JP3019375B2 - Water-in-oil emulsion explosive composition - Google Patents

Water-in-oil emulsion explosive composition

Info

Publication number
JP3019375B2
JP3019375B2 JP02205522A JP20552290A JP3019375B2 JP 3019375 B2 JP3019375 B2 JP 3019375B2 JP 02205522 A JP02205522 A JP 02205522A JP 20552290 A JP20552290 A JP 20552290A JP 3019375 B2 JP3019375 B2 JP 3019375B2
Authority
JP
Japan
Prior art keywords
explosive composition
weight
comparative example
explosive
aluminum powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02205522A
Other languages
Japanese (ja)
Other versions
JPH03164489A (en
Inventor
文彦 角谷
彰夫 鳥居
幸夫 加藤
Original Assignee
日本油脂株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本油脂株式会社 filed Critical 日本油脂株式会社
Priority to PCT/JP1990/001068 priority Critical patent/WO1991002706A1/en
Priority to EP90912461A priority patent/EP0598115B1/en
Priority to DE69032230T priority patent/DE69032230T2/en
Priority to CA002065848A priority patent/CA2065848C/en
Priority to KR1019920700405A priority patent/KR960010098B1/en
Publication of JPH03164489A publication Critical patent/JPH03164489A/en
Application granted granted Critical
Publication of JP3019375B2 publication Critical patent/JP3019375B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B47/00Compositions in which the components are separately stored until the moment of burning or explosion, e.g. "Sprengel"-type explosives; Suspensions of solid component in a normally non-explosive liquid phase, including a thickened aqueous phase
    • C06B47/14Compositions in which the components are separately stored until the moment of burning or explosion, e.g. "Sprengel"-type explosives; Suspensions of solid component in a normally non-explosive liquid phase, including a thickened aqueous phase comprising a solid component and an aqueous phase
    • C06B47/145Water in oil emulsion type explosives in which a carbonaceous fuel forms the continuous phase
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B47/00Compositions in which the components are separately stored until the moment of burning or explosion, e.g. "Sprengel"-type explosives; Suspensions of solid component in a normally non-explosive liquid phase, including a thickened aqueous phase
    • C06B47/14Compositions in which the components are separately stored until the moment of burning or explosion, e.g. "Sprengel"-type explosives; Suspensions of solid component in a normally non-explosive liquid phase, including a thickened aqueous phase comprising a solid component and an aqueous phase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Fireproofing Substances (AREA)
  • Colloid Chemistry (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、水中爆発エネルギーが高い油中水型エマル
ション爆薬(以下、W/O爆薬と略記する)組成物に関す
るものである。
Description: TECHNICAL FIELD The present invention relates to a water-in-oil emulsion explosive (hereinafter abbreviated as W / O explosive) composition having high underwater explosion energy.

〔従来の技術〕[Conventional technology]

従来、爆薬の威力を評価する項目のうち殉爆度、弾道
臼砲比、爆速等が研究されているが、さらに近年水中爆
発エネルギーについても研究が行われている。
Conventionally, among the items for evaluating the power of explosives, the degree of martyrdom, the ratio of ballistic mortars, the explosion speed, etc., have been studied, and in recent years, the research on underwater explosive energy has also been conducted.

W/O爆薬にアルミニウム粉を含有させたものとして
は、特開昭54−110308号、米国特許第3770522号、米国
特許第3447978号等の公報に記載されたものがあり、こ
れらは気泡保持剤にガラスマイクロバルーン(GMB)を
使用し、さらにアルミニウム粉を配合している。
W / O explosives containing aluminum powder include those described in JP-A-54-110308, U.S. Pat.No. 3,770,522, U.S. Pat. Uses glass microballoons (GMB) and further contains aluminum powder.

また、W/O爆薬組成物の水中爆発エネルギーを高める
方法として、硝酸アンモニウム、硝酸ナトリウム、硝酸
カリウム等の無機酸化酸塩の含有量を増加させる方法が
考えられている。
Further, as a method of increasing the underwater explosion energy of the W / O explosive composition, a method of increasing the content of an inorganic oxide such as ammonium nitrate, sodium nitrate, potassium nitrate, and the like has been considered.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

ところが、上記従来の3件の発明のW/O爆薬組成物
は、爆速、殉爆度、弾道臼砲比等の威力は向上するが、
GMBとアルミニウム粉との併用では製造の点からアルミ
ニウム粉の配合量に限界があり、その含有量は20重量%
程度である。そして、アルミニウム粉の含有量を増加さ
せると不爆発となってしまうという問題点があった。ま
た、無機酸化酸塩の含有量の増加は、製造上限界があ
り、従ってその効果も小さい。
However, the power of the W / O explosive composition of the above three conventional inventions, such as the explosion speed, the degree of marty, and the ratio of the ballistic mortar, is improved.
When GMB and aluminum powder are used together, the amount of aluminum powder is limited in terms of production, and its content is 20% by weight.
It is about. And there was a problem that it would not explode if the content of aluminum powder was increased. In addition, an increase in the content of the inorganic oxide salt has a limit in production, and therefore its effect is small.

本発明の目的は、特に水中爆発エネルギーの高いW/O
爆薬組成物を提供することにある。
An object of the present invention is to provide a W / O having a particularly high underwater explosion energy.
An object of the present invention is to provide an explosive composition.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するために、本発明の第1の発明では
炭素質燃料成分からなる連続相、無機酸化酸塩の水溶液
からなる分散相、乳化剤、鋭感剤及び気泡保持剤からな
る油中水型エマルション爆薬組成物において、前記気泡
保持剤が有機質気泡保持剤でその含有量が1〜50体積%
であり、さらに平均粒径が1mm以下であるアルミニウム
粉を10〜70重量%含有するという手段を採用している。
In order to achieve the above object, a first aspect of the present invention provides a continuous phase composed of a carbonaceous fuel component, a dispersed phase composed of an aqueous solution of an inorganic oxide salt, and a water-in-oil composed of an emulsifier, a sensitizer, and a bubble retainer. In the emulsion-type explosive composition, the cell holding agent is an organic cell holding agent, and the content thereof is 1 to 50% by volume.
Further, a means of containing 10 to 70% by weight of aluminum powder having an average particle size of 1 mm or less is employed.

また、第2の発明では、炭素質燃料成分からなる連続
相、無機酸化酸塩の水溶液からなる分散相、乳化剤及び
気泡保持剤からなる油中水型エマルション爆薬組成物に
おいて、前記気泡保持剤が平均粒径10〜4000μmの有機
質気泡保持剤でその含有量が1〜50体積%であり、アル
ミニウム粉が平均粒径1mm以下で、かつその含有量が10
〜70重量%であるという手段を採用している。
Further, in the second invention, in the water-in-oil emulsion explosive composition comprising a continuous phase composed of a carbonaceous fuel component, a dispersed phase composed of an aqueous solution of an inorganic oxide salt, an emulsifier and a bubble retainer, the foam retainer is preferably used. An organic cell holding agent having an average particle diameter of 10 to 4000 μm, the content of which is 1 to 50% by volume, and the aluminum powder has an average particle diameter of 1 mm or less and a content of 10
Means of about 70% by weight.

〔手段の詳細な説明〕[Detailed description of means]

炭素質燃料は、連続相を形成し、従来からW/O爆薬に
用いられているものが使用される。例えば、第1の発明
においては、マイクロクリスタリンワックス、パラフィ
ンワックス、ポリエチレンワックス等のワックス類、2
号軽油等の燃料油等の従来からW/O爆薬に用いられてい
るものが使用できるが、それらのうち硬さ等の薬質の点
からワックス類が好ましい。また、第2の発明において
は、例えばパラフィン系炭化水素、オレフィン系炭化水
素、ナフテン系炭化水素、芳香族系炭化水素、飽和又は
不飽和炭化水素、石油精製鋼油、潤滑油、流動パラフィ
ン等の炭化水素、ニトロ炭化水素等の炭化水素誘導体、
燃料油及び/又は石油から誘導される未精製もしくは精
製マイクロクリスタリンワックス、パラフィンワック
ス、ペトロラタム等、鉱物性ワックスであるモンタンワ
ックス等動物性ワックスである鯨ロウ、昆虫ワックスで
ある密ロウ等のワックス類等であり、これらは単独又は
混合物として用いることができる。これらの炭素質燃料
のうち、経時安定性の面からマイクロクリスタリンワッ
クス、ペトロラクタムが好ましく、マイクロリスタリン
ワックスが特に好ましい。
Carbonaceous fuels that form a continuous phase and that have been used in conventional W / O explosives are used. For example, in the first invention, waxes such as microcrystalline wax, paraffin wax, polyethylene wax,
Fuel oils such as No. diesel oil and the like conventionally used in W / O explosives can be used, and among them, waxes are preferred from the viewpoint of chemical properties such as hardness. In the second invention, for example, paraffinic hydrocarbons, olefinic hydrocarbons, naphthenic hydrocarbons, aromatic hydrocarbons, saturated or unsaturated hydrocarbons, petroleum refined steel oil, lubricating oil, liquid paraffin, etc. Hydrocarbon derivatives such as hydrocarbons and nitrohydrocarbons;
Unrefined or refined microcrystalline wax, paraffin wax, petrolatum, etc. derived from fuel oil and / or petroleum; waxes such as montan wax which is a mineral wax; whale wax which is an animal wax such as montan wax; and beeswax which is an insect wax. And these can be used alone or as a mixture. Among these carbonaceous fuels, microcrystalline wax and petrolactam are preferable from the viewpoint of stability over time, and microcrystalline wax is particularly preferable.

また、薬質調整ののため、石油樹脂、低分子量ポリエ
チレン、低分子量ポリプロピレン等の低分子量炭化水素
重合体等を前記炭素質燃料成分と併用することもでき
る。これら炭素質燃料は、通常W/O爆薬に対して1〜10
重量%用いる。
In addition, a petroleum resin, a low-molecular-weight hydrocarbon polymer such as low-molecular-weight polyethylene, low-molecular-weight polypropylene, or the like may be used in combination with the carbonaceous fuel component for adjusting the drug quality. These carbonaceous fuels are typically 1 to 10 w / o explosives.
Use by weight%.

次に、無機酸化酸塩は、水溶液として分散相を形成す
るもので、従来からW/O爆薬組成物に用いられているも
のが包含される。無機酸化酸塩としては、例えば硝酸ア
ンモニウム、硝酸ナトリウム、硝酸カルシウム等のアル
カリ金属又はアルカリ土類金属の硝酸塩、塩素酸ナトリ
ウム、過塩素酸アンモニウム、過塩素酸ナトリウム等の
無機塩素酸塩又は過塩素酸塩等である。通常は、硝酸ア
ンモニウム単独又は硝酸アンモニウムと他の無機酸化酸
塩との混合物として用いられる。これら無機酸化酸塩の
配合割合は、一般に5〜90重量%であり、70〜80重量%
が好ましい。
Next, the inorganic oxyacid salt forms a dispersed phase as an aqueous solution, and includes those conventionally used in W / O explosive compositions. Examples of the inorganic oxidate include nitrates of alkali metals or alkaline earth metals such as ammonium nitrate, sodium nitrate and calcium nitrate; inorganic chlorates such as sodium chlorate, ammonium perchlorate and sodium perchlorate; and perchloric acid. Salt and the like. Usually, it is used as ammonium nitrate alone or as a mixture of ammonium nitrate and another inorganic oxide. The mixing ratio of these inorganic oxide salts is generally 5 to 90% by weight, and 70 to 80% by weight.
Is preferred.

なお、本発明のW/O爆薬組成物中の水の割合は、3〜3
0重量%が好ましく、7〜30重量%がさらに好ましい。
The ratio of water in the W / O explosive composition of the present invention is 3 to 3
It is preferably 0% by weight, more preferably 7 to 30% by weight.

次に、乳化剤は、エマルションを安定化する役目を果
たすもので、従来からW/O爆薬に用いられているものが
いずれも使用できる。例えば、ソルビタンモノラウレー
ト、ソルビタンモノオレエート、ソルビタンモノパルミ
テート、ソルビタンモノステアレート、ソルビタンセス
キオレエート、ソルビタンジオレエート、ソルビタント
リオレエート等のソルビタン脂肪酸エステル、ステアリ
ン酸モノグリセライド等の脂肪酸のモノ又はジグリセラ
イド、ポリオキシエチレンソルビタン脂肪酸エステル、
オキサゾリン誘導体、イミダゾリン誘導体、リン酸エス
テル、脂肪酸のアルカリ金属塩又はアルカリ土類金属
塩、1級、2級又は3級アミン塩等があげられ、これら
の1種又は2種以上の混合物として使用することができ
る。上記乳化剤のうち、ソルビタン脂肪酸エステルが好
ましい。この乳化剤の配合割合は、0.1〜10重量%が好
ましく、1〜5重量%がさらに好ましい。
Next, the emulsifier plays a role of stabilizing the emulsion, and any of those conventionally used in W / O explosives can be used. For example, sorbitan monolaurate, sorbitan monooleate, sorbitan monopalmitate, sorbitan monostearate, sorbitan sesquioleate, sorbitan dioleate, sorbitan fatty acid esters such as sorbitan trioleate, mono- or fatty acid monoesters such as stearic acid monoglyceride Diglyceride, polyoxyethylene sorbitan fatty acid ester,
Oxazoline derivatives, imidazoline derivatives, phosphate esters, alkali metal salts or alkaline earth metal salts of fatty acids, primary, secondary and tertiary amine salts, and the like, and these are used as one kind or as a mixture of two or more kinds be able to. Of the above emulsifiers, sorbitan fatty acid esters are preferred. The mixing ratio of the emulsifier is preferably 0.1 to 10% by weight, more preferably 1 to 5% by weight.

鋭感剤は、爆轟信頼性を高め、さらに低温起爆性を改
善するもので、例えばモノメチルアミン硝酸塩、ヒドラ
ジン硝酸塩、エチレンジアミン硝酸塩等の従来からW/O
爆薬に用いられているものを使用することができるが、
これらのうち前記硝酸アンモニウムの溶解度を上げるこ
とができるとともに、爆発エネルギーの高いヒドラジン
硝酸塩が好ましい。また、鋭感剤を用いる場合には、そ
の配合割合がW/O爆薬組成物中1〜40重量%が好まし
く、30重量%以下がさらに好ましく、20重量%以下が特
に好ましい。この割合が40重量%を越えると、取扱上の
危険性が増大する場合がある。
A sensitizer enhances detonation reliability and further improves low-temperature detonation. For example, conventional W / O such as monomethylamine nitrate, hydrazine nitrate, ethylenediamine nitrate, etc.
What is used for explosives can be used,
Of these, hydrazine nitrate, which can increase the solubility of the ammonium nitrate and has a high explosion energy, is preferable. When a sharpening agent is used, its mixing ratio is preferably 1 to 40% by weight, more preferably 30% by weight or less, and particularly preferably 20% by weight or less in the W / O explosive composition. If this proportion exceeds 40% by weight, the danger in handling may increase.

特に、鋭感剤としてヒドラジン硝酸塩等を使用する場
合、エチレンジアミン四酢酸ナトリウムのようなキレー
ト化剤を用いると、ヒドラジン硝酸塩の分解等を防ぐこ
とができるので有利である。このキレート化剤の配合割
合は、鋭感剤に対して0.1〜10重量%が好ましい。
In particular, when hydrazine nitrate or the like is used as a sensitizer, the use of a chelating agent such as sodium ethylenediaminetetraacetate is advantageous because decomposition of hydrazine nitrate can be prevented. The compounding ratio of this chelating agent is preferably 0.1 to 10% by weight based on the sensitizer.

気泡保持剤は有機質気泡保持剤である。この有機質気
泡保持剤は、各種の単一微小中空球体、複数の気泡を含
有する発泡体等であり、例えばピッチ、石炭等から得ら
れる炭素質系微小中空球体、フェノール樹脂、ポリ塩化
ビニリデン、エポキシ樹脂、尿素樹脂等から得られる合
成樹脂系微小中空球体等である。また、複数の気泡を含
有する発泡体としては、エチレン、プロピレン、スチレ
ン等のオレフィン、塩化ビニリデン、ビニルアルコー
ル、酢酸ビニル、アクリル酸、メタクリル酸又はそのエ
ステル等のビニル化合物等の重合体、共重合体、変性重
合体、重合体混合物、ポリウレタン、ポリエステル、ポ
リアミド、尿素樹脂、エポキシ樹脂、フェノール樹脂等
の合成高分子からなる素材に、機械的発泡、化学的発
泡、マイクロカプセル化、易揮発性物質の混入等の各種
手段で気泡を含ませた合成高分子の粉砕物、粒子をあげ
ることができる。
The cell retainer is an organic cell retainer. This organic foam retention agent is various single minute hollow spheres, foams containing a plurality of cells, such as pitch, carbonaceous minute hollow spheres obtained from coal, etc., phenolic resin, polyvinylidene chloride, epoxy It is a synthetic resin-based micro hollow sphere obtained from a resin, a urea resin, or the like. Examples of the foam containing a plurality of cells include polymers such as olefins such as ethylene, propylene and styrene, vinyl compounds such as vinylidene chloride, vinyl alcohol, vinyl acetate, acrylic acid, methacrylic acid and esters thereof, and copolymers. Mechanical foaming, chemical foaming, microencapsulation, and volatile materials in materials consisting of coalesced polymers, modified polymers, polymer mixtures, synthetic polymers such as polyurethane, polyester, polyamide, urea resin, epoxy resin, and phenol resin. Pulverized products and particles of synthetic polymer containing air bubbles by various means such as mixing with water.

これらの有機質気泡保持剤のうち、ポリスチレン、ポ
リエチレン又はポリ塩化ビニリデン等を素材としたもの
が好適である。この有機質気泡保持剤は、ガラス、シリ
カ等の無機質気泡保持剤と違ってエマルションの膜を破
壊することがなく、その安定性を保持する。また、同有
機質気泡保持剤は、比重が小さいこと、不活性添加物と
ならないこと、入手が容易で安価であること等の点にお
いて優れている。
Among these organic foam retention agents, those made of polystyrene, polyethylene, polyvinylidene chloride, or the like are preferable. The organic cell holding agent does not destroy the emulsion film and maintains its stability unlike the inorganic cell holding agents such as glass and silica. Further, the organic foam retention agent is excellent in that it has a small specific gravity, does not become an inert additive, is easily available and is inexpensive, and the like.

また、気泡保持剤として有機質気泡保持剤を用いた場
合には、製造時のポンプ輸送等において無機質気泡保持
剤のようにエマルションの一部が破壊するというような
ことがないので、設計どおりの爆発性能を得ることがで
き、経時安定性の面でも優れた爆薬を得ることができ
る。
In addition, when an organic foam-holding agent is used as the foam-holding agent, a part of the emulsion is not broken as in the case of the inorganic foam-holding agent during pumping or the like at the time of manufacturing, so that the explosion as designed does not occur. The performance can be obtained, and an explosive excellent in stability over time can be obtained.

さらに、有機質気泡保持剤は、単独気泡又は単独気泡
の重合体であって、いずれの粒径のものも使用できる
が、特に第2の発明では平均粒径が10〜4000μmの範囲
のものを使用する。この平均粒径が10μm未満では比重
が大きくなって添加量が増加し、4000μmを超えると、
水中爆発エネルギーが低下する。なお、この気泡保持剤
の形状は、形状、円筒状、多面体状等のいずれであって
もよい。
Further, the organic foam-retaining agent is a single-cell or single-cell polymer, and any particle size can be used. In particular, in the second invention, an average particle size in the range of 10 to 4000 μm is used. I do. If the average particle size is less than 10 μm, the specific gravity increases and the amount added increases, and if it exceeds 4000 μm,
Underwater explosion energy decreases. The shape of the bubble retaining agent may be any of a shape, a cylindrical shape, a polyhedral shape, and the like.

この有機質気泡保持剤の選定は、W/O爆薬の用途に応
じて適宜行われる。また、その配合割合は、W/O爆薬中
1〜50体積%であり、1体積%未満では雷管起爆性の低
下及び爆轟中断のおそれがあり、50体積%を超えると水
中爆発エネルギーが低下する傾向にある。
The selection of the organic bubble retaining agent is appropriately performed according to the use of the W / O explosive. The mixing ratio is 1 to 50% by volume in the W / O explosive. If it is less than 1% by volume, there is a risk of detonating detonation and interruption of detonation. Tend to.

次に、アルミニウム粉は、燃料として使用され、水中
爆発エネルギーを向上させる。同アルミニウム粉として
は、一般的に用いられているものが使用できるが、特に
第2の発明ではその粒径は1mm以下であり、0.01〜1mmの
範囲が好ましく、0.03〜0.1mmの範囲がさらに好まし
い。粒径が1mmを超えると水中爆発エネルギーが低下す
る。形状は球形、隣片状等いずれの形状であってもよ
い。
Next, the aluminum powder is used as a fuel to enhance the underwater explosion energy. As the aluminum powder, a commonly used aluminum powder can be used. In particular, in the second invention, the particle size is 1 mm or less, preferably in the range of 0.01 to 1 mm, more preferably in the range of 0.03 to 0.1 mm. preferable. If the particle size exceeds 1 mm, the underwater explosion energy decreases. The shape may be any shape such as a spherical shape and a neighboring piece shape.

アルミニウム粉の含有量は、従来より増加させること
ができ、鋭感剤を含有しない場合、10〜70重量%であ
り、そのうち20〜70重量%が好ましく、鋭感剤を含有す
る場合10〜70重量%である。この含有量が10重量%未満
では燃料が不足して爆発性能が低下し、70重量%を越え
ると不活性なアルミニウム粉が残存して爆発性能が低下
する。
The content of the aluminum powder can be increased conventionally, and is 10 to 70% by weight when not containing a sensitizer, preferably 20 to 70% by weight, and 10 to 70% by weight when containing a sensitizer. % By weight. If the content is less than 10% by weight, the fuel becomes insufficient and the explosion performance decreases. If the content exceeds 70% by weight, inert aluminum powder remains and the explosion performance decreases.

W/O爆薬組成物中の前記各成分の配合割合は、第1の
発明では無機酸化酸塩40〜90重量%、水7〜30重量%、
炭素質燃料0.5〜10重量%、乳化剤0.5〜10重量%、鋭感
剤1〜40重量%、有機質気泡保持剤1〜50体積%、アル
ミニウム粉70重量%以下の範囲が好適である。また、第
2の発明では無機酸化酸塩40〜90重量%、水7〜30重量
%、炭素質燃料0.5〜10重量%、乳化剤0.5〜10重量%、
鋭感剤1〜40重量%、平均粒径10〜4000μmの有機質気
泡保持剤1〜50体積%、平均粒径1mm以下のアルミニウ
ム粉10〜70重量%の範囲が好適である。
In the first invention, the mixing ratio of each component in the W / O explosive composition is 40 to 90% by weight of an inorganic oxidate, 7 to 30% by weight of water,
The preferred range is 0.5 to 10% by weight of carbonaceous fuel, 0.5 to 10% by weight of emulsifier, 1 to 40% by weight of sensitizer, 1 to 50% by volume of organic foam-retaining agent, and 70% by weight or less of aluminum powder. Further, in the second invention, 40 to 90% by weight of an inorganic oxide salt, 7 to 30% by weight of water, 0.5 to 10% by weight of carbonaceous fuel, 0.5 to 10% by weight of an emulsifier,
The preferred range is 1 to 40% by weight of a sharpening agent, 1 to 50% by volume of an organic cell holding agent having an average particle size of 10 to 4000 μm, and 10 to 70% by weight of aluminum powder having an average particle size of 1 mm or less.

無機酸化酸塩が40重量%未満では爆発性能が低下し、
90重量%を超えるとその溶解性が低下してくる。水が7
重量%未満では、無機酸化酸塩の溶解性が低下し、30重
量%を超えると相対的に他の成分が少なくって爆発性能
が低下しやすい。炭素質燃料が0.5重量%未満ではエマ
ルションを微小なものとできず、接触面積が小さく、10
重量%を超えると相対的に無機酸化酸塩の配合割合が少
なくなってしまう。乳化剤が0.5重量%未満の場合には
エマルションの安定性が低下しやすく、10重量%を超え
ると爆発性能が向上しにくくなる。鋭感剤が1重量%未
満では爆轟信頼性が低く、40重量%を超えると取扱上の
危険性が増大する。有機質気泡保持剤が1体積%未満で
は雷管起爆性の低下及び爆轟中断のおそれがあり、50体
積%を超えると水中爆発エネルギーが低下する傾向にあ
る。アルミニウム粉は10重量%未満又は70重量%を超え
ると爆発性能が低下する傾向にある。
If the content of the inorganic oxide is less than 40% by weight, the explosion performance decreases,
If it exceeds 90% by weight, its solubility decreases. 7 water
If the amount is less than 30% by weight, the solubility of the inorganic oxide salt is reduced. If the amount is more than 30% by weight, other components are relatively small and the explosion performance is apt to be reduced. If the amount of the carbonaceous fuel is less than 0.5% by weight, the emulsion cannot be made fine and the contact area is small.
If the amount exceeds 10% by weight, the mixing ratio of the inorganic oxide salt is relatively reduced. When the amount of the emulsifier is less than 0.5% by weight, the stability of the emulsion tends to decrease, and when it exceeds 10% by weight, the explosion performance is difficult to improve. When the content of the sensitizer is less than 1% by weight, the detonation reliability is low, and when the content is more than 40% by weight, the handling risk increases. If the amount of the organic bubble-retaining agent is less than 1% by volume, there is a possibility that the detonating property of the detonator and the detonation may be interrupted, and if it exceeds 50% by volume, the underwater explosion energy tends to decrease. When the aluminum powder is less than 10% by weight or more than 70% by weight, the explosion performance tends to decrease.

本発明のW/O爆薬組成物は、例えば次のようにして製
造することができる。
The W / O explosive composition of the present invention can be produced, for example, as follows.

即ち、まず無機酸化酸塩又は無機酸化酸塩、鋭感剤及
びキレート化剤を約60〜100℃の温水に溶解させて無機
酸化酸塩等の水溶液を得る。一方、炭素質燃料と乳化剤
が液状になる温度、通常70〜90℃で溶融混合して可燃性
混合物を得る。次に、60〜90℃の温度で上記無機酸化酸
塩等の水溶液と可燃性混合物とを約600〜6000rpmで攪拌
し、W/O型エマルションを得る。続いて、これに有機質
気泡保持剤及びアルミニウム粉を混合することによって
W/O爆薬組成物が得られる。
That is, first, an inorganic oxide salt or an inorganic oxide salt, a sensitizer and a chelating agent are dissolved in warm water of about 60 to 100 ° C. to obtain an aqueous solution of an inorganic oxide salt or the like. On the other hand, a flammable mixture is obtained by melting and mixing at a temperature at which the carbonaceous fuel and the emulsifier become liquid, usually 70 to 90 ° C. Next, the aqueous solution of the above-mentioned inorganic oxide and the flammable mixture are stirred at a temperature of 60 to 90 ° C. at about 600 to 6000 rpm to obtain a W / O emulsion. Then, by mixing the organic foam retention agent and aluminum powder with this
A W / O explosive composition is obtained.

このようにして得られたW/O爆薬組成物は、気泡保持
剤として有機質気泡保持剤を使用し、しかもアルミニウ
ム粉を含有させたことによって、有機質気泡保持剤が無
機質気泡保持剤に比べてエマルションの膜を破壊しにく
いこと及び比重の大きい無機質気泡保持剤に比べて有機
質気泡保持剤は比重が小さく、従ってエマルションの割
合が多くなってアルミニウム粉が入りやすいこと等の理
由により、特に水中爆発エネルギーを高くすることがで
きるという特徴を有している。
The W / O explosive composition thus obtained uses an organic foam holding agent as a foam holding agent, and further contains an aluminum powder, so that the organic foam holding agent has an emulsion compared to the inorganic foam holding agent. In particular, the underwater explosion energy is used because the organic foam holding agent has a small specific gravity compared to the inorganic foam holding agent having a large specific gravity, and therefore has a high emulsion ratio and easily enters aluminum powder. Is high.

この水中爆発エネルギーは、ショックエネルギー(E
s)とバブルエネルギー(Eb)に分けられ、Eb/Esの比は
一般的には約3となり、両者を合わせたものが水中爆発
エネルギーの総合エネルギーとなる(「爆薬エンサイク
ロペディアVol 10」1983年、(アメリカアーミー アー
マメント リサーチ アンド ディベロップメント コ
マンド発行)。
This underwater explosion energy is equivalent to the shock energy (E
s) and bubble energy (Eb), and the ratio of Eb / Es is generally about 3. The sum of the two is the total energy of underwater explosion energy ("Explosive Encyclopedia Vol 10", 1983) Year, (America Army Armament Research and Development Command issued).

〔実施例〕〔Example〕

以下に本発明を具体化した実施例を比較例と対比して
説明する。なお、各例における部は重量部を表す。
Hereinafter, examples embodying the present invention will be described in comparison with comparative examples. In addition, the part in each example represents a weight part.

(実施例1〜6) 無機酸化酸塩として硝酸アンモニウム、乳化剤として
ソルビタンモノオレエート、炭素質燃料としてマイクロ
クリスタリンワックス、気泡保持剤として平均粒径300
μmのポリスチレンの単独気泡の集合体、鋭感剤として
ヒドラジン硝酸塩を使用し、さらに平均粒径30μmのア
ルミニウム粉を含有させてW/O爆薬組成物を得た。各成
分の配合割合は、後記表−1及び表−2に示すとおりで
ある。
(Examples 1 to 6) Ammonium nitrate as an inorganic oxyacid salt, sorbitan monooleate as an emulsifier, microcrystalline wax as a carbonaceous fuel, and an average particle diameter of 300 as a foam retention agent
A W / O explosive composition was obtained by using an aggregate of single-cell polystyrene having a size of μm, hydrazine nitrate as a sensitizer, and further containing aluminum powder having an average particle size of 30 μm. The mixing ratio of each component is as shown in Tables 1 and 2 below.

また、W/O爆薬組成物の製造方法は、硝酸アンモニウ
ム及びヒドラジン硝酸塩の水溶液を約85℃で溶解したも
のを、マイクロクリスタリンワックスとソルビタンモノ
オレエートの混合物に約85℃で溶解して加え、攪拌羽根
で攪拌し、乳化したものに気泡保持剤及びアルミニウム
粉を混和してW/O爆薬組成物とした。この爆薬組成物に
ついて、水中爆薬エネルギーの測定を行った。その結果
を併せて表−1及び表−2に示す。
In addition, the method for producing the W / O explosive composition is such that an aqueous solution of ammonium nitrate and hydrazine nitrate is dissolved at about 85 ° C., added to a mixture of microcrystalline wax and sorbitan monooleate at about 85 ° C., and stirred. The mixture was stirred with a blade and emulsified, and a foam retaining agent and aluminum powder were mixed with the emulsified mixture to obtain a W / O explosive composition. The underwater explosive energy was measured for this explosive composition. The results are shown in Tables 1 and 2.

なお、水中爆発エネルギーは、水中爆発エネルギー測
定用人工池にて水深4mに爆薬を敷設し、同じ水深で任意
の距離にセットされているトルマリンゲージ(圧力ゲー
ジ)により、爆発した爆薬のショックパルスを計測し、
前記Es、Ebを算出した。総合エネルギーは、これらEsと
Ebを加えて、比較1に対する相対比として次の計算式で
算出した。
The underwater explosion energy is measured by arranging an explosive at a depth of 4 m in an artificial pond for measuring underwater explosion energy, and using a tourmaline gauge (pressure gauge) set at an arbitrary distance at the same water depth to detect the shock pulse of the exploded explosive. Measure,
The Es and Eb were calculated. The total energy is
Eb was added, and the relative ratio to Comparative 1 was calculated by the following formula.

ここで、Eso,Eboは比較例1の値であり、Esn,Ebnは比
較対象例の値である。
Here, Eso and Ebo are the values of Comparative Example 1, and Esn and Ebn are the values of the comparative example.

(比較例1) アルミニウム粉を含有しない以外は、実施例1〜6と
同様にしてW/O爆薬組成物を得た。それを使用して実施
例1と同じ項目について同様の試験方法で測定した。そ
の結果を表−3に示す。
(Comparative example 1) Except not containing aluminum powder, it carried out similarly to Examples 1-6, and obtained the W / O explosive composition. Using this, the same items as in Example 1 were measured by the same test method. Table 3 shows the results.

(比較例2) 気泡保持剤として有機質気泡保持剤に代えて無機質気
泡保持剤である平均粒径50μmのGMBを含有させた以外
は、実施例3と同様にしてW/O爆薬組成物を得た。それ
を使用して実施例1〜6と同じ項目について同様の試験
方法で測定した。その結果を表−3に示す。
(Comparative Example 2) A W / O explosive composition was obtained in the same manner as in Example 3, except that GMB having an average particle size of 50 µm, which is an inorganic foam-retaining agent, was used instead of the organic foam-retaining agent. Was. Using the same, the same items as in Examples 1 to 6 were measured by the same test method. Table 3 shows the results.

表−1〜表−3におけるアルミニウム粉の外割り添加
量は、アルミニウム粉以外のW/O爆薬組成物100重量部に
対する重量%を表す。
The external addition amount of the aluminum powder in Tables 1 to 3 represents% by weight based on 100 parts by weight of the W / O explosive composition other than the aluminum powder.

前記表−1〜表−3からわかるように、実施例1〜6
のW/O爆薬組成物は、水中爆発エネルギーの総合エネル
ギーが比較例1のそれを100とした場合116〜213と相当
高まり、実施例5及び6では2倍を超えている。
As can be seen from Tables 1 to 3, Examples 1 to 6 were used.
In the case of the W / O explosive composition of the present invention, the total energy of the underwater explosion energy is considerably increased to 116 to 213 when the energy of the underwater explosion is set to 100 in Comparative Example 1, and exceeds twice in Examples 5 and 6.

それに対して、比較例1のW/O爆薬組成物は、有機質
気泡保持剤を含有しているが、アルミニウム粉を含有し
ていないため、水中爆発エネルギーが低い。また、比較
例2のW/O爆薬組成物は、アルミニウム粉と無機気泡保
持剤であるGMBを併用し、アルミニウム粉の含有量を増
加させたため、W/O爆薬の形状維持が困難となり、不爆
発となった。
On the other hand, the W / O explosive composition of Comparative Example 1 contains an organic foam-retaining agent, but has low underwater explosion energy because it does not contain aluminum powder. In addition, the W / O explosive composition of Comparative Example 2 used aluminum powder in combination with GMB, which is an inorganic foam retention agent, to increase the content of aluminum powder. It exploded.

また、比較例1におけるW/O爆薬(標準的なW/O爆薬組
成)のEsは約0.7MJ/kg、Ebは約2.3MJ/kg、総合エネルギ
ーは約2.8MJ/kgである。各実施例のW/O爆薬組成物の総
合エネルギーは、約3.2MJ/kg(実施例1)−6.0MJ/kg
(実施例6)程度の範囲まで向上する。
In addition, Es of the W / O explosive (standard W / O explosive composition) in Comparative Example 1 is about 0.7 MJ / kg, Eb is about 2.3 MJ / kg, and the total energy is about 2.8 MJ / kg. The total energy of the W / O explosive composition of each example was about 3.2 MJ / kg (Example 1) -6.0 MJ / kg
(Embodiment 6) It is improved to the extent of about.

(実施例7) 後記表−4に示すような組成で次のようにしてW/O爆
薬を製造した。
(Example 7) A W / O explosive was manufactured in the following manner with the composition shown in Table 4 below.

無機酸化酸塩として硝酸アンモニウム74.4部、鋭感剤
としてヒドラジン硝酸塩10部、キレート化剤としてエチ
レンジアミン四酢酸ナトリウム0.5部を水10.5部に加
え、90℃で完全に溶解して無機酸化酸塩の水溶液を得
た。一方、炭素質燃料としてワックスレックス602を2.3
部と、乳化剤としてソルビタンモノオレエート2.3部と
を90℃で溶融混合させて可燃性混合物を得た。これに前
記無機酸化酸塩の水溶液をゆっくり添加し、90℃で加温
下650rpmで攪拌して乳化を行った。
74.4 parts of ammonium nitrate as an inorganic oxidant, 10 parts of hydrazine nitrate as a sensitizer, and 0.5 part of sodium ethylenediaminetetraacetate as a chelating agent were added to 10.5 parts of water, and completely dissolved at 90 ° C. to give an aqueous solution of an inorganic oxidate. Obtained. On the other hand, as a carbonaceous fuel,
Parts and 2.3 parts of sorbitan monooleate as an emulsifier were melt-mixed at 90 ° C. to obtain a combustible mixture. The aqueous solution of the inorganic oxide was slowly added thereto, and the mixture was stirred at 650 rpm while heating at 90 ° C. to emulsify.

乳化後、さらに1分間1600rpmで撹拌してW/O型エマル
ションを得た。次いで、このW/O型エマルションに平均
粒径が300μmの有機気泡保持剤0.7部とアルミニウム粉
11部を60〜80℃で混合してW/O爆薬組成物を得た。この
このW/O爆薬組成物について、水中爆発エネルギーの測
定を行った。その結果を後記表−7に示す。
After emulsification, the mixture was further stirred at 1600 rpm for 1 minute to obtain a W / O emulsion. Next, 0.7 part of an organic foam retention agent having an average particle size of 300 μm and aluminum powder were added to the W / O emulsion.
Eleven parts were mixed at 60-80 ° C to obtain a W / O explosive composition. The underwater explosion energy of this W / O explosive composition was measured. The results are shown in Table 7 below.

(実施例8) 鋭感剤、キレート化剤を含有しないこと及びアルミニ
ウム粉の含有量を代えた以外は実施例7と同様にして表
−4に示すW/O爆薬組成物を得、その性能を評価した。
その結果を表−7に示す。
(Example 8) A W / O explosive composition shown in Table 4 was obtained in the same manner as in Example 7 except that the sensitizer and the chelating agent were not contained and the content of the aluminum powder was changed. Was evaluated.
The results are shown in Table-7.

この表−7からわかるように、本実施例の爆薬組成物
は実施例7のそれと比べて総合エネルギー比が向上して
いる。
As can be seen from Table 7, the explosive composition of this example has an improved overall energy ratio as compared with that of Example 7.

(実施例9) 主に、アルミニウム粉の含有量が多いこと以外は実施
例7と同様にして表−4に示すW/O爆薬組成物を得、そ
の性能を評価した。その結果を表−7に示す。
Example 9 A W / O explosive composition shown in Table 4 was obtained in the same manner as in Example 7 except that the content of the aluminum powder was large, and the performance was evaluated. The results are shown in Table-7.

この表−7からわかるように、本実施例の爆薬組成物
は実施例7のそれと比べて総合エネルギー比が向上して
いる。
As can be seen from Table 7, the explosive composition of this example has an improved overall energy ratio as compared with that of Example 7.

(実施例10) 主に、アルミニウム粉の含有量が多いこと以外は実施
例8と同様にして表−5に示すW/O爆薬組成物を得、そ
の性能を評価した。その結果を表−8に示す。
(Example 10) A W / O explosive composition shown in Table 5 was obtained in the same manner as in Example 8 except that the content of the aluminum powder was large, and its performance was evaluated. The results are shown in Table-8.

この表−8からわかるように、本実施例の爆薬組成物
は実施例8のそれと比べて総合エネルギー比が向上して
いる。
As can be seen from Table 8, the explosive composition of this example has an improved overall energy ratio as compared with that of Example 8.

(実施例11) 主に、アルミニウム粉の含有量が多いこと以外は実施
例9と同様にして表−5に示すW/O爆薬組成物を得、そ
の性能を評価した。その結果を表−8に示す。
Example 11 A W / O explosive composition shown in Table 5 was obtained in the same manner as in Example 9 except that the content of the aluminum powder was large, and its performance was evaluated. The results are shown in Table-8.

この表−8からわかるように、本実施例の爆薬組成物
は実施例9のそれと比べて総合エネルギー比が向上して
いる。
As can be seen from Table 8, the explosive composition of this example has an improved overall energy ratio as compared with that of Example 9.

(実施例12) 主に、アルミニウム粉の含有量が多いこと以外は実施
例11と同様にして表−5に示すW/O爆薬組成物を得、そ
の性能を評価した。その結果を表−8に示す。
(Example 12) A W / O explosive composition shown in Table 5 was obtained in the same manner as in Example 11 except that the content of the aluminum powder was large, and its performance was evaluated. The results are shown in Table-8.

この表−8からわかるように、本実施例の爆薬組成物
は実施例11のそれと比べて総合エネルギー比がわずかに
向上している。
As can be seen from Table 8, the explosive composition of this example has a slightly improved overall energy ratio as compared with that of Example 11.

(実施例13) 主に、アルミニウム粉の含有量が多いこと以外は実施
例10と同様にして表−6に示すW/O爆薬組成物を得、そ
の性能を評価した。その結果を表−9に示す。
(Example 13) A W / O explosive composition shown in Table-6 was obtained in the same manner as in Example 10 except that the content of the aluminum powder was large, and its performance was evaluated. The results are shown in Table-9.

この表−9からわかるように、本実施例の爆薬組成物
は実施例10のそれと比べて総合エネルギー比が少し向上
している。
As can be seen from Table-9, the explosive composition of this example has a slightly improved overall energy ratio as compared with that of Example 10.

(実施例14) 主に、アルミニウム粉の含有量が多いこと以外は実施
例12と同様にして表−6に示すW/O爆薬組成物を得、そ
の性能を評価した。その結果を表−9に示す。
(Example 14) A W / O explosive composition shown in Table 6 was obtained in the same manner as in Example 12 except that the content of the aluminum powder was large, and its performance was evaluated. The results are shown in Table-9.

この表−9からわかるように、本実施例の爆薬組成物
は実施例12のそれと比べて総合エネルギー比がわずかに
向上している。
As can be seen from Table 9, the explosive composition of this example has a slightly improved overall energy ratio as compared with that of Example 12.

(実施例15) 主に、アルミニウム粉の含有量が多いこと以外は実施
例13と同様にして表−6に示すW/O爆薬組成物を得、そ
の性能を評価した。その結果を表−9に示す。
(Example 15) A W / O explosive composition shown in Table 6 was obtained in the same manner as in Example 13 except that the content of the aluminum powder was large, and its performance was evaluated. The results are shown in Table-9.

この表−9からわかるように、本実施例の爆薬組成物
は実施例13のそれと比べて総合エネルギー比がわずかに
向上している。
As can be seen from Table-9, the explosive composition of this example has a slightly higher overall energy ratio than that of Example 13.

なお、後記表−4〜表−6における略号は次の意味を
表す。
The abbreviations in Tables 4 to 6 below have the following meanings.

MMA硝酸塩:モノメチルアミン硝酸塩 Hyd硝酸塩:ヒドラジン硝酸塩 EDA硝酸塩:エチレンジアミン硝酸塩 EDTA:エチレンジアミン四酢酸ナトリウム SMO:ソルビタンモノオレエート SMG:ステアリン酸モノグリセライド WAX(1):ワックスレックス602 WAX(2):マイクロクリスタリンワックス160 WAX(3):ポリワックス500 GMB:ガラス微小中空球体。粒径が20〜140μmで平均
粒径が60μmのもの。
MMA nitrate: monomethylamine nitrate Hyd nitrate: hydrazine nitrate EDA nitrate: ethylenediamine nitrate EDTA: sodium ethylenediaminetetraacetate SMO: sorbitan monooleate SMG: monoglyceride stearate WAX (1): Waxrex 602 WAX (2): Microcrystalline wax 160 WAX (3): Polywax 500 GMB: Glass micro hollow sphere. Those with a particle size of 20 to 140 μm and an average particle size of 60 μm.

SMB:シラス微小中空体。粒径が30〜150μmで平均粒
径が75μmのもの。
SMB: Shirasu micro hollow body. Particles having a particle size of 30 to 150 μm and an average particle size of 75 μm.

RMB(1):ポリ塩化ビニリデン系樹脂球。粒径が10
〜100μmで平均粒径が30μmのもの。
RMB (1): polyvinylidene chloride resin sphere. Particle size 10
100100 μm and average particle size of 30 μm.

発泡スチロール(1):発泡スチロールビーズを予備
発泡処理したもの。粒径が180〜700μmで平均粒径が30
0μmのもの。
Styrofoam (1): Styrofoam beads pre-foamed. Particle size is 180-700μm and average particle size is 30
0 μm.

発泡スチロール(2):発泡スチロールビーズを予備
発泡処理したもの。粒径が2500〜6200μmで平均粒径が
4100μmのもの。
Styrofoam (2): Styrofoam beads pre-foamed. Average particle size is 2500 ~ 6200μm
4100μm.

(比較例3) アルミニウム粉を含有していないこと以外は実施例1
と同様にして表−10に示すW/O爆薬組成物を得、その性
能を評価した。その結果を表−16に示す。
(Comparative Example 3) Example 1 except that aluminum powder was not contained.
In the same manner as described above, a W / O explosive composition shown in Table 10 was obtained, and its performance was evaluated. The results are shown in Table-16.

この爆薬組成物は、各エネルギー比の標準となる組成
物である。
This explosive composition is a standard composition for each energy ratio.

(比較例4) アルミニウム粉の含有量が少ないこと以外は実施例7
と同様にして表−10に示すW/O爆薬組成物を得、その性
能を評価した。その結果を表−16に示す。
(Comparative Example 4) Example 7 except that the content of aluminum powder was small.
In the same manner as described above, a W / O explosive composition shown in Table 10 was obtained, and its performance was evaluated. The results are shown in Table-16.

この表−16からわかるように、本比較例の爆薬組成物
は実施例7のそれと比べて総合エネルギー比は小さい。
As can be seen from Table 16, the explosive composition of this comparative example has a smaller total energy ratio than that of Example 7.

(比較例5) アルミニウム粉の含有量が多いこと以外は実施例7と
同様にして表−10に示すW/O爆薬組成物を得、その性能
を評価した。その結果を表−16に示す。本比較例の爆薬
組成物は不爆発である。
(Comparative Example 5) A W / O explosive composition shown in Table 10 was obtained in the same manner as in Example 7 except that the content of the aluminum powder was large, and its performance was evaluated. The results are shown in Table-16. The explosive composition of this comparative example is non-explosive.

(比較例6) 主に、アルミニウム粉の粒径が大きいこと以外は比較
例4と同様にして表−11に示すW/O爆薬組成物を得、そ
の性能を評価した。その結果を表−17に示す。本比較例
の爆薬組成物は不爆発である。
Comparative Example 6 A W / O explosive composition shown in Table 11 was obtained in the same manner as in Comparative Example 4 except that the particle size of the aluminum powder was large, and its performance was evaluated. The results are shown in Table-17. The explosive composition of this comparative example is non-explosive.

(比較例7) 主に、アルミニウム粉の粒径が大きいこと以外は比較
例5と同様にして表−11に示すW/O爆薬組成物を得、そ
の性能を評価した。その結果を表−17に示す。本比較例
の爆薬組成物は不爆発である。
(Comparative Example 7) A W / O explosive composition shown in Table 11 was obtained in the same manner as in Comparative Example 5 except that the particle size of the aluminum powder was large, and its performance was evaluated. The results are shown in Table-17. The explosive composition of this comparative example is non-explosive.

(比較例8) 主に、アルミニウム粉の含有量が少ないこと以外は実
施例8と同様にして表−11に示すW/O爆薬組成物を得、
その性能を評価した。その結果を表−17に示す。
(Comparative Example 8) A W / O explosive composition shown in Table 11 was mainly obtained in the same manner as in Example 8, except that the content of the aluminum powder was small.
Its performance was evaluated. The results are shown in Table-17.

この表−17からわかるように、本比較例の爆薬組成物
は実施例8のそれと比べて総合エネルギー比が低い。
As can be seen from Table 17, the explosive composition of this comparative example has a lower overall energy ratio than that of Example 8.

(比較例9) 主に、アルミニウム粉の含有量が多いこと以外は実施
例8と同様にして表−12に示すW/O爆薬組成物を得、そ
の性能を評価した。その結果を表−18に示す。本比較例
の爆薬組成物は不爆発である。
(Comparative Example 9) A W / O explosive composition shown in Table 12 was obtained in the same manner as in Example 8 except that the content of the aluminum powder was large, and its performance was evaluated. The results are shown in Table-18. The explosive composition of this comparative example is non-explosive.

(比較例10) 主に、アルミニウム粉の粒子径が大きいこと以外は比
較例8と同様にして表−12に示すW/O爆薬組成物を得、
その性能を評価した。その結果を表−18に示す。本比較
例の爆薬組成物は不爆発である。
(Comparative Example 10) A W / O explosive composition shown in Table 12 was obtained mainly in the same manner as in Comparative Example 8, except that the particle size of the aluminum powder was large.
Its performance was evaluated. The results are shown in Table-18. The explosive composition of this comparative example is non-explosive.

(比較例11) 主に、アルミニウム粉の粒子径が大きいこと以外は比
較例9と同様にして表−12に示すW/O爆薬組成物を得、
その性能を評価した。その結果を表−18に示す。本比較
例の爆薬組成物は不爆発である。
(Comparative Example 11) A W / O explosive composition shown in Table 12 was obtained mainly in the same manner as in Comparative Example 9 except that the particle size of the aluminum powder was large.
Its performance was evaluated. The results are shown in Table-18. The explosive composition of this comparative example is non-explosive.

(比較例12) 主に、気泡保持剤として有機質気泡保持剤に代えて無
機質気泡保持剤であるグラスマイクロバルーン(GMB)
を配合した以外は実施例9と同様にして表−13に示すW/
O爆薬組成物を得、その性能を評価した。その結果を表
−19に示す。
(Comparative Example 12) Glass microballoon (GMB), which is mainly an inorganic foam holding agent instead of an organic foam holding agent as a foam holding agent
Was added in the same manner as in Example 9 except that W /
An O explosive composition was obtained and its performance was evaluated. The results are shown in Table-19.

この表−19からわかるように、本比較例の爆薬組成物
は、実施例9のそれに比べて総合エネルギー比が低下し
ている。
As can be seen from Table 19, the explosive composition of this comparative example has a lower overall energy ratio than that of Example 9.

(比較例13) 主に、気泡保持剤として平均粒径の小さいレジンマイ
クロバルーン(RMB)を配合した以外は実施例9と同様
にして表−13に示すW/O爆薬組成物を得、その性能を評
価した。その結果を表−19に示す。
(Comparative Example 13) A W / O explosive composition shown in Table 13 was obtained in the same manner as in Example 9 except that a resin microballoon (RMB) having a small average particle size was mainly blended as a bubble retainer. The performance was evaluated. The results are shown in Table-19.

この表−19からわかるように、本比較例の爆薬組成物
は、実施例9のそれに比べて総合エネルギー比が低下し
ている。
As can be seen from Table 19, the explosive composition of this comparative example has a lower overall energy ratio than that of Example 9.

(比較例14) 主に、気泡保持剤として平均粒径の大きい発泡スチロ
ール粒を配合した以外は実施例9と同様にして表−13に
示すW/O爆薬組成物を得、その性能を評価した。その結
果を表−19に示す。本比較例の爆薬組成物は、不爆発で
ある。
(Comparative Example 14) A W / O explosive composition shown in Table 13 was obtained in the same manner as in Example 9 except that styrofoam particles having a large average particle diameter were mainly blended as a cell holding agent, and the performance was evaluated. . The results are shown in Table-19. The explosive composition of this comparative example is non-explosive.

(比較例15) 主に、気泡保持剤として有機質気泡保持剤に代えて無
機質気泡保持剤であるシラスマイクロバルーン(SMB)
を配合した以外は実施例10と同様にして表−14に示すW/
O爆薬組成物を得、その性能を評価した。その結果を表
−20に示す。
(Comparative Example 15) Shirasu Micro Balloon (SMB), which is mainly an inorganic cell holding agent instead of an organic cell holding agent as a cell holding agent
W / shown in Table 14 in the same manner as in Example 10 except that
An O explosive composition was obtained and its performance was evaluated. The results are shown in Table-20.

この表−20からわかるように、本比較例の爆薬組成物
は、実施例10のそれに比べて総合エネルギー比が低下し
ている。
As can be seen from Table 20, the explosive composition of this comparative example has a lower overall energy ratio than that of Example 10.

(比較例16) 主に、気泡保持剤として平均粒径の小さいレジンマイ
クロバルーン(RMB)を配合した以外は実施例10と同様
にして表−14に示すW/O爆薬組成物を得、その性能を評
価した。その結果を表−20に示す。
(Comparative Example 16) A W / O explosive composition shown in Table 14 was obtained in the same manner as in Example 10 except that a resin microballoon (RMB) having a small average particle size was mainly blended as a bubble retaining agent. The performance was evaluated. The results are shown in Table-20.

この表−20からわかるように、本比較例の爆薬組成物
は、実施例10のそれに比べて総合エネルギー比が低下し
ている。
As can be seen from Table 20, the explosive composition of this comparative example has a lower overall energy ratio than that of Example 10.

(比較例17) 主に、気泡保持剤として平均粒径の大きい発泡スチロ
ール粒を配合した以外は実施例10と同様にして表−14に
示すW/O爆薬組成物を得、その性能を評価した。その結
果を表−20に示す。本比較例の爆薬組成物は、不爆発で
ある。
(Comparative Example 17) A W / O explosive composition shown in Table 14 was obtained in the same manner as in Example 10 except that styrofoam particles having a large average particle diameter were mainly blended as a cell retainer, and its performance was evaluated. . The results are shown in Table-20. The explosive composition of this comparative example is non-explosive.

(比較例18) 主に、有機質気泡保持剤の含有量を多くした以外は比
較例3と同様にして表−15に示すW/O爆薬組成物を得、
その性能を評価した。その結果を表−21に示す。本比較
例の爆薬組成物は、不爆発である。
(Comparative Example 18) A W / O explosive composition shown in Table 15 was obtained in the same manner as in Comparative Example 3, except that the content of the organic foam retaining agent was increased.
Its performance was evaluated. The results are shown in Table-21. The explosive composition of this comparative example is non-explosive.

(比較例19) 主に、有機質気泡保持剤を含有していない以外は比較
例3と同様にして表−15に示すW/O爆薬組成物を得、そ
の性能を評価した。その結果を表−21に示す。本比較例
の爆薬組成物は、不爆発である。
(Comparative Example 19) A W / O explosive composition shown in Table 15 was obtained in the same manner as in Comparative Example 3 except that the organic foam retaining agent was not contained, and its performance was evaluated. The results are shown in Table-21. The explosive composition of this comparative example is non-explosive.

(比較例20) 主に、有機質気泡保持剤の含有量を多くし、鋭感剤を
含有していない以外は比較例3と同様にして表−15に示
すW/O爆薬組成物を得、その性能を評価した。その結果
を表−21に示す。本比較例の爆薬組成物は、不爆発であ
る。
(Comparative Example 20) A W / O explosive composition shown in Table 15 was obtained in the same manner as in Comparative Example 3, except that the content of the organic foam-retaining agent was increased, and that no sharpener was contained. Its performance was evaluated. The results are shown in Table-21. The explosive composition of this comparative example is non-explosive.

(比較例21) 主に、有機質気泡保持剤を含有していないこと及び鋭
感剤を含有していないこと以外は比較例3と同様にして
表−15に示すW/O爆薬組成物を得、その性能を評価し
た。その結果を表−21に示す。本比較例の爆薬組成物
は、不爆発である。
(Comparative Example 21) A W / O explosive composition shown in Table 15 was obtained in the same manner as in Comparative Example 3 except that the organic foam retaining agent was not mainly contained and the sensitizer was not contained. And evaluated its performance. The results are shown in Table-21. The explosive composition of this comparative example is non-explosive.

なお、後記表−10〜表−15における略号は、次の意味
を表す。
The abbreviations in Table-10 to Table-15 below have the following meanings.

発泡St8μ:平均粒径が8μmの発泡スチロール 発泡St300μ:平均粒径が300μmの発泡スチロール 発泡St4100μ:平均粒径が4100μmの発泡スチロール RMB(2):ポリ塩化ビニリデン系樹脂球。粒径が5
〜30μmで平均粒径が8μmのもの。
Foamed St8μ: Styrofoam with an average particle size of 8 μm Foamed St300μ: Styrofoam with an average particle size of 300 μm Foamed St4100μ: Styrofoam with an average particle size of 4100 μm RMB (2): Polyvinylidene chloride resin sphere. Particle size is 5
〜30 μm and average particle size of 8 μm.

前記表−7〜表−9からわかるように、実施例7〜15
のW/O爆薬組成物は、水中爆発エネルギーの総合エネル
ギーが比較例3のそれを100とした場合116〜213と相当
高まり、実施例11、12及び14では2倍を超えている。
As can be seen from Tables 7 to 9, Examples 7 to 15 were used.
In the case of the W / O explosive composition of the present invention, the total energy of the underwater explosion energy is considerably increased to 116 to 213 when the energy of the underwater explosion is set to 100 in Comparative Example 3.

それに対して、各比較例のW/O爆薬組成物は、不爆発
となるか又は水中爆発エネルギーが低い。
In contrast, the W / O explosive compositions of each comparative example do not explode or have low underwater explosion energy.

また、前記比較例3における総合エネルギーは、約2.
8MJ/kgであり、それに対して各実施例の総合エネルギー
は3.2MJ/kg(実施例7)〜6.0MJ/kg(実施例14)の範囲
であり、比較例3に対して相当に高まっていることがわ
かる。
The total energy in Comparative Example 3 was about 2.
8 MJ / kg, whereas the total energy of each example is in the range of 3.2 MJ / kg (Example 7) to 6.0 MJ / kg (Example 14), which is considerably higher than Comparative Example 3. You can see that there is.

〔発明の効果〕〔The invention's effect〕

本発明の第1の発明のW/O爆薬組成物は、特に有機質
気泡保持剤とアルミニウム粉を併用したことにより、水
中爆発エネルギーが著しく向上するという優れた効果を
奏する。
The W / O explosive composition of the first invention of the present invention exhibits an excellent effect that the underwater explosion energy is remarkably improved, particularly by using an organic foam retention agent and aluminum powder in combination.

第2の発明のW/O爆薬組成物は、特に所定粒径の有機
質気泡保持剤と所定粒径のアルミニウム粉を一定量含有
したことにより、水中爆発エネルギーが大きく向上する
という優れた効果を奏する。
The W / O explosive composition of the second invention exhibits an excellent effect that the underwater explosion energy is greatly improved, especially by containing a certain amount of an organic cell holding agent having a predetermined particle size and aluminum powder having a predetermined particle size. .

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭64−52692(JP,A) 特開 昭62−207791(JP,A) 特開 昭60−51685(JP,A) 欧州公開317221(EP,A1) (58)調査した分野(Int.Cl.7,DB名) C06B 47/14 CAPLUS(STN) REGISTRY(STN) WPIDS(STN)──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-64-52692 (JP, A) JP-A-62-207791 (JP, A) JP-A-60-51685 (JP, A) European publication 317221 (EP , A1) (58) Fields investigated (Int. Cl. 7 , DB name) C06B 47/14 CAPLUS (STN) REGISTRY (STN) WPIDS (STN)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】炭素質燃料成分からなる連続相、無機酸化
酸塩の水溶液からなる分散相、乳化剤、鋭感剤及び気泡
保持剤からなる油中水型エマルション爆薬組成物におい
て、前記気泡保持剤が有機質気泡保持剤でその含有量が
1〜50体積%であり、さらに平均粒径が1mm以下である
アルミニウム粉を10〜70重量%含有する油中水型エマル
ション爆薬組成物。
1. A water-in-oil emulsion explosive composition comprising a continuous phase composed of a carbonaceous fuel component, a dispersed phase composed of an aqueous solution of an inorganic oxide, an emulsifier, a sensitizer and a foam retention agent. A water-in-oil emulsion explosive composition containing 10 to 70% by weight of an aluminum foam having an organic foam retention agent having a content of 1 to 50% by volume and an average particle size of 1 mm or less.
【請求項2】炭素質燃料成分からなる連続相、無機酸化
酸塩の水溶液からなる分散相、乳化剤及び気泡保持剤か
らなる油中水型エマルション爆薬組成物において、前記
気泡保持剤が平均粒径10〜4000μmの有機質気泡保持剤
でその含有量が1〜50体積%であり、アルミニウム粉が
平均粒径1mm以下で、かつその含有量が10〜70重量%で
ある油中水型エマルション爆薬組成物。
2. A water-in-oil emulsion explosive composition comprising a continuous phase comprising a carbonaceous fuel component, a dispersed phase comprising an aqueous solution of an inorganic oxide salt, an emulsifier and a foam-retaining agent, wherein said foam-retaining agent has an average particle size. A water-in-oil emulsion explosive composition having an organic foam retention agent having a content of 1 to 50% by volume, an aluminum powder having an average particle diameter of 1 mm or less, and a content of 10 to 70% by weight. object.
JP02205522A 1989-08-23 1990-08-01 Water-in-oil emulsion explosive composition Expired - Fee Related JP3019375B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP1990/001068 WO1991002706A1 (en) 1989-08-23 1990-08-22 W/o emulsion explosive composition
EP90912461A EP0598115B1 (en) 1989-08-23 1990-08-22 W/o emulsion explosive composition
DE69032230T DE69032230T2 (en) 1989-08-23 1990-08-22 WATER IN OIL EMULSION EXPLOSIVE COMPOSITION
CA002065848A CA2065848C (en) 1989-08-23 1990-08-22 Water-in-oil emulsion explosive composition
KR1019920700405A KR960010098B1 (en) 1989-08-23 1990-08-22 Water-in-oil emulsion explosive composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1-216656 1989-08-23
JP21665689 1989-08-23

Publications (2)

Publication Number Publication Date
JPH03164489A JPH03164489A (en) 1991-07-16
JP3019375B2 true JP3019375B2 (en) 2000-03-13

Family

ID=16691877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02205522A Expired - Fee Related JP3019375B2 (en) 1989-08-23 1990-08-01 Water-in-oil emulsion explosive composition

Country Status (2)

Country Link
JP (1) JP3019375B2 (en)
KR (1) KR960010098B1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3984383B2 (en) * 1998-12-16 2007-10-03 日本工機株式会社 Method for producing water-in-oil type emulsion explosive composition
KR100576180B1 (en) * 2002-07-27 2006-05-03 주식회사 한화 Non-explosive emulsion composition
PT103838B (en) * 2007-09-28 2008-11-03 Cuf Companhia Uniao Fabril Sgp NANOCRYSTALLINE SPHERICAL CERAMIC OXIDES, PROCESS FOR THEIR SYNTHESIS AND THEIR USES
JP5153303B2 (en) * 2007-11-13 2013-02-27 株式会社ダイセル Gas generant composition
PT104085B (en) * 2008-05-27 2009-08-07 Cuf Companhia Uniao Fabril Sgp CERAMIC MATERIALS OF NANOMETRIC DIMENSION, PROCESS FOR THEIR SYNTHESIS AND THEIR USES
CA2867258C (en) * 2012-03-12 2020-07-14 University Of Central Florida Research Foundation, Inc. Compositions having aluminum particles dispersed in a continuous phase
JP6019726B2 (en) * 2012-05-10 2016-11-02 日油株式会社 Water-in-oil emulsion explosive composition
JP2013237598A (en) * 2012-05-17 2013-11-28 Nof Corp W/o type emulsion explosive composition

Also Published As

Publication number Publication date
KR920702334A (en) 1992-09-03
JPH03164489A (en) 1991-07-16
KR960010098B1 (en) 1996-07-25

Similar Documents

Publication Publication Date Title
EP0142271B1 (en) Water-in-oil emulsion explosive composition
US4594118A (en) Explosive composition with bubble enhancer
PL117150B1 (en) Water explosive mixture of inverted phase and method of making the samerigotovlenija vodnojj wzryvchatojj smesi z obratnojj fazojj
US4543136A (en) Water-in-oil emulsion explosive composition
JPS6214518B2 (en)
AU2015337861B2 (en) Explosive composition and method of delivery
US4554032A (en) Water-in-oil emulsion explosive composition
NZ227161A (en) Preparing a gas-bubble stabilised explosive
CA2024611C (en) Cap sensitive explosive composition containing from 20 to 40% of solid particulate ammonium nitrate
JP3019375B2 (en) Water-in-oil emulsion explosive composition
US4936932A (en) Aromatic hydrocarbon-based emulsion explosive composition
EP0598115B1 (en) W/o emulsion explosive composition
JPH0684273B2 (en) Water-in-oil emulsion explosive composition
GB2225572A (en) Nitroalkane-based emulsion explosive composition:
US4908079A (en) Water in oil type emulsion explosive
NZ225094A (en) Water-in-fuel emulsion explosive, with bentonite added as a viscosity-increasing agent
JP6019726B2 (en) Water-in-oil emulsion explosive composition
EP4334269A1 (en) Composition for forming a hydrogen peroxide based emulsion explosive
JP2669836B2 (en) Water-in-oil emulsion explosive composition
JPH0147440B2 (en)
JPH075424B2 (en) Water-in-oil emulsion explosive composition and method for producing the same
JPH0210797B2 (en)
JPH09208357A (en) Explosive composition of w/o-type emulsion
JPH037733A (en) Pyroxylin-based hollow particle and hydrous explosive composition containing same particle
JP2013237598A (en) W/o type emulsion explosive composition

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees