等の低分子量炭化水素重合
体等を前記炭素質燃料成分と併用することもできる。こ
れら炭素質燃料は、通常W10爆薬に対して1〜10重
量%用いる。
Furthermore, for drug quality adjustment, low molecular weight hydrocarbon polymers such as petroleum resins, low molecular weight polyethylene, and low molecular weight polypropylene can also be used in combination with the carbonaceous fuel component. These carbonaceous fuels are usually used in an amount of 1 to 10% by weight based on the W10 explosive.

次に、無機酸化酸塩は、水溶液として分散相を形成する
もので、従来からW10爆薬組成物に用いられているも
のが包含される。無機酸化酸塩としては、例えば硝酸ア
ンモニウム、硝酸ナトリウム、硝酸カルシウム等のアル
カリ金属又はアルカリ土類金属の硝酸塩、塩素酸ナトリ
ウム、過塩素酸アンモニウム、過塩素酸ナトリウム等の
無機塩素酸塩又は過塩素酸塩等である。通常は、硝酸ア
ンモニウム単独又は硝酸アンモニウムと他の無機酸化酸
塩との混合物として用いられる。これら無機酸化酸塩の
配合割合は、一般に5〜90重量%であり、40〜80
重量%が好ましい。
Next, the inorganic oxide salt forms a dispersed phase as an aqueous solution, and includes those conventionally used in W10 explosive compositions. Examples of inorganic oxide salts include alkali metal or alkaline earth metal nitrates such as ammonium nitrate, sodium nitrate, and calcium nitrate; inorganic chlorates or perchloric acids such as sodium chlorate, ammonium perchlorate, and sodium perchlorate; Salt, etc. Usually, ammonium nitrate is used alone or as a mixture of ammonium nitrate and other inorganic oxide salts. The blending ratio of these inorganic oxide salts is generally 5 to 90% by weight, and 40 to 80% by weight.
Weight percent is preferred.

なお、本発明のW10爆薬組成物中の水の割合は、3〜
30重量%が好ましく、7〜30重量%がさらに好まし
い。
Note that the proportion of water in the W10 explosive composition of the present invention is 3 to 3.
30% by weight is preferred, and 7 to 30% by weight is more preferred.

次に、乳化剤は、エマルションを安定化する役目を果た
すもので、従来からW10爆薬に用いられているものが
いずれも使用できる。例えば、ソルビタンモノラウレー
ト、ソルビタンモノオレエ−ト、ソルビタンモノパルミ
テート、ソルビタンモノステアレート、ソルビタンセス
キオレエート、ソルビタンジオレエート、ソルビタント
リオレエート等のソルビタン脂肪酸エステル、ステアリ
ン酸モノグリセライド等の脂肪酸のモノ又はジグリセラ
イド、ポリオキシエチレンソルビタン脂肪酸エステル、
オキサゾリン誘導体、イミダシリン誘導体、リン酸エス
テル、脂肪酸のアルカリ金属塩又はアルカリ土類金属塩
、1級、2級又は3級アミン塩等があげられ、これらの
1種又は2種以上の混合物として使用することができる
。上記乳化剤のうち、ソルビタン脂肪酸エステルが好ま
しい。
Next, the emulsifier serves to stabilize the emulsion, and any emulsifier conventionally used in W10 explosives can be used. For example, sorbitan fatty acid esters such as sorbitan monolaurate, sorbitan monooleate, sorbitan monopalmitate, sorbitan monostearate, sorbitan sesquioleate, sorbitan dioleate, and sorbitan trioleate, and fatty acids such as stearic acid monoglyceride. Mono- or diglyceride, polyoxyethylene sorbitan fatty acid ester,
Examples include oxazoline derivatives, imidacilline derivatives, phosphoric acid esters, alkali metal salts or alkaline earth metal salts of fatty acids, primary, secondary, or tertiary amine salts, and these are used alone or as a mixture of two or more. be able to. Among the above emulsifiers, sorbitan fatty acid esters are preferred.

この乳化剤の配合割合は、0.1−10重量%が好まし
く、1〜5重量%がさらに好ましい。
The blending ratio of this emulsifier is preferably 0.1-10% by weight, more preferably 1-5% by weight.

鋭感剤は、爆轟信頼性を高め、さらに低温起爆性を改善
するもので、例えばモノメチルアミン硝酸塩、ヒドラジ
ン硝酸塩、エチレンジアミン硝酸塩等の従来からW10
爆薬に用いられているものを使用することができるが、
これらのうち前記硝酸アンモニウムの溶解度を上げるこ
とができるとともに、爆発エネルギーの高いヒドラジン
硝酸塩が好ましい。また、鋭感剤を用いる場合には、そ
の配合割合がW10爆薬組成物中1〜40重量%が好ま
しく、30重量%以下がさらに好ましく、20重量%以
下が特に好ましい。この割合が40重量%を越えると、
取扱上の危険性が増大する場合がある。
Sensitizers are used to increase detonation reliability and improve low-temperature detonation properties, such as monomethylamine nitrate, hydrazine nitrate, ethylenediamine nitrate, etc.
Although it is possible to use materials used in explosives,
Among these, hydrazine nitrate is preferred since it can increase the solubility of the ammonium nitrate and has high explosive energy. Further, when a sensitizer is used, its blending ratio is preferably 1 to 40% by weight in the W10 explosive composition, more preferably 30% by weight or less, and particularly preferably 20% by weight or less. If this proportion exceeds 40% by weight,
Handling risks may increase.

特に、鋭感剤としてヒドラジン硝酸塩等を使用する場合
、エチレンジアミン四酢酸ナトリウムのようなキレート
化剤を用いると、ヒドラジン硝酸塩の分解等を防ぐこと
ができるので有利である。
Particularly, when hydrazine nitrate or the like is used as a sensitizing agent, it is advantageous to use a chelating agent such as sodium ethylenediaminetetraacetate because decomposition of the hydrazine nitrate can be prevented.

このキレート化剤の配合割合は、鋭感剤に対して0.1
〜10重量%が好ましい。
The mixing ratio of this chelating agent is 0.1 to the sensitizing agent.
~10% by weight is preferred.

気泡保持剤は有機質気泡保持剤である。この有機質気泡
保持剤は、各種の単一微小中空球体、複数の気泡を含有
する発泡体等であり、例えばピッチ、石炭等から得られ
る炭素質系微小中空球体、フェノール樹脂、ポリ塩化ビ
ニリデン、エポキシ樹脂、尿素樹脂等から得られる合成
樹脂系微小中空球体等である。また、複数の気泡を含有
する発泡体としては、エチレン、プロピレン、スチレン
等のオレフィン、塩化ビニリデン、ビニルアルコール、
酢酸ビニル、アクリル酸、メタクリル酸又はそのエステ
ル等のビニル化合物等の重合体、共重合体、変性重合体
、重合体混合物、ポリウレタン、ポリエステル、ポリア
ミド、尿素樹脂、エポキシ樹脂、フェノール樹脂等の合
成高分子からなる素材に、機械的発泡、化学的発泡、マ
イクロカプセル化、易揮発性物質の混入等の各種手段で
気泡を含ませた合成高分子の粉砕物、粒子をあげること
ができる。
The foam retaining agent is an organic foam retaining agent. The organic air bubble retaining agent is a variety of single microscopic hollow spheres, foams containing multiple bubbles, etc., such as carbonaceous microscopic hollow spheres obtained from pitch, coal, etc., phenolic resin, polyvinylidene chloride, epoxy resin, etc. These are synthetic resin microscopic hollow spheres obtained from resin, urea resin, etc. In addition, foams containing multiple cells include olefins such as ethylene, propylene, and styrene, vinylidene chloride, vinyl alcohol,
Synthetic polymers such as vinyl compounds such as vinyl acetate, acrylic acid, methacrylic acid or their esters, copolymers, modified polymers, polymer mixtures, polyurethanes, polyesters, polyamides, urea resins, epoxy resins, phenolic resins, etc. Examples include pulverized products and particles of synthetic polymers in which air bubbles are impregnated into a material made of molecules by various means such as mechanical foaming, chemical foaming, microencapsulation, and mixing of easily volatile substances.

これらの有機質気泡保持剤のうち、ポリスチレン、ポリ
エチレン又はポリ塩化ビニリデン等を素材としたものが
好適である。この有機質気泡保持剤は、ガラス、シリカ
等の無機質気泡保持剤と違ってエマルションの膜を破壊
することがなく、その安定性を保持する。また、同有機
質気泡保持剤は、比重が小さいこと、不活性添加物とな
らないこと、入手が容易で安価であること等の点におい
て優れている。
Among these organic bubble-retaining agents, those made of polystyrene, polyethylene, polyvinylidene chloride, or the like are preferred. Unlike inorganic bubble retainers such as glass and silica, this organic bubble retainer does not destroy the emulsion film and maintains its stability. In addition, the same organic bubble-retaining agent is excellent in that it has a small specific gravity, does not become an inert additive, and is easily available and inexpensive.

また、気泡保持剤として有機質気泡保持剤を用いた場合
には、製造時のポンプ輸送等において無機質気泡保持剤
のようにエマルションの一部が破壊するというようなこ
とがないので、設計どおりの爆発性能を得ることができ
、経時安定性の面でも優れた爆薬を得ることができる。
In addition, when an organic cell retaining agent is used as a bubble retaining agent, there is no possibility that part of the emulsion will be destroyed during pump transportation during manufacturing, unlike inorganic foam retaining agents, so it will not explode as designed. It is possible to obtain explosives with excellent performance and excellent stability over time.

さらに、有機質気泡保持剤は、単独気泡又は単独気泡の
集合体であって、いずれの粒径のものも使用できるが、
特に第2の発明及び第3の発明では平均粒径が10〜4
000μmの範囲のものを使用する。この平均粒径が1
0μm未満では比重が大きくなって添加量が増加し、4
000μmを超えると、水中爆発エネルギーが低下する
。なお、この気泡保持剤の形状は、球状、円筒状、多面
体状等のいずれであってもよい。
Furthermore, the organic cell retaining agent may be a single cell or an aggregate of single cells, and may have any particle size.
In particular, in the second invention and the third invention, the average particle size is 10 to 4.
000 μm range is used. This average particle size is 1
If it is less than 0 μm, the specific gravity will increase and the amount added will increase.
When the diameter exceeds 000 μm, the underwater explosion energy decreases. The shape of this bubble-retaining agent may be any one of spherical, cylindrical, polyhedral, and the like.

この有機質気泡保持剤の選定は、W10爆薬の用途に応
じて適宜行われる。また、その配合割合は、W10爆薬
中1〜50体積%が好ましく、1体積%未満では雷管起
爆性の低下及び爆轟中断のおそれがあり、50体積%を
越えると水中爆発工ネルギーが低下する傾向にある。
The selection of this organic bubble retaining agent is made as appropriate depending on the use of the W10 explosive. In addition, the blending ratio is preferably 1 to 50% by volume in the W10 explosive; if it is less than 1% by volume, there is a risk of deterioration of the detonator's detonation ability and interruption of detonation, and if it exceeds 50% by volume, the energy of underwater explosives will be reduced. There is a tendency.

次に、アルミニウム粉は、燃料として使用され、水中爆
発エネルギーを向上させる。同アルミニウム粉としては
、一般的に用いられているものが使用できるが、特に第
2の発明及び第3の発明ではその粒径は1 mm以下で
あり、0.01〜1 mmの範囲が好ましく、0.03
〜O,1mmの範囲がさらに好ましい。粒径が1mmを
超えると水中爆発エネルギーが低下する。形状は球形、
鱗片状等いずれの形状であってもよい。
Aluminum powder is then used as a fuel to improve the underwater explosion energy. As the aluminum powder, commonly used ones can be used, but particularly in the second and third inventions, the particle size is 1 mm or less, preferably in the range of 0.01 to 1 mm. , 0.03
A range of ˜0.1 mm is more preferable. When the particle size exceeds 1 mm, the underwater explosion energy decreases. The shape is spherical,
It may be in any shape such as scaly shape.

アルミニウム粉の含有量は、従来より増加させることが
でき、鋭感剤を含有しない場合、10〜70重量%であ
り、そのうち20〜70重量%が好ましく、鋭感剤を含
有する場合10〜70重量%である。この含有量が10
重量%未満では燃料が不足して爆発性能が低下し、70
重量%を越えると不活性なアルミニウム粉が残存して爆
発性能が低下する。
The content of aluminum powder can be increased compared to the conventional one, and is 10 to 70% by weight when not containing a sensitizer, preferably 20 to 70% by weight, and 10 to 70% when containing a sensitizer. Weight%. This content is 10
If it is less than 70% by weight, there will be insufficient fuel and the explosive performance will decrease.
If the amount exceeds 1% by weight, inert aluminum powder remains and the explosive performance deteriorates.

W10爆薬組成物中の前記各成分の配合割合は、第1の
発明では無機酸化酸塩40〜90重量%、水7〜30重
量%、炭素質燃料0.5〜IO重量%、乳化剤0.5〜
IO重量%、鋭感剤1〜40重量%、有機質気泡保持剤
1〜50体積%、アルミニウム粉70重量%以下の範囲
が好適である。また、第2の発明及び第3の発明では無
機酸化酸塩40〜90重量%、水7〜30重量%、炭素
質燃料0.5〜IO重量%、乳化剤0.5〜10重量%
、鋭感剤1〜40重量%、平均粒径lO〜4000μm
の有機質気泡保持剤1〜50体積%、平均粒径1 mm
以下のアルミニウム粉10〜70重量%の範囲が好適で
ある。
In the first invention, the blending ratio of each of the above components in the W10 explosive composition is 40 to 90% by weight of the inorganic oxidized salt, 7 to 30% by weight of water, 0.5 to IO% by weight of carbonaceous fuel, and 0.5% by weight of emulsifier. 5~
Suitable ranges are IO weight %, sensitizing agent 1 to 40 weight %, organic bubble retaining agent 1 to 50 volume %, and aluminum powder 70 weight % or less. In addition, in the second invention and the third invention, the inorganic oxide salt is 40 to 90% by weight, water is 7 to 30% by weight, carbonaceous fuel is 0.5 to IO, and emulsifier is 0.5 to 10% by weight.
, sensitizing agent 1 to 40% by weight, average particle size lO to 4000 μm
1 to 50% by volume of organic bubble-retaining agent, average particle size 1 mm
The following range of aluminum powder from 10 to 70% by weight is suitable.

無機酸化酸塩が40重量%未満では爆発性能が低下し、
90重量%を超えるとその溶解性が低下してくる。水が
7重量%未満では、無機酸化酸塩の溶解性が低下し、3
0重量%を超えると相対的に他の成分が少なくなって爆
発性能が低下しやすい。炭素質燃料が0.5重量%未満
ではエマルションを微小なものとできず、接触面積が小
さく、10重量%を超えると相対的に無機酸化酸塩の配
合割合が少なくなってしまう。乳化剤が0.5重量%未
満の場合にはエマルションの安定性が低下しやす(,1
0重量%を超えると爆発性能が向上しにくくなる。鋭感
剤が1重量%未満では爆轟信頼性が低く、40重量%を
超えると取扱上の危険性が増大する。有機質気泡保持剤
が1体積%未満では雷管起爆性の低下及び爆轟中断のお
それがあり、50体積%を超えると水中爆発エネルギー
が低下する傾向にある。アルミニウム粉は10重量%未
満又は70重量%を超えると爆発性能が低下する傾向に
ある。
If the inorganic oxide salt content is less than 40% by weight, the explosive performance will decrease,
If it exceeds 90% by weight, its solubility will decrease. If the water content is less than 7% by weight, the solubility of the inorganic oxide salt decreases, and the
If it exceeds 0% by weight, other components will be relatively small and the explosive performance will tend to deteriorate. If the amount of carbonaceous fuel is less than 0.5% by weight, the emulsion cannot be made fine and the contact area will be small, and if it exceeds 10% by weight, the blending ratio of the inorganic oxide salt will be relatively small. If the emulsifier content is less than 0.5% by weight, the stability of the emulsion tends to decrease (,1
If it exceeds 0% by weight, it becomes difficult to improve explosive performance. If the sensitizer content is less than 1% by weight, detonation reliability will be low, and if it exceeds 40% by weight, handling risks will increase. If the content of the organic bubble retaining agent is less than 1% by volume, there is a risk of deterioration of the detonator's detonation properties and interruption of detonation, while if it exceeds 50% by volume, the underwater explosion energy tends to decrease. When the aluminum powder is less than 10% by weight or more than 70% by weight, the explosive performance tends to decrease.

本発明のW10爆薬組成物は、例えば次のようにして製
造することができる。
The W10 explosive composition of the present invention can be produced, for example, as follows.

即ち、まず無機酸化酸塩又は無機酸化酸塩、鋭感剤及び
キレート化剤を約60〜100°Cの温水に溶解させて
無機酸化酸塩等の水溶液を得る。
That is, first, an inorganic oxide salt or an inorganic oxide salt, a sensitizer, and a chelating agent are dissolved in warm water at about 60 to 100°C to obtain an aqueous solution of the inorganic oxide salt, etc.

方、炭素質燃料と乳化剤が液状になる温度、通常70〜
90°Cで溶融混合して可燃性混合物を得る。
On the other hand, the temperature at which carbonaceous fuel and emulsifier become liquid is usually 70~
Melt mix at 90°C to obtain a combustible mixture.

次に、60〜90℃の温度で上記無機酸化酸塩等の水溶
液と可燃性混合物とを約600〜6000rpmで攪拌
し、W10型エマルションを得る。続いて、これに有機
質気泡保持剤及びアルミニウム粉を混合することによっ
てW10爆薬組成物が得られる。
Next, the aqueous solution of the inorganic oxide salt, etc. and the flammable mixture are stirred at about 600 to 6000 rpm at a temperature of 60 to 90°C to obtain a W10 emulsion. Subsequently, a W10 explosive composition is obtained by mixing an organic bubble retaining agent and aluminum powder thereto.

このようにして得られたW10爆薬組成物は、気泡保持
剤として有機質気泡保持剤を使用し、しかもアルミニウ
ム粉を含有させたことによって、有機質気泡保持剤が無
機質気泡保持剤に比べてエマルションの膜を破壊しにく
いこと及び比重の大きい無機質気泡保持剤に比べて有機
質気泡保持剤は比重が小さく、従ってエマルションの割
合が多くなってアルミニウム粉が入りやすいこと等の理
由により、特に水中爆発エネルギーを高くすることがで
きるという特徴を有している。
The W10 explosive composition obtained in this way uses an organic cell retaining agent as a bubble retaining agent and also contains aluminum powder. Organic foam retainers have a lower specific gravity than inorganic foam retainers, which have a higher specific gravity, and therefore have a higher emulsion ratio, making it easier for aluminum powder to enter. It has the characteristic of being able to

この水中爆発エネルギーは、ショックエネルギー(Es
)とバブルエネルギー(E b)に分けられ、Eb/E
sの比は一般的には約3となり、両者を合わせたものが
水中爆発エネルギーの総合エネルギーとなる(「爆薬エ
ンサイクロペディアV0110J1983年、(アメリ
カアーミー アーマメント リサーチ アンド ディベ
ロツプメント コマンド発行)。
This underwater explosion energy is shock energy (Es
) and bubble energy (E b), Eb/E
The ratio of s is generally about 3, and the sum of the two is the total energy of the underwater explosion.

〔実施例〕〔Example〕

以下に本発明を具体化した実施例を比較例と対比して説
明する。なお、各側における部は重量部を表す。
Examples embodying the present invention will be described below in comparison with comparative examples. Note that parts on each side represent parts by weight.

(実施例1〜6) 無機酸化酸塩として硝酸アンモニウム、乳化剤としてソ
ルビタンモノオレエート、炭素質燃料としてマイクロク
リスタリンワックス、気泡保持剤として平均粒径300
μmのポリスチレンの単独気泡の集合体、鋭感剤として
ヒドラジン硝酸塩を使用し、さらに平均粒径30μmの
アルミニウム粉を含有させてW10爆薬組成物を得た。
(Examples 1 to 6) Ammonium nitrate as an inorganic oxide salt, sorbitan monooleate as an emulsifier, microcrystalline wax as a carbonaceous fuel, and average particle size of 300 as a bubble retention agent
A W10 explosive composition was obtained by using an aggregate of single cells of polystyrene of .mu.m in diameter, hydrazine nitrate as a sensitizing agent, and further containing aluminum powder with an average particle size of 30 .mu.m.

各成分の配合割合は、後記表−1及び表−2に示すとお
りである。
The blending ratio of each component is as shown in Tables 1 and 2 below.

また、W10爆薬組成物の製造方法は、硝酸アンモニウ
ム及びヒドラジン硝酸塩の水溶液を約85°Cで溶解し
たものを、マイクロクリスタリンワックスとソルビタン
モノオレエートの混合物に約85°Cで溶解して加え、
攪拌羽根で攪拌し、乳化したものに気泡保持剤及びアル
ミニウム粉を混和してW10爆薬組成物とした。この爆
薬組成物について、水中爆薬エネルギーの測定を行った
。その結果を併せて表−1及び表−2に示す。
In addition, the method for producing the W10 explosive composition includes adding an aqueous solution of ammonium nitrate and hydrazine nitrate dissolved at about 85°C to a mixture of microcrystalline wax and sorbitan monooleate at about 85°C;
The mixture was stirred with a stirring blade, and the emulsified mixture was mixed with a bubble retaining agent and aluminum powder to obtain a W10 explosive composition. The underwater explosive energy of this explosive composition was measured. The results are shown in Table-1 and Table-2.

なお、水中爆発エネルギーは、水中爆発エネルギー測定
用人工池にて水深4mに爆薬を敷設し、同じ水深で任意
の距離にセットされているトルマリンゲージ(圧力ゲー
ジ)により、爆発した爆薬のショックパルスを計測し、
前記Es、Ebを算出した。総合エネルギーは、これら
EsとEbを加えて、比較例1に対する相対比として次
の計算式で算出した。
Underwater explosion energy can be measured by laying explosives at a depth of 4 meters in an artificial pond for measuring underwater explosion energy, and measuring the shock pulse of the exploded explosives using a tourmaline gauge (pressure gauge) set at an arbitrary distance at the same depth. Measure and
The above Es and Eb were calculated. The total energy was calculated by adding these Es and Eb and using the following formula as a relative ratio to Comparative Example 1.

ここで、E so、  E boは比較例1の値であり
、Esn、  Ebnは比較対象例の値である。
Here, E so and E bo are the values of Comparative Example 1, and Esn and Ebn are the values of the comparative example.

(比較例1) アルミニウム粉を含有しない以外は、実施例1〜6と同
様にしてW10爆薬組成物を得た。それを使用して実施
例1と同じ項目について同様の試験方法で測定した。そ
の結果を表−3に示す。
(Comparative Example 1) A W10 explosive composition was obtained in the same manner as in Examples 1 to 6 except that it did not contain aluminum powder. Using this, the same items as in Example 1 were measured using the same test method. The results are shown in Table-3.

(比較例2) 気泡保持剤として有機質気泡保持剤に代えて無機質気泡
保持剤である平均粒径50μmのGMBを含有させた以
外は、実施例3と同様にしてW10爆薬組成物を得た。
(Comparative Example 2) A W10 explosive composition was obtained in the same manner as in Example 3, except that GMB, an inorganic bubble-retaining agent, with an average particle size of 50 μm was contained instead of the organic bubble-retaining agent.

それを使用して実施例1〜6と同じ項目について同様の
試験方法で測定した。
Using this, the same items as in Examples 1 to 6 were measured using the same test method.

その結果を表−3に示す。The results are shown in Table-3.

表−1 表 2 表−3 表−1〜表−3におけるアルミニウム粉の外割り添加量
は、アルミニウム粉以外のW10爆薬組成物100重量
部に対する重量%を表す。
Table 1 Table 2 Table 3 The external addition amount of aluminum powder in Tables 1 to 3 represents weight % based on 100 parts by weight of the W10 explosive composition other than aluminum powder.

前記表−1〜表−3かられかるように、実施例1〜6の
’vV10爆薬組成物は、水中爆発エネルギーの総合エ
ネルギーが比較例1のそれを100とした場合116〜
213と相当高まり、実施例5及び6では2倍を超えて
いる。
As can be seen from Tables 1 to 3 above, the 'vV10 explosive compositions of Examples 1 to 6 had a total underwater explosion energy of 116 to 100 when that of Comparative Example 1 was taken as 100.
213, which is considerably higher, and in Examples 5 and 6, it is more than double.

それに対して、比較例1のW10爆薬組成物は、有機質
気泡保持剤を含有しているが、アルミニウム粉を含有し
ていないため、水中爆発エネルギーが低い。また、比較
例2のW10爆薬組成物は、アルミニウム粉と無機気泡
保持剤であるGMBを併用し、アルミニウム粉の含有量
を増加させたため、W10爆薬の形状維持が困難となり
、不爆発となった。
On the other hand, the W10 explosive composition of Comparative Example 1 contains an organic bubble retaining agent but does not contain aluminum powder, and thus has a low underwater explosion energy. In addition, the W10 explosive composition of Comparative Example 2 used aluminum powder and GMB, an inorganic bubble retaining agent, to increase the content of aluminum powder, making it difficult to maintain the shape of the W10 explosive and making it non-explosive. .

また、比較例1におけるW10爆薬(標準的なW10爆
薬組成)のEsは約0.7 MJ 7kg、 Ebは約
2.1 M J 7kg、総合エネルギーは約2.8 
M J/kgである。各実施例のW10爆薬組成物の総
合エネルギーは、約3.2MJ/kg(実施例1)〜6
゜OMJ/kg(実施例6)程度の範囲まで向上する。
In addition, the W10 explosive (standard W10 explosive composition) in Comparative Example 1 has an Es of about 0.7 MJ 7kg, an Eb of about 2.1 MJ 7kg, and a total energy of about 2.8.
MJ/kg. The total energy of the W10 explosive composition for each example is approximately 3.2 MJ/kg (Example 1) to 6
It improves to a range of about ゜OMJ/kg (Example 6).

(実施例7) 後記表−4に示すような組成で次のようにしてW10爆
薬を製造した。
(Example 7) A W10 explosive was manufactured in the following manner using the composition shown in Table 4 below.

無機酸化酸塩として硝酸アンモニウム74.4部、鋭感
剤としてヒドラジン硝酸塩10部、キレート化剤として
エチレンジアミン四酢酸ナトリウム0゜5部を水l01
5部に加え、90℃で完全に溶解して無機酸化酸塩の水
溶液を得た。一方、炭素質燃料としてワックスレックス
602を2.3部と、乳化剤としてソルビタンモノオレ
エート2.3部とを90℃で溶融混合させて可燃性混合
物を得た。これに前記無機酸化酸塩の水溶液をゆっくり
添加し、90°Cで加温下650 rpmで攪拌して乳
化を行った。
74.4 parts of ammonium nitrate as an inorganic oxide salt, 10 parts of hydrazine nitrate as a sensitizing agent, 0.5 parts of sodium ethylenediaminetetraacetate as a chelating agent, and 101 parts of water.
5 parts and completely dissolved at 90° C. to obtain an aqueous solution of the inorganic oxide salt. On the other hand, 2.3 parts of Wax Rex 602 as a carbonaceous fuel and 2.3 parts of sorbitan monooleate as an emulsifier were melt-mixed at 90°C to obtain a combustible mixture. The aqueous solution of the inorganic oxide salt was slowly added thereto, and emulsified by stirring at 650 rpm while heating at 90°C.

乳化後、さらに1分間1600 rpmで攪拌してW1
0型エマルションを得た。次いで、このW10型エマル
ションに平均粒径が300μmの有機気泡保持剤0.7
部とアルミニウム粉11部を60〜80℃で混合してW
10爆薬組成物を得た。このこのW10爆薬組成物につ
いて、水中爆発エネルギーの測定を行った。その結果を
後記表−7に示す。
After emulsification, stir at 1600 rpm for another minute and
A type 0 emulsion was obtained. Next, 0.7% of an organic bubble retaining agent with an average particle size of 300 μm was added to this W10 emulsion.
1 part and 11 parts of aluminum powder were mixed at 60 to 80°C.
10 explosive compositions were obtained. The underwater explosion energy of this W10 explosive composition was measured. The results are shown in Table 7 below.

(実施例8) 鋭感剤、キレート化剤を含有しないこと及びアルミニウ
ム粉の含有量を変えた以外は実施例7と同様にして表−
4に示すW10爆薬組成物を得、その性能を評価した。
(Example 8) Table 1 was prepared in the same manner as in Example 7 except that no sensitizing agent or chelating agent was contained and the content of aluminum powder was changed.
A W10 explosive composition shown in No. 4 was obtained and its performance was evaluated.

その結果を表−7に示す。The results are shown in Table-7.

この表−7かられかるように、本実施例の爆薬組成物は
実施例7のそれと比べて総合エネルギー比が向上してい
る。
As can be seen from Table 7, the explosive composition of this example has an improved total energy ratio compared to that of Example 7.

(実施例9) 主に、アルミニウム粉の含有量が多いこと以外は実施例
7と同様にして表−4に示すW10爆薬組成物を得、そ
の性能を評価した。その結果を表−7に示す。
(Example 9) A W10 explosive composition shown in Table 4 was obtained in the same manner as in Example 7 except that the content of aluminum powder was mainly increased, and its performance was evaluated. The results are shown in Table-7.

この表−7かられかるように、本実施例の爆薬組成物は
実施例7のそれと比べて総合エネルギー比が向上してい
る。
As can be seen from Table 7, the explosive composition of this example has an improved total energy ratio compared to that of Example 7.

(実施例10) 主に、アルミニウム粉の含有量が多いこと以外は実施例
8と同様にして表−5に示すW10爆薬組成物を得、そ
の性能を評価した。その結果を表−8に示す。
(Example 10) A W10 explosive composition shown in Table 5 was obtained in the same manner as in Example 8 except that the content of aluminum powder was mainly high, and its performance was evaluated. The results are shown in Table-8.

この表−8かられかるように、本実施例の爆薬組成物は
実施例8のそれと比べて総合エネルギー比が向上してい
る。
As can be seen from Table 8, the explosive composition of this example has an improved total energy ratio compared to that of Example 8.

(実施例11) 主に、アルミニウム粉の含有量が多いこと以外は実施例
9と同様にして表−5に示すW10爆薬組成物を得、そ
の性能を評価した。その結果を表−8に示す。
(Example 11) A W10 explosive composition shown in Table 5 was obtained in the same manner as in Example 9 except that the content of aluminum powder was mainly increased, and its performance was evaluated. The results are shown in Table-8.

この表−8かられかるように、本実施例の爆薬組成物は
実施例9のそれと比べて総合エネルギー比が向上してい
る。
As can be seen from Table 8, the explosive composition of this example has an improved total energy ratio compared to that of example 9.

(実施例12) 主に、アルミニウム粉の含有量が多いこと以外は実施例
11と同様にして表−5に示すW10爆薬組成物を得、
その性能を評価した。その結果を表−8に示す。
(Example 12) A W10 explosive composition shown in Table 5 was obtained in the same manner as in Example 11 except that the content of aluminum powder was mainly increased,
Its performance was evaluated. The results are shown in Table-8.

この表−8かられかるように、本実施例の爆薬組成物は
実施例11のそれと比べて総合エネルギー比がわずかに
向上している。
As can be seen from Table 8, the explosive composition of this example has a slightly improved total energy ratio compared to that of Example 11.

(実施例13) 主に、アルミニウム粉の含有量が多いこと以外は実施例
1Oと同様にして表−6に示すW10爆薬組成物を得、
その性能を評価した。その結果を表−9に示す。
(Example 13) A W10 explosive composition shown in Table 6 was obtained in the same manner as in Example 1O, except that the content of aluminum powder was mainly increased,
Its performance was evaluated. The results are shown in Table-9.

この表−9かられかるように、本実施例の爆薬組成物は
実施例10のそれと比べて総合エネルギー比が少し向上
している。
As can be seen from Table 9, the total energy ratio of the explosive composition of this example is slightly improved compared to that of example 10.

(実施例14) 主に、アルミニウム粉の含有量が多いこと以外は実施例
12と同様にして表−6に示すW10爆薬組成物を得、
その性能を評価した。その結果を表−9に示す。
(Example 14) A W10 explosive composition shown in Table 6 was obtained in the same manner as in Example 12, except that the content of aluminum powder was mainly increased,
Its performance was evaluated. The results are shown in Table-9.

この表−9かられかるように、本実施例の爆薬組成物は
実施例12のそれと比べて総合エネルギー比がわずかに
向上している。
As can be seen from Table 9, the total energy ratio of the explosive composition of this example is slightly improved compared to that of example 12.

(実施例15) 主に、アルミニウム粉の含有量が多いこと以外は実施例
13と同様にして表−6に示すW10爆薬組成物を得、
その性能を評価した。その結果を表−9に示す。
(Example 15) A W10 explosive composition shown in Table 6 was obtained in the same manner as in Example 13 except that the content of aluminum powder was mainly increased,
Its performance was evaluated. The results are shown in Table-9.

この表−9かられかるように、本実施例の爆薬組成物は
実施例13のそれと比べて総合エネルギー比がわずかに
向上している。
As can be seen from Table 9, the total energy ratio of the explosive composition of this example is slightly improved compared to that of example 13.

なお、後記表−4〜表−6における略号は次の意味を表
す。
The abbreviations in Tables 4 to 6 below have the following meanings.

MMA硝酸塩:モノメチルアミン硝酸塩Hyd硝酸塩:
ヒドラジン硝酸塩 EDA硝酸塩:エチレンジアミン硝酸塩EDTA :エ
チレンジアミン四酢酸ナトリウムSMO:ソルビタンモ
ノオレエート SMGニステアリン酸モノグリセライドWAx(1):
ワックスレックス602WAX (2) :マイクロク
リスタリンワックス160WAX (3) :ポリワッ
クス500GMB ニガラス微小中空球体。粒径が20
〜140μmで平均粒径が60μmのもの。
MMA nitrate: Monomethylamine nitrate Hyd nitrate:
Hydrazine nitrate EDA nitrate: Ethylenediamine nitrate EDTA: Sodium ethylenediaminetetraacetate SMO: Sorbitan monooleate SMG Nistearic acid monoglyceride WAx (1):
Wax Rex 602WAX (2): Microcrystalline Wax 160WAX (3): Polywax 500GMB Nigaras micro hollow spheres. Particle size is 20
~140 μm with an average particle size of 60 μm.

SMB ニジラス微小中空体。粒径が30〜150μm
で平均粒径が75μmのもの。
SMB Nijirus micro hollow body. Particle size is 30-150μm
with an average particle size of 75 μm.

RMB(L):ポリ塩化ビニリデン系樹脂球。粒径が1
0〜100μmで平均粒径が30μmのもの。
RMB (L): Polyvinylidene chloride resin sphere. Particle size is 1
0 to 100 μm with an average particle size of 30 μm.

発泡スチロール(1)二発泡スチロールビーズを予備発
泡処理したもの。粒径が180〜700μmで平均粒径
が300μmのもの。
Styrofoam (1) Styrofoam beads pre-foamed. The particle size is 180 to 700 μm and the average particle size is 300 μm.

発泡スチロール(2):発泡スチロールビーズを予備発
泡処理したもの。粒径が2500〜6200μmで平均
粒径が4100μmのもの。
Styrofoam (2): Styrofoam beads that have been pre-foamed. The particle size is 2,500 to 6,200 μm and the average particle size is 4,100 μm.

表−7 表−9 (比較例3) アルミニウム粉を含有していないこと以外は実施例1と
同様にして表−10に示すW10爆薬組成物を得、その
性能を評価した。その結果を表16に示す。
Table 7 Table 9 (Comparative Example 3) A W10 explosive composition shown in Table 10 was obtained in the same manner as in Example 1 except that it did not contain aluminum powder, and its performance was evaluated. The results are shown in Table 16.

この爆薬組成物は、各エネルギー比の標準となる組成物
である。
This explosive composition is a standard composition for each energy ratio.

(比較例4) アルミニウム粉の含有量が少ないこと以外は実施例7と
同様にして表−10に示すW10爆薬組成物を得、その
性能を評価した。その結果を表−16に示す。
(Comparative Example 4) A W10 explosive composition shown in Table 10 was obtained in the same manner as in Example 7 except that the content of aluminum powder was small, and its performance was evaluated. The results are shown in Table-16.

この表−16かられかるように、本比較例の爆薬組成物
は実施例7のそれと比べて総合エネルギー比は小さい。
As can be seen from Table 16, the explosive composition of this comparative example has a lower total energy ratio than that of Example 7.

(比較例5) アルミニウム粉の含有量が多いこと以外は実施例7と同
様にして表−IOに示すW10爆薬組成物を得、その性
能を評価した。その結果を表−16に示す。本比較例の
爆薬組成物は不爆発である。
(Comparative Example 5) A W10 explosive composition shown in Table IO was obtained in the same manner as in Example 7 except that the content of aluminum powder was high, and its performance was evaluated. The results are shown in Table-16. The explosive composition of this comparative example is non-explosive.

(比較例6) 主に、アルミニウム粉の粒径が大きいこと以外は比較例
4と同様にして表−11に示すW10爆薬組成物を得、
その性能を評価した。その結果を表−17に示す。本比
較例の爆薬組成物は不爆発である。
(Comparative Example 6) A W10 explosive composition shown in Table 11 was obtained in the same manner as Comparative Example 4 except that the particle size of the aluminum powder was large,
Its performance was evaluated. The results are shown in Table-17. The explosive composition of this comparative example is non-explosive.

(比較例7) 主に、アルミニウム粉の粒径が大きいこと以外は比較例
5と同様にして表−11に示すW10爆薬組成物を得、
その性能を評価した。その結果を表−17に示す。本比
較例の爆薬組成物は不爆発である。
(Comparative Example 7) A W10 explosive composition shown in Table 11 was obtained in the same manner as Comparative Example 5 except that the particle size of the aluminum powder was large,
Its performance was evaluated. The results are shown in Table-17. The explosive composition of this comparative example is non-explosive.

(比較例8) 主に、アルミニウム粉の含有量が少ないこと以外は実施
例8と同様にして表−11に示すW10爆薬組成物を得
、その性能を評価した。その結果を表−17に示す。
(Comparative Example 8) A W10 explosive composition shown in Table 11 was obtained in the same manner as in Example 8, except that the content of aluminum powder was mainly small, and its performance was evaluated. The results are shown in Table-17.

この表−17かられかるように、本比較例の爆薬組成物
は実施例8のそれと比べて総合エネルギー比が低い。
As can be seen from Table 17, the explosive composition of this comparative example has a lower total energy ratio than that of Example 8.

(比較例9) 主に、アルミニウム粉の含有量が多いこと以外は実施例
8と同様にして表−12に示すW10爆薬組成物を得、
その性能を評価した。その結果を表−18に示す。本比
較例の爆薬組成物は不爆発である。
(Comparative Example 9) A W10 explosive composition shown in Table 12 was obtained in the same manner as in Example 8 except that the content of aluminum powder was mainly increased,
Its performance was evaluated. The results are shown in Table-18. The explosive composition of this comparative example is non-explosive.

(比較例10) 主に、アルミニウム粉の粒子径が大きいこと以外は比較
例8と同様にして表−12に示すW10爆薬組成物を得
、その性能を評価した。その結果を表−18に示す。本
比較例の爆薬組成物は不爆発である。
(Comparative Example 10) A W10 explosive composition shown in Table 12 was obtained in the same manner as Comparative Example 8, except that the particle size of the aluminum powder was large, and its performance was evaluated. The results are shown in Table-18. The explosive composition of this comparative example is non-explosive.

(比較例11) 主に、アルミニウム粉の粒子径が大きいこと舅外は比較
例9と同様にして表−12に示すW10爆薬組成物を得
、その性能を評価した。その結果を表−18に示す。本
比較例の爆薬組成物は不爆発である。
(Comparative Example 11) Mainly due to the large particle size of the aluminum powder.A W10 explosive composition shown in Table 12 was obtained in the same manner as Comparative Example 9, and its performance was evaluated. The results are shown in Table-18. The explosive composition of this comparative example is non-explosive.

(比較例12) 主に、気泡保持剤として有機質気泡保持剤に代えて無機
質気泡保持剤であるグラスマイクロバルーン(GMB)
を配合した以外は実施例9と同様にして表−13に示す
W10爆薬組成物を得、その性能を評価した。その結果
を表−19に示す。
(Comparative Example 12) Glass microballoon (GMB), which is mainly an inorganic bubble-holding agent instead of an organic bubble-holding agent, is used as a bubble-holding agent.
A W10 explosive composition shown in Table 13 was obtained in the same manner as in Example 9 except that the following was added, and its performance was evaluated. The results are shown in Table-19.

この表−19かられかるように、本比較例の爆薬組成物
は、実施例9のそれに比べて総合エネルギー比が低下し
ている。
As can be seen from Table 19, the explosive composition of this comparative example has a lower total energy ratio than that of Example 9.

(比較例13) 主に、気泡保持剤として平均粒径の小さいレジンマイク
ロバルーン(RMB)を配合した以外は実施例9と同様
にして表−13に示すW10爆薬組成物を得、その性能
を評価した。その結果を表−19に示す。
(Comparative Example 13) A W10 explosive composition shown in Table 13 was obtained in the same manner as in Example 9, except that resin microballoons (RMB) with a small average particle size were mainly blended as a bubble retaining agent, and its performance was evaluated. evaluated. The results are shown in Table-19.

この表−19かられかるように、本比較例の爆薬組成物
は、実施例9のそれに比べて総合エネルギー比が低下し
ている。
As can be seen from Table 19, the explosive composition of this comparative example has a lower total energy ratio than that of Example 9.

(比較例14) 主に、気泡保持剤として平均粒径の大きい発泡スチロー
ル粒を配合した以外は実施例9と同様にして表−13に
示すW10爆薬組成物を得、その性能を評価した。その
結果を表−19に示す。本比較例の爆薬組成物は、不爆
発である。
(Comparative Example 14) A W10 explosive composition shown in Table 13 was obtained in the same manner as in Example 9, except that expanded polystyrene particles having a large average particle size were mainly blended as a bubble retaining agent, and its performance was evaluated. The results are shown in Table-19. The explosive composition of this comparative example is non-explosive.

(比較例15) 主に、気泡保持剤として有機質気泡保持剤に代えて無機
質気泡保持剤であるシラスマイクロバルーン(SMB)
を配合した以外は実施例10と同様にして表−14に示
すW10爆薬組成物を得、その性能を評価した。その結
果を表−20に示す。
(Comparative Example 15) Shirasu Micro Balloon (SMB), which is an inorganic bubble-holding agent, was used instead of an organic bubble-holding agent as a bubble-holding agent.
A W10 explosive composition shown in Table 14 was obtained in the same manner as in Example 10 except that the following was added, and its performance was evaluated. The results are shown in Table-20.

この表−20かられかるように、本比較例の爆薬組成物
は、実施例IOのそれに比べて総合エネルギー比が低下
している。
As can be seen from Table 20, the explosive composition of this comparative example has a lower total energy ratio than that of Example IO.

(比較例16) 主に、気泡保持剤として平均粒径の小さいレジンマイク
ロバルーン(RMB)を配合した以外は実施例10と同
様にして表−14に示すW10爆薬組成物を得、その性
能を評価した。その結果を表−20に示す。
(Comparative Example 16) A W10 explosive composition shown in Table 14 was obtained in the same manner as in Example 10, except that resin microballoons (RMB) with a small average particle size were mainly blended as a bubble retaining agent, and its performance was evaluated. evaluated. The results are shown in Table-20.

この表−20かられかるように、本比較例の爆薬組成物
は、実施例IOのそれに比べて総合エネルギー比が低下
している。
As can be seen from Table 20, the explosive composition of this comparative example has a lower total energy ratio than that of Example IO.

(比較例17) 主に、気泡保持剤として平均粒径の大きい発泡スチロー
ル粒を配合した以外は実施例1Oと同様にして表−14
に示すW10爆薬組成物を得、その性能を評価した。そ
の結果を表−20に示す。
(Comparative Example 17) Table 14 was carried out in the same manner as in Example 1O, except that expanded polystyrene particles with a large average particle size were mainly blended as a bubble retaining agent.
A W10 explosive composition shown in was obtained and its performance was evaluated. The results are shown in Table-20.

本比較例の爆薬組成物は、不爆発である。The explosive composition of this comparative example is non-explosive.

(比較例18) 主に、有機質気泡保持剤の含有量を多(した以外は比較
例3と同様にして表−15に示すW10爆薬組成物を得
、その性能を評価した。その結果を表−21に示す。本
比較例の爆薬組成物は、不爆発である。
(Comparative Example 18) A W10 explosive composition shown in Table 15 was obtained in the same manner as Comparative Example 3 except that the content of the organic bubble retaining agent was increased, and its performance was evaluated. -21.The explosive composition of this comparative example is non-explosive.

(比較例19) 主に、有機質気泡保持剤を含有してしない以外は比較例
3と同様にして表−15に示すW10爆薬組成物を得、
その性能を評価した。その結果を表−21に示す。本比
較例の爆薬組成物は、不爆発である。
(Comparative Example 19) A W10 explosive composition shown in Table 15 was obtained in the same manner as Comparative Example 3 except that it did not contain an organic bubble retaining agent.
Its performance was evaluated. The results are shown in Table-21. The explosive composition of this comparative example is non-explosive.

(比較例20) 主に、有機質気泡保持剤の含有量を多くし、鋭感剤を含
有していない以外は比較例3と同様にして表−15に示
すW10爆薬組成物を得、その性能を評価した。その結
果を表−21に示す。本比較例の爆薬組成物は、不爆発
である。
(Comparative Example 20) A W10 explosive composition shown in Table 15 was obtained in the same manner as Comparative Example 3 except that the content of the organic bubble retaining agent was increased and no sensitizing agent was contained. was evaluated. The results are shown in Table-21. The explosive composition of this comparative example is non-explosive.

(比較例21) 主に、有機質気泡保持剤を含有していないこと及び鋭感
剤を含有していないこと以外は比較例3と同様にして表
−15に示すW10爆薬組成物を得、その性能を評価し
た。その結果を表−21に示す。本比較例の爆薬組成物
は、不爆発である。
(Comparative Example 21) A W10 explosive composition shown in Table 15 was obtained in the same manner as in Comparative Example 3, except that it did not contain an organic bubble-retentive agent or a sensitizing agent. Performance was evaluated. The results are shown in Table-21. The explosive composition of this comparative example is non-explosive.

なお、後記表−10〜表−15における略号は、次の意
味を表す。
The abbreviations in Tables 10 to 15 below have the following meanings.

発泡St 8μ:平均粒径が8μmの発泡スチロー発泡
St 300μ:平均粒径が300μmの発泡スチロー
ル 発泡St 4100 μ:平均粒径が4100.czm
(7)発泡スチロール RMB(21:ポリ塩化ビニリチン系樹脂球。粒径か5
〜30μmで平均粒径が8μmのもの。
Foamed St 8μ: Styrofoam foamed St with an average particle size of 8μm Foamed St 300μ: Styrofoam foamed St with an average particle size of 300μm 4100μ: Average particle size 4100. czm
(7) Styrofoam RMB (21: Polyvinyritine resin spheres. Particle size: 5
~30 μm with an average particle size of 8 μm.

表−10 表−1 ■ 表−12 表= 1 5 表−18 表−2 前記表−7〜表−9かられかるように、実施例7〜15
のW10爆薬組成物は、水中爆発エネルギーの総合エネ
ルギーが比較例3のそれを100とした場合116〜2
13と相当高まり、実施例11.12及び14では2倍
を超えている。
Table-10 Table-1 ■ Table-12 Table = 1 5 Table-18 Table-2 As can be seen from Tables-7 to Table-9 above, Examples 7 to 15
The W10 explosive composition has a total underwater explosion energy of 116 to 2 when that of Comparative Example 3 is taken as 100.
13, which is considerably higher, and in Examples 11, 12, and 14, it is more than double.

それに対して、各比較例のW10爆薬組成物は、不爆発
となるか又は水中爆発エネルギーが低い。
In contrast, the W10 explosive compositions of each comparative example were either non-explosive or had low underwater explosion energy.

また、前記比較例3における総合エネルギーは約2.8
 M J / kgであり、それに対して各実施例の総
合エネルギーは3.2MJ/kg(実施例7)〜660
MJ/kg(実施例14)の範囲であり、比較例3に対
して相当に高まっていることがわかる。
In addition, the total energy in Comparative Example 3 is approximately 2.8
MJ/kg, whereas the total energy of each example is 3.2 MJ/kg (Example 7) to 660
MJ/kg (Example 14), which is considerably higher than Comparative Example 3.

〔発明の効果〕〔Effect of the invention〕

本発明の第1の発明のW10爆薬組成物は、特に有機質
気泡保持剤とアルミニウム粉を併用したことにより、水
中爆発エネルギーが著しく向上するという優れた効果を
奏する。
The W10 explosive composition of the first aspect of the present invention exhibits an excellent effect of significantly improving underwater explosion energy, especially by using an organic bubble retaining agent and aluminum powder in combination.

第2の発明のW10爆薬組成物は、特に所定粒径の有機
質気泡保持剤と所定粒径のアルミニウム粉を一定量含有
したことにより、水中爆発エネルギーが大きく向上する
という優れた効果を奏する第3の発明によれば、第2の
発明のW10爆薬組成物に鋭感剤を含有させたことによ
り、第2の発明の効果に加え、爆轟信頼性を高めること
ができるとともに、低温起爆性を改善することができる
という効果を奏する。
The W10 explosive composition of the second invention has an excellent effect of greatly improving the underwater explosion energy, especially because it contains a certain amount of an organic bubble retaining agent of a predetermined particle size and an aluminum powder of a predetermined particle size. According to the invention, by incorporating a sensitizing agent into the W10 explosive composition of the second invention, in addition to the effects of the second invention, detonation reliability can be improved and low-temperature detonation properties can be improved. It has the effect of being able to improve.

Claims (1)

【特許請求の範囲】 1、炭素質燃料成分からなる連続相、無機酸化酸塩の水
溶液からなる分散相、乳化剤、鋭感剤及び気泡保持剤か
らなる油中水型エマルション爆薬組成物において、前記
気泡保持剤が有機質気泡保持剤であり、さらにアルミニ
ウム粉を含有する油中水型エマルション爆薬組成物。 2、炭素質燃料成分からなる連続相、無機酸化酸塩の水
溶液からなる分散相、乳化剤及び気泡保持剤からなる油
中水型エマルション爆薬組成物において、前記気泡保持
剤が平均粒径10〜4000μmの有機質気泡保持剤で
あり、アルミニウム粉が平均粒径1mm以下で、かつそ
の含有量が10〜70重量%である油中水型エマルショ
ン爆薬組成物。 3、請求項2に記載の油中水型エマルション爆薬組成物
に鋭感剤を配合してなる油中水型エマルション爆薬組成
物。
[Scope of Claims] 1. A water-in-oil emulsion explosive composition comprising a continuous phase comprising a carbonaceous fuel component, a dispersed phase comprising an aqueous solution of an inorganic oxide salt, an emulsifier, a sensitizer, and a bubble retaining agent, comprising: A water-in-oil emulsion explosive composition in which the bubble retaining agent is an organic bubble retaining agent and further contains aluminum powder. 2. A water-in-oil emulsion explosive composition comprising a continuous phase consisting of a carbonaceous fuel component, a dispersed phase consisting of an aqueous solution of an inorganic oxide salt, an emulsifier and a bubble retaining agent, wherein the bubble retaining agent has an average particle size of 10 to 4000 μm. 1. A water-in-oil emulsion explosive composition, which is an organic air bubble retaining agent, and contains aluminum powder with an average particle size of 1 mm or less and a content of 10 to 70% by weight. 3. A water-in-oil emulsion explosive composition obtained by blending the water-in-oil emulsion explosive composition according to claim 2 with a sensitizer.
JP02205522A 1989-08-23 1990-08-01 Water-in-oil emulsion explosive composition Expired - Fee Related JP3019375B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002065848A CA2065848C (en) 1989-08-23 1990-08-22 Water-in-oil emulsion explosive composition
EP90912461A EP0598115B1 (en) 1989-08-23 1990-08-22 W/o emulsion explosive composition
PCT/JP1990/001068 WO1991002706A1 (en) 1989-08-23 1990-08-22 W/o emulsion explosive composition
DE69032230T DE69032230T2 (en) 1989-08-23 1990-08-22 WATER IN OIL EMULSION EXPLOSIVE COMPOSITION
KR1019920700405A KR960010098B1 (en) 1989-08-23 1990-08-22 Water-in-oil emulsion explosive composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1-216656 1989-08-23
JP21665689 1989-08-23

Publications (2)

Publication Number Publication Date
JPH03164489A true JPH03164489A (en) 1991-07-16
JP3019375B2 JP3019375B2 (en) 2000-03-13

Family

ID=16691877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02205522A Expired - Fee Related JP3019375B2 (en) 1989-08-23 1990-08-01 Water-in-oil emulsion explosive composition

Country Status (2)

Country Link
JP (1) JP3019375B2 (en)
KR (1) KR960010098B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000178093A (en) * 1998-12-16 2000-06-27 Nippon Koki Co Ltd Waterdrop-in-oil (w/o) type emulsion explosive composition
JP2009120420A (en) * 2007-11-13 2009-06-04 Daicel Chem Ind Ltd Gas generating agent composition
JP2010540384A (en) * 2007-09-28 2010-12-24 セーウーエフィ−コンパニア ウニアン ファブリル エスィジェーペーエスィ,ソシエダッド アノニマ Nanocrystalline spherical oxide ceramics, synthesis method and use thereof
JP2011523928A (en) * 2008-05-27 2011-08-25 イノブナノ−マテリアイス アバンサドス,ソシエダッド アノニマ Nanometer-sized ceramic materials, their synthesis and use
JP2013234095A (en) * 2012-05-10 2013-11-21 Nof Corp Water-in-oil type emulsion explosive composition
JP2013237598A (en) * 2012-05-17 2013-11-28 Nof Corp W/o type emulsion explosive composition

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100576180B1 (en) * 2002-07-27 2006-05-03 주식회사 한화 Non-explosive emulsion composition
WO2013138366A1 (en) * 2012-03-12 2013-09-19 University Of Central Florida Research Foundation, Inc. Compositions having aluminum particles dispersed in a continuous phase

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000178093A (en) * 1998-12-16 2000-06-27 Nippon Koki Co Ltd Waterdrop-in-oil (w/o) type emulsion explosive composition
JP2010540384A (en) * 2007-09-28 2010-12-24 セーウーエフィ−コンパニア ウニアン ファブリル エスィジェーペーエスィ,ソシエダッド アノニマ Nanocrystalline spherical oxide ceramics, synthesis method and use thereof
EP2205526B1 (en) * 2007-09-28 2017-08-16 Cuf-Companhia Uniao Fabril, SGPS, S.A. Nanocrystaline spherical ceramic oxides, process for the synthesis and use thereof
JP2009120420A (en) * 2007-11-13 2009-06-04 Daicel Chem Ind Ltd Gas generating agent composition
JP2011523928A (en) * 2008-05-27 2011-08-25 イノブナノ−マテリアイス アバンサドス,ソシエダッド アノニマ Nanometer-sized ceramic materials, their synthesis and use
JP2013234095A (en) * 2012-05-10 2013-11-21 Nof Corp Water-in-oil type emulsion explosive composition
JP2013237598A (en) * 2012-05-17 2013-11-28 Nof Corp W/o type emulsion explosive composition

Also Published As

Publication number Publication date
KR920702334A (en) 1992-09-03
JP3019375B2 (en) 2000-03-13
KR960010098B1 (en) 1996-07-25

Similar Documents

Publication Publication Date Title
US4543136A (en) Water-in-oil emulsion explosive composition
JPS6214518B2 (en)
JPS5992991A (en) Emulsion explosive composition and manufacture
US4371408A (en) Low water emulsion explosive compositions optionally containing inert salts
PH26043A (en) Process for preparing explosives
JPH03164489A (en) Composition for weter-in-oil emulsion explosive
US4936932A (en) Aromatic hydrocarbon-based emulsion explosive composition
JPS62162685A (en) Water-in-oil type emulsion explosive
JPH0684273B2 (en) Water-in-oil emulsion explosive composition
EP0598115B1 (en) W/o emulsion explosive composition
GB2225572A (en) Nitroalkane-based emulsion explosive composition:
US4908079A (en) Water in oil type emulsion explosive
JPS59162194A (en) Water-in-oil emulsion explosive composition
JPS59207889A (en) Water-in-oil emulsion explosive composition
JP6019726B2 (en) Water-in-oil emulsion explosive composition
JPS6363520B2 (en)
JP2003246694A (en) Explosive
JPS6343355B2 (en)
JPH0147440B2 (en)
JPS58120589A (en) Oil industrial water type emulsion detonator composition
JPH1112075A (en) Water-in-oil type emulsion explosive composition
JPH0380178A (en) Water-in-oil type emulsion explosive composition
JPH075424B2 (en) Water-in-oil emulsion explosive composition and method for producing the same
JPH02133385A (en) Water-in-oil type emulsion explosive composition
JPH0210797B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees