JPH0316409A - Surface acoustic wave device and manufacture thereof - Google Patents

Surface acoustic wave device and manufacture thereof

Info

Publication number
JPH0316409A
JPH0316409A JP14958789A JP14958789A JPH0316409A JP H0316409 A JPH0316409 A JP H0316409A JP 14958789 A JP14958789 A JP 14958789A JP 14958789 A JP14958789 A JP 14958789A JP H0316409 A JPH0316409 A JP H0316409A
Authority
JP
Japan
Prior art keywords
thin film
film layer
acoustic wave
surface acoustic
piezoelectric substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14958789A
Other languages
Japanese (ja)
Inventor
Norio Hosaka
憲生 保坂
Akitsuna Yuhara
章綱 湯原
Kazushi Watanabe
一志 渡辺
Hideo Onuki
大貫 秀男
Jun Yamada
純 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14958789A priority Critical patent/JPH0316409A/en
Publication of JPH0316409A publication Critical patent/JPH0316409A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PURPOSE:To improve the yield of the device and the reliability for a long period by forming interdigital electrodes on the surface of a piezoelectric substrate with a 1st thin layer made of an electric insulation material as a protection layer and forming a 2nd thin film layer made of an electric conductive material on the 1st layer as the laminated layer structure. CONSTITUTION:Electrodes 2, 3 and a common electrode 6 are formed by 1st and 2nd thin film layers 7, 8. Silicon oxide is used for the 1st thin film layer in the thickness of 5nm by high frequency sputtering. Moreover, aluminum or its alloy is used for the 2nd thin film layer in the thickness of 100nm by the sputtering. Then photo resist is coated, exposed and developed on the 2nd thin film layer 8 to form a pattern 10. Then the 2nd thin film layer is processed with reactive ion etching to form the electrodes. Thus, an event of notch of the piezoelectric substrate due to etching during the etching treatment of the electrodes or forming of re-adhesion layer is prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ドライエッチング法によD微細な電極形成な
どの加工を行う際に、圧電性基板が損傷され難く、歩留
および信頼性が向上するようにした弾性表面波装置の構
造と製造方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a piezoelectric substrate that is less likely to be damaged when performing processing such as forming fine electrodes using a dry etching method, thereby improving yield and reliability. The present invention relates to an improved structure and manufacturing method of a surface acoustic wave device.

〔従来の技術〕[Conventional technology]

弾性表面波装置は、圧電性基板上にアルミニウム又はア
ルミニウム合金などの電気伝導性材料の薄膜から成るす
だれ状電極や反射器を形成させ、これに外部と電気信号
の入出力を行う配線を施しタモのを、パッケージングし
て構威されてbg、微細加工技術を必要とするすだれ状
電極や反射器の形成には、半導体デバイスの製造工程で
用いられているホトリソグラフィックエッチング技術が
その11適用できるため量産性に優れてkリ、システム
の無調整化かよび小形化などが実現できるため、テレビ
ジョンの中間周波フィルタ、自動車電話の分波器フィル
タ等として広く用いられている。
Surface acoustic wave devices are made by forming interdigital electrodes and reflectors made of a thin film of electrically conductive material such as aluminum or aluminum alloy on a piezoelectric substrate, and wiring these to input and output electrical signals from the outside. Photolithographic etching technology, which is used in the manufacturing process of semiconductor devices, is applied to form interdigital electrodes and reflectors that require microfabrication technology for packaging. Because of this, it is easy to mass-produce and allows systems to be made smaller and less adjustable, so they are widely used as intermediate frequency filters in televisions, duplexer filters in car phones, and the like.

すだれ状電極の電極指の形成周期は、圧電性基板を伝搬
する弾性表面波の速度と電気信号の周波数によって決1
シ、通常900MHz程度の周波数では2μm程度とな
る.,例えば、弾性表面波装置の圧電性基板として広く
用いられている128度回転YカットX伝搬ニオブ酸リ
チウム単結晶基板の場合、弾性表面波速度は5 9 8
 0 m / sであるから、自動車電話で用いられる
900MHz帯の竃気信号に対応する弾性表面波装置で
は、電極指の形成周期は約2.2μmである。
The formation period of the electrode fingers of the interdigital electrode is determined by the speed of the surface acoustic wave propagating through the piezoelectric substrate and the frequency of the electric signal.
Generally, at a frequency of about 900 MHz, it is about 2 μm. For example, in the case of a 128-degree rotated Y-cut,
0 m/s, the electrode finger formation period is about 2.2 μm in a surface acoustic wave device compatible with a 900 MHz band heat signal used in a car phone.

弾性表面波装置の電極の形成には通常アルミニウム又は
アルミニウム合金が用いられる。このような電極が圧電
性基板表面に形成してある場合、電界の短絡効果や/j
[17k付加効果によう、弾性表面波は摂動を受け速度
変動を生じる。このため、電極形成時の電極指の線幅ば
らつきによう弾性表面波装置の特性がばらつき、製造時
の歩留が低下してしまうことになる。従って、前述した
ように高周波の電気信号に対応する弾性表面波装置では
、電極指の線幅が1ミクロン又はサブiクロンとなるた
め、電極形成には高い精度が要求される。また、このよ
うな微細電極では短絡または開放欠陥も生じ易く、歩留
が低下し易くなり、この点からも高度な微細電極形成技
術が必要である。
Aluminum or an aluminum alloy is usually used to form the electrodes of surface acoustic wave devices. When such an electrode is formed on the surface of a piezoelectric substrate, the short circuit effect of the electric field and /j
[17k Due to the additive effect, surface acoustic waves are perturbed and cause velocity fluctuations. For this reason, the characteristics of the surface acoustic wave device vary due to variations in the line width of the electrode fingers during electrode formation, resulting in a decrease in manufacturing yield. Therefore, as described above, in a surface acoustic wave device that responds to high-frequency electrical signals, the line width of the electrode fingers is 1 micron or sub-i micron, so high precision is required in electrode formation. In addition, short circuits or open defects are likely to occur in such fine electrodes, which tends to reduce yield, and from this point of view as well, advanced fine electrode formation technology is required.

弾性表面波装置の電極形成のため従来用いられて来た技
術は、感允性材料を用いて電極パターンを形成し、この
感光性材料のパターンをマスク材として、硝#Rかよび
リン酸を主成分とするエッチング液によう化学的にエッ
チングして電極を形成する技術である。しかし、上記技
術は等方性エッチングであるため、高精度化には限界が
あった。
The technique conventionally used for forming electrodes of surface acoustic wave devices is to form an electrode pattern using a photosensitive material, use the pattern of the photosensitive material as a mask material, and apply nitrate #R or phosphoric acid. This is a technique in which electrodes are formed by chemically etching using an etching solution as the main component. However, since the above technique uses isotropic etching, there is a limit to the high precision.

このため、製造歩留を向上させる電極形戒技術として特
公昭61−42891号公報記載のように、圧電性基板
上に形成した電気伝導性材料からなる薄膜から、すだれ
状電極の交差する電極指対の一万を形成し、次に絶縁m
を形成した後、交差する電極指対の他万を形成して弾性
表面波装置を構成する技術がある。筐た、他の技術とし
て特開昭59−210716号公報記載のように圧電性
基板上に形成したアモルファス薄膜の膜厚を調整して弾
性表面波装置の中心周波数を調整する技術がある。
For this reason, as described in Japanese Patent Publication No. 61-42891, as an electrode shape technique to improve manufacturing yield, electrode fingers of intersecting interdigitated electrodes are made from a thin film made of an electrically conductive material formed on a piezoelectric substrate. Form a pair of ten thousand, then insulate m
There is a technique of forming a surface acoustic wave device by forming another pair of intersecting electrode fingers after forming a surface acoustic wave device. Another technique, as described in Japanese Unexamined Patent Publication No. 59-210716, is to adjust the center frequency of a surface acoustic wave device by adjusting the thickness of an amorphous thin film formed on a piezoelectric substrate.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来の技術は電極形成用の電気伝導性薄膜以外の薄
膜を形成して歩留を向上させようとするものであるが、
電極の加工形成の高精度化については配慮されていなか
った。
The above-mentioned conventional technology attempts to improve the yield by forming a thin film other than the electrically conductive thin film for electrode formation.
No consideration was given to increasing the accuracy of electrode processing and formation.

微細電極の加工精度を高める技術として、従来の化学エ
ッチングに比べ異方性に優れたドライエッチング技術が
あり、アルミニウム又はアルミニウム合金の加工に用い
られるドライエッチング技術の一つとして、エッチング
速度が大きく、かつ異方性に優れた反応性イオンエッチ
ング技術がある。しかし、弾性表面波装置に上記エッチ
ング技術を用いた場合、圧電性基板がプラズマに曝され
ることにより、基板表面の結晶性が乱されたり、堀込み
を生じたD1又は腐食を生じるなどして弾性表面波装置
の特性が変動する不都合があるが、この点についても上
記従米技術は配慮していなかった。
Dry etching technology has superior anisotropy compared to conventional chemical etching as a technology to improve the processing accuracy of microelectrodes.As one of the dry etching technologies used for processing aluminum or aluminum alloy, it has a high etching speed and There is also a reactive ion etching technology that has excellent anisotropy. However, when the above-mentioned etching technique is used in a surface acoustic wave device, the piezoelectric substrate is exposed to plasma, which may disturb the crystallinity of the substrate surface, cause digging D1 or corrosion, etc. There is an inconvenience that the characteristics of the surface acoustic wave device fluctuate, but this point was not taken into consideration in the conventional US technology.

本発明は、反応性イオンエッチングによって電極を形成
しても特性変動が生じないようにした弾無傘面波装置と
其の製造方法を提供すること金目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a bulletless surface wave device and a method for manufacturing the same in which characteristic fluctuations do not occur even when electrodes are formed by reactive ion etching.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために本発明に釦いては、圧電性基
板訃よびエッチング条件を考慮して最適な保護層を、圧
電性基板表面に形成することにした。即ち、圧電性基板
表面に保護層として電気絶縁性材料よりなる第1薄膜層
全形成させ、この層の上に、電極形成に用いる電気伝導
性材料よりなる第2薄膜層を形成させた積層構造とした
In order to achieve the above object, in the present invention, an optimal protective layer is formed on the surface of the piezoelectric substrate in consideration of the characteristics of the piezoelectric substrate and the etching conditions. That is, a laminated structure in which a first thin film layer made of an electrically insulating material is entirely formed as a protective layer on the surface of a piezoelectric substrate, and a second thin film layer made of an electrically conductive material used for electrode formation is formed on this layer. And so.

反応性イオンエッチングは従来の化学エッチングに比較
して非常に高い異方性を実現できる。これは被エッチン
グ材表面に運動方向の揃った活性種、イオン等が入射し
、運動方向に直角な表面では物理的エッチング効果と共
に被エッチング材と活性種あるいはイオンとの反応が促
進されるためと考えられている。他方、運動方向に平行
な面では加速粒子によう衝撃を受けることは少ないため
、エッチング速度は遅く、条件によってはエッチング反
応物の再付着を生ずることもある。
Reactive ion etching can achieve much higher anisotropy than conventional chemical etching. This is because active species, ions, etc. are incident on the surface of the material to be etched in the same direction of motion, and on surfaces perpendicular to the direction of motion, the reaction between the material to be etched and the active species or ions is promoted along with the physical etching effect. It is considered. On the other hand, since surfaces parallel to the direction of movement are less likely to be impacted by accelerated particles, the etching rate is slow, and depending on the conditions, re-deposition of etching reactants may occur.

アルミニウム又はアルミニウム合金の反応性イオンエッ
チングでは、エッチングガスとして四塩化炭素十三塩化
ホウ素あるいはそれらと四フッ化メタン、酸素との混合
ガスなど塩素系のガスが用いられるが、これはエッチン
グ反応物である塩化アルミニウムの沸点が比較的低く、
基板表面に残滓となることなく揮発してエッチングが速
やかに進むからである。しかし、エッチングが進み基板
表面が露出した場合、圧電性基板自体がエッチングされ
たう反応生成物が再付着するといった不都合を生ずるこ
とになる。本発明は、これらを防止するための保護層を
設けるのである。
In reactive ion etching of aluminum or aluminum alloys, a chlorine-based gas such as carbon tetrachloride, boron tetrachloride, or a mixture of these with methane tetrafluoride and oxygen is used as an etching gas, but this is an etching reactant. A certain aluminum chloride has a relatively low boiling point,
This is because it evaporates without leaving any residue on the substrate surface, and the etching progresses quickly. However, if the etching progresses and the surface of the substrate is exposed, a problem arises in that reaction products from etching the piezoelectric substrate itself re-deposit. The present invention provides a protective layer to prevent these problems.

保護層の厚さは、エッチング中、圧電性基板の表面が露
出しないだけの厚さが必要であるが、逆に厚過ぎると弾
性表面波の送受波および伝搬に影響を与えるため最適な
膜厚とする必要がある。
The thickness of the protective layer needs to be thick enough so that the surface of the piezoelectric substrate is not exposed during etching, but on the other hand, if it is too thick, it will affect the transmission, reception, and propagation of surface acoustic waves. It is necessary to do so.

〔作用〕[Effect]

前述した課題を解決するため本発明では次のように弾性
表面波装置t−IN成した。すなわち、圧電性基板上に
エッチング保護層である竃気絶縁性材料からなる第1薄
膜層を或膜し、その上に弾性表面波の送受波あるいは反
射を行うためのすだれ状電極または反射器を形成するた
めの電気伝導性材料からなる第2薄膜層を或膜して、反
応性イオンエッチングにようすだれ状電極lたぱ反射器
を形成させる。第1薄膜層は第2薄膜層に対するエッチ
ング(電極形成)工程での基板保護が目的であって完成
後の弾性表面波装置には不要であるから、実際の膜厚は
第2薄膜層に比べて極めて薄く残留しても問題はない程
度にしてある。なk1第1薄膜層Vi電極形成工程中の
オーパエッチングで部分的に除去されるが、必要な場合
には特に除去工程を設けて除去する。
In order to solve the above-mentioned problems, the present invention has constructed a surface acoustic wave device t-IN as follows. That is, a first thin film layer made of a heat insulating material, which is an etching protection layer, is formed on a piezoelectric substrate, and a transducer-like electrode or a reflector for transmitting, receiving, or reflecting surface acoustic waves is provided thereon. A second thin film layer of electrically conductive material is deposited and reactive ion etched to form the interdigital electrode reflector. The purpose of the first thin film layer is to protect the substrate during the etching (electrode formation) process for the second thin film layer, and it is not necessary for the completed surface acoustic wave device, so the actual film thickness is smaller than that of the second thin film layer. Even if a very thin layer remains, there is no problem. The first thin film layer Vi is partially removed by over-etching during the electrode formation process, but if necessary, a special removal process is provided to remove it.

保護層(第1薄膜層)の無い従来の構造の場合に反応性
イオンエッチングを用いるとどのような問題が生ずるか
について先ず述べる。
First, we will discuss what problems arise when using reactive ion etching in the case of a conventional structure without a protective layer (first thin film layer).

反応性イオンエッチングの特徴の一つとしてガス圧力を
上げて行った場合、エッチングの異方性は小さくなり等
方性エッチングに近付いて行き、それと共にエッチング
速度は大きくなることがらる1汽れは、ガス圧が高い場
合、エッチング室内に存在する活性種やイオンなどの粒
子数が増すことと、粒子の散乱断面積が増し被エッチン
グ材表面に入射する粒子の運動エネルギーが小さく、か
つ運動方向も不揃いとなるため、スバッタによる物理的
エッチング効果は小さくなり、化学的エッチング効果が
主となるためと考えられる。このように反応性イオンエ
ッチングでは物理的エッチングと化学的エッチングが平
行して通行するので、被エッチング材料とエッチング条
件によシ基板表面状態は異なった様子を示す。
One of the characteristics of reactive ion etching is that when the gas pressure is increased, the etching anisotropy decreases and approaches isotropic etching, and the etching rate increases accordingly. When the gas pressure is high, the number of particles such as active species and ions existing in the etching chamber increases, and the scattering cross section of the particles increases.The kinetic energy of the particles incident on the surface of the etched material is small, and the direction of movement also It is thought that this is because the physical etching effect due to spatter becomes smaller due to the irregularity, and the chemical etching effect becomes the main effect. In this way, in reactive ion etching, physical etching and chemical etching occur in parallel, so the surface state of the substrate varies depending on the material to be etched and the etching conditions.

例えば圧電性基板がエッチングされ易い材料の場合、電
気伝導性材料からなる薄膜のエッチングが進行し終了に
近付いた時点で上記基板表面はプラズマに曝されエッチ
ングされることになる。特に、同一基板内であっても、
上記薄膜層の膜厚ばらつきや電界の端効果によるエッチ
ングの不均一が生ずるため、適度なオーバエッチングを
行う必要があり、この時に基板の堀込が生じることにな
る。
For example, if the piezoelectric substrate is made of a material that is easily etched, the surface of the substrate will be exposed to plasma and etched when the etching of the thin film made of the electrically conductive material progresses and approaches its completion. In particular, even within the same board,
Since etching non-uniformity occurs due to variations in the thickness of the thin film layer and end effects of the electric field, it is necessary to perform appropriate over-etching, and at this time, the substrate is dug in.

汽にエッチングされ難い基板材料の場合は、オ−バエッ
チング時に再付着が生じ反応生戒物による再付着層が形
成されることになる。このような反応生成物による再付
着層は、例えばアルミニウムを塩素系のガスでエッチン
グする場合、塩化物を含んでいるため、真空室から取り
出した時に空気中の水分によシ酸を生じ、アルミニウム
が更に腐食されることによシ電極パターンの欠陥を生じ
ることになる。また、これは弾性表面波装置の長期的信
頼性を低下させることになる。従って、上記のようにエ
ッチングされ難い基板材料の場合には、ガス圧や投入電
力を適当に制御してエッチングを行う必要があるが、そ
のためにエッチング速度が低下したシエッチング均一性
が悪くなるなどの不都合が生じ、完全に制御することは
不可能である。
In the case of a substrate material that is difficult to be etched by steam, re-deposition occurs during over-etching and a re-deposition layer is formed due to reactive substances. For example, when aluminum is etched with chlorine-based gas, the redeposition layer formed by such reaction products contains chloride, so when it is removed from the vacuum chamber, moisture in the air produces silicic acid, and the aluminum Further corrosion causes defects in the electrode pattern. This also reduces the long-term reliability of the surface acoustic wave device. Therefore, in the case of substrate materials that are difficult to etch as mentioned above, it is necessary to perform etching by appropriately controlling the gas pressure and input power, but this may result in lower etching speed and poor etching uniformity. This causes many inconveniences and cannot be completely controlled.

他方、前述した堀込みを生じるような基板材料では、エ
ッチングガスと基板材料の反応生戊物の揮発が多く、再
付着層は形成されないが、堀込み得られないといった不
都合が生じる。
On the other hand, in the case of a substrate material that causes the above-mentioned digging, the reaction products of the etching gas and the substrate material are often volatilized, and although a redeposition layer is not formed, there is a problem that digging cannot be achieved.

従来の構造で反応性イオンエッチングを用いると上記の
ような問題が生ずるのに対し、本発明によれば、保護層
である第1薄膜層があるので、反応性イオンエッチング
を用いて第2薄膜IIを加工してすだれ状竃極または反
射器を形成した場合、再付着層の形成あるいは圧電性基
板の堀込みを防止することが出来る。即ち、再付着層を
形成するようなエッチングされ難い基板材料の場合には
、エッチングガスと反応して揮発し易い反応生成物を生
じる第1薄膜層を形成してかけば良い。この場合、オー
バエッチング時には第2薄膜層に引き続き第1薄膜層も
エッチングされるので、再付着層は形成されない。1た
、このようなエッチングされ易い薄膜では、エッチング
ガス原子、例えば塩X原子が膜中に取り込筐れ易く、弾
性表面波装置の長期信頼性が低下することがあるが、後
工程で第1薄膜層の不要部分を除去すれば上記の問題は
解決できる。
While the above-mentioned problems occur when reactive ion etching is used in the conventional structure, according to the present invention, since there is a first thin film layer which is a protective layer, reactive ion etching is used to form a second thin film layer. When II is processed to form interdigital poles or reflectors, it is possible to prevent the formation of a redeposition layer or the digging of the piezoelectric substrate. That is, in the case of a substrate material that is difficult to be etched and forms a redeposition layer, it is sufficient to form a first thin film layer that reacts with the etching gas and generates a reaction product that easily evaporates. In this case, during over-etching, the first thin film layer is also etched following the second thin film layer, so no re-deposition layer is formed. In addition, in such a thin film that is easily etched, etching gas atoms, such as salt The above problem can be solved by removing unnecessary portions of one thin film layer.

薄膜層としてエッチングされ難い材料を選択すれば良く
、オーバエッチング時に第1薄膜層は保護層として圧電
性基板のエッチングを防止することができるのである。
A material that is difficult to be etched may be selected for the thin film layer, and the first thin film layer can serve as a protective layer to prevent etching of the piezoelectric substrate during over-etching.

〔実施例〕〔Example〕

本発明の第1実施例を第1図によう説明する。 A first embodiment of the present invention will be explained as shown in FIG.

本実施例は多電極構成の低損失弾性表面波フィルタに適
用した場合で、圧電性基板1ぱ36度回転Y切断、X伝
搬タンタル酸リチウム単結晶基板である。電極2、5ぱ
それぞれ人、出力すだれ状電極であって交互に配置して
ある。すだれ状電極は配線電極4a ,4bにより外部
回路との電気信号の入出力を行うワイヤを接続するボン
ディングバッド5a+5bs5o*5dとつながれてい
る。
This embodiment is applied to a low-loss surface acoustic wave filter having a multi-electrode configuration, and the piezoelectric substrate 1 is a 36-degree rotated Y-cut, X-propagating lithium tantalate single crystal substrate. Each of the electrodes 2 and 5 is an output interdigital electrode and is arranged alternately. The interdigital electrodes are connected by wiring electrodes 4a and 4b to bonding pads 5a+5bs5o*5d that connect wires for inputting and outputting electrical signals to and from an external circuit.

6は共通電極である。このフィルタの中心周波数は88
0MHzであう、すだれ状電極の電極指の線幅は1.2
μmで、また、電極の膜厚は100nmとした。
6 is a common electrode. The center frequency of this filter is 88
The line width of the interdigital electrode fingers at 0MHz is 1.2
The film thickness of the electrode was 100 nm.

第2図は第1図中のA−B@断面図である。電〜製 3
及び共通電極6は何れも第1薄膜層7と第2薄膜層8と
で構成してある。ここで、第1薄膜層として酸化ケイ素
を用い、高周波スパッタリングによJ)5nmの厚さに
形成した。1た第2薄膜層にはアルミニウム又はアルミ
ニウムとチタンの合金を用い、スパッタリングによ51
 00nmの厚さに形成してあシ、上記薄膜の加工には
反応性イオンエッチングを用いた。エッチングガスには
三塩化ホウ素ガスを用い、エッチング条件は、ガス流量
50saom,ガス圧力11SPJ&,投入電力CL4
kNとし、オーバエッチングの時間は1分間とした。
FIG. 2 is a sectional view taken along line AB in FIG. 1. Electric-made 3
Both of the common electrodes 6 and 6 are composed of a first thin film layer 7 and a second thin film layer 8. Here, silicon oxide was used as the first thin film layer, and it was formed to a thickness of J) 5 nm by high frequency sputtering. Aluminum or an alloy of aluminum and titanium is used for the second thin film layer, and 51% is formed by sputtering.
The thin film was formed to a thickness of 0.00 nm, and reactive ion etching was used to process the thin film. Boron trichloride gas is used as the etching gas, and the etching conditions are gas flow rate 50 saom, gas pressure 11 SPJ &, input power CL4
kN, and the over-etching time was 1 minute.

第1かよび第2薄膜層を形成した圧電性基板は、ホトレ
ジストパターンを形成した後、反応性イオンエッチング
装置の真空室内に設置され、エッチングされる。上記エ
ッチング条件では酸化ケイ素のエッチング速度は毎分5
nmであυ、オーバエッチングによシ第1薄膜層である
酸化ケイ素はほぼ除去される。
After forming a photoresist pattern on the piezoelectric substrate with the first and second thin film layers formed thereon, the piezoelectric substrate is placed in a vacuum chamber of a reactive ion etching apparatus and etched. Under the above etching conditions, the etching rate of silicon oxide is 5/min.
When the thickness is υnm, the silicon oxide which is the first thin film layer is almost completely removed by over-etching.

従来の第1薄膜層を形成しない場合では、オーズマに曝
されることになるが、上記基板はエッチングされ難く、
反応生成物として塩化物の再付着層が形成されることに
なる。このような再付着層が完全に除去されていなかっ
た場合には、後で電極の腐食が生じ装置の信頼性が著し
く低下することになる。タンタルあるいはリチク皐の塩
化物は比較的沸点が高〈揮発し難いため、タンタル酸リ
チウム基板はエッチングされ難いと考えられる。
In the conventional case where the first thin film layer is not formed, the substrate is exposed to osmosis, but the substrate is difficult to be etched.
A redeposition layer of chloride will be formed as a reaction product. If such a redeposited layer is not completely removed, corrosion of the electrodes will occur later, significantly reducing the reliability of the device. Since tantalum or lithium chloride has a relatively high boiling point and is difficult to volatilize, it is thought that lithium tantalate substrates are difficult to etch.

一万、ケイ素の塩化物は比較的沸点が低く揮発し易いた
め、ここでは酸化ケイ素をtlc1薄膜層として用い、
エッチング条件と酸化ケイ素のエッチング速度を考慮し
て5nmO膜厚を設定した。
However, since silicon chloride has a relatively low boiling point and is easily volatile, silicon oxide is used here as the tlc1 thin film layer.
The O film thickness was set at 5 nm in consideration of the etching conditions and the etching rate of silicon oxide.

上記第1実施例では、第2薄膜層と第1薄膜層の除去を
同時に行ったが、それぞれ別の工程で行うことも可能で
ある。
In the first embodiment described above, the second thin film layer and the first thin film layer were removed at the same time, but it is also possible to remove them in separate steps.

HS図は本発明の第2実施例を示し、エッチングによる
第2薄膜層の加工とは別に第1薄膜層の除去を行った例
である。圧電性基板、第1薄膜層釦よび第2薄膜層は、
第1実施例の場合と同様でるにぱ、同様に反応性イオン
エッチング技術を用いた。その後、電極パターンのマス
ク材として用いたホトレジストを取り除き、新たなホト
レジストを塗布し、l1允かよび現象を行って、すだれ
状電極部分を除くホトレジストを除去して、上記ホトレ
ジストをマスク材として第1薄膜層である酸化ケイ素を
エッチング除去した。エッチングには、四フッ化メタン
ガスによる反応性イオンエッチングを用いた。
The HS diagram shows a second embodiment of the present invention, in which the first thin film layer is removed separately from the processing of the second thin film layer by etching. The piezoelectric substrate, the first thin film layer button, and the second thin film layer are
The reactive ion etching technique was used in the same manner as in the first embodiment. Thereafter, the photoresist used as a mask material for the electrode pattern was removed, a new photoresist was applied, and the photoresist was removed except for the interdigital electrode portions, and the photoresist was used as a mask material for the first photoresist. The thin film layer of silicon oxide was removed by etching. For etching, reactive ion etching using tetrafluoromethane gas was used.

第4図は第3図中のC−D線断面図である。特に電極を
形成する第2薄膜層を厚く形成し、エッチング不均一が
大きくなシ易い場合で、第1薄膜鳩を厚く形成する必要
がある場合、第1実施例のように第1、第2薄膜層で電
極指を形成すると電極内部での弾性表面波の反射が問題
になるため、本実施例ではすだれ状電極部分では第1薄
膜層を除云せずに残すことによう、電極内部反射の影響
を小さくすることが出来る。
FIG. 4 is a sectional view taken along line CD in FIG. 3. In particular, when the second thin film layer that forms the electrode is formed thickly and etching non-uniformity is likely to be large, and when it is necessary to form the first thin film layer thickly, as in the first embodiment, the first and second thin film layers If the electrode fingers are formed of a thin film layer, reflection of surface acoustic waves inside the electrode becomes a problem, so in this example, the first thin film layer is left without being removed in the interdigital electrode part, so as to prevent internal reflection of the electrode. It is possible to reduce the influence of

した後、第2実施例と同様に第1薄膜層の幾何学的影響
による装置の特性変動を防止するため、ホトレジストで
すだれ状電極と弾性表面波の伝搬路をマスクしてエッチ
ングした。第6図は第5図中のg−F線断面図である。
After that, as in the second embodiment, the interdigital electrodes and the surface acoustic wave propagation path were masked and etched with photoresist in order to prevent the characteristics of the device from changing due to the geometrical influence of the first thin film layer. FIG. 6 is a sectional view taken along line g-F in FIG. 5.

第7図は第1実施例弾性表面波装置の周波数特性Gと従
来の弾性表面波装置の製造後長時間経過後の周波数特性
Hとを比較して示す。前述のように、従来の弾性表面波
装置では塩化物の再付着層の形成や残留塩素原子が空気
中の水と反応して酸を生じ、アルミニウム又はアルミニ
ウム合金の電極を腐食するため、製造後長時間経過する
と次第に周波数特性が劣化してくるため、信頼性の点で
問題があったが、本発明によれば、電極の劣化は生じず
、初期の周波数特性が維持された。また、第1薄膜層の
厚さを5nmとしたが、この膜厚では弾性表面波の励振
、伝搬に悪影響は見られなかった0 第8図は本発明第4実施例の弾性表面波装置を示し、第
9図は第8図中のI−J線断面図である。
FIG. 7 shows a comparison between the frequency characteristic G of the surface acoustic wave device of the first embodiment and the frequency characteristic H of the conventional surface acoustic wave device after a long period of time has passed since its manufacture. As mentioned above, in conventional surface acoustic wave devices, the formation of a redeposition layer of chloride and the residual chlorine atoms react with water in the air to produce acid, which corrodes the aluminum or aluminum alloy electrodes. There was a problem in terms of reliability because the frequency characteristics gradually deteriorated over a long period of time, but according to the present invention, the electrodes did not deteriorate and the initial frequency characteristics were maintained. In addition, the thickness of the first thin film layer was set to 5 nm, but no adverse effects were observed on the excitation and propagation of surface acoustic waves at this film thickness. Figure 8 shows a surface acoustic wave device according to the fourth embodiment of the present invention. 9 is a sectional view taken along the line I-J in FIG. 8.

本弾性表面波装置は、圧電性基板上にすだれ状電極と反
射器を形成した中心周波数680MHzの弾性表面波共
振子であって、圧電性基板としては、温度特性の優れた
42.75度回転Y切断X伝搬水晶基板を用い、すだれ
状電極と反射器は100nmの膜厚のアルミニウムとチ
タンの合金のスバッタ膜で形成した。
This surface acoustic wave device is a surface acoustic wave resonator with a center frequency of 680 MHz in which interdigital electrodes and reflectors are formed on a piezoelectric substrate. A Y-cut, X-propagating crystal substrate was used, and the interdigital electrodes and reflector were formed of a sputtered film of an alloy of aluminum and titanium with a thickness of 100 nm.

本実施例の圧電性基板である水晶は反応性イオンエッチ
ング中にエッチングされ易く、このため共振子の中心周
波数がばらつき歩留低下を生じていたが、エッチングさ
れ無い材料として厚さ5nmの二オプ酸リチウム膜を第
1薄膜層として用いることにより基板のエッチングを防
止する構成とした。
The quartz crystal, which is the piezoelectric substrate in this example, is easily etched during reactive ion etching, resulting in variations in the center frequency of the resonator and a decrease in yield. A structure was adopted in which etching of the substrate was prevented by using a lithium oxide film as the first thin film layer.

第10図(al〜(f)は本発明弾性表面波装置の製造
方法を説明する図である。lm)と(b)に示すように
、先ず絶縁材料によシ圧電性基板上に第1薄膜層7を形
成する。この薄膜層の形成万法として本発明ではスパッ
タリング法を用いたが、蒸着あるいはcyD@を用いて
も良い。また、圧電性基板は二オプ[IJチウムあるい
は酸化亜鉛等でも良い。更に第1薄膜層の材料としては
酸化ケイ素、ニオブ酸リチウムだけでなく、酸化アル安
ニウム、窒化ケイ素あるいはタンタル酸リチウム等の材
料を用いることも出来る。
10(al) to (f) are diagrams illustrating the method of manufacturing the surface acoustic wave device of the present invention. As shown in FIG. 10(lm) and (b), first, a A thin film layer 7 is formed. Although sputtering is used in the present invention as a method for forming this thin film layer, vapor deposition or cyD@ may also be used. Further, the piezoelectric substrate may be made of dioptric oxide, zinc oxide, or the like. Furthermore, as the material for the first thin film layer, not only silicon oxide and lithium niobate, but also materials such as almonium oxide, silicon nitride, and lithium tantalate can be used.

第1薄膜層を形成した後に、図(Q)に示すように電気
伝導性材料によシ第2薄膜層8を形成し、図(d)に示
すようにホトレジストを塗布、露光、及び現像してパタ
ーン10を形成し、図(elに示すように反応性イオン
エソチングによシ第2薄膜層を加工して電極を形成する
。この時、同時に第1薄膜層を除去することもできるが
、別の工程で(f)に示すように第1薄膜層の不要部分
をエッチング除去しても良い。
After forming the first thin film layer, a second thin film layer 8 is formed from an electrically conductive material as shown in Figure (Q), and a photoresist is applied, exposed, and developed as shown in Figure (d). A pattern 10 is formed by using the method shown in FIG. , the unnecessary portion of the first thin film layer may be removed by etching in a separate process as shown in (f).

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、弾性表面波装置の
電極を反応性イオンエッチングによう高精度に加工する
場合、電極のエッチング加工中に圧成性基板がエッチン
グされて堀込みが生じたう、論付着層が形成されたサす
ることを防止できるので、弾性表′面波装置の製造歩留
釦よび長期的信頼性を向上できる効果が得られる。
As explained above, according to the present invention, when the electrodes of a surface acoustic wave device are processed with high precision using reactive ion etching, the pressure-forming substrate is etched during the electrode etching process, causing digging. Furthermore, since the formation of an adhesion layer can be prevented, the production yield and long-term reliability of the surface acoustic wave device can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明第1実施例弾性表面波装置の平面図、第
2図は第1図中のA−B@断面図、第5図は本発明第2
実施例弾性表面波装置の平面図、第4図は第5図中のC
−D線断面図、第5図は本発明第3実施例弾性表面波装
置の平面図、第6図は第5図中のE−F’線断面図、第
7図は第1実施例弾性表面波装置の周波数特性Gと従米
装置の長期間経過後の周波数特性Ht−示す図、第8図
は本発明第4実施例弾性表面波装置の平面図、第9図は
i;g8図中のI−J線断面図、第10図は本発明弾性
表面波装置の製造方法を説明する図である。 1・・・圧電性基板、2・・・入力すだれ状電極、3・
・・出力すだれ状電極、4a.4b・・・配線電極、5
a、5b,5o.5d・・・ボンディングパッド、6・
・・共通電極、7・・・第1薄膜層、8・・・@2薄膜
層、9・・・第 11.¥1 第 2回 b−乃i!L’[ゆ /”’Ml導携層. 8 第2浦胞贋 r1. 第 ろ辺 第 4 図 第 1 図 固j反数 (M}Ii!) 第 5 図 蔦 6図 b・ 八JLi憎 ’7−j!171薄瞑屠 第 8ロ 第 q 図
FIG. 1 is a plan view of a surface acoustic wave device according to a first embodiment of the present invention, FIG. 2 is a sectional view taken along line A-B in FIG. 1, and FIG.
A plan view of the surface acoustic wave device according to the embodiment, FIG. 4 is C in FIG.
5 is a plan view of the surface acoustic wave device according to the third embodiment of the present invention, FIG. 6 is a sectional view taken along line E-F' in FIG. 5, and FIG. A diagram showing the frequency characteristic G of the surface acoustic wave device and the frequency characteristic Ht of the conventional device after a long period of time, FIG. 8 is a plan view of the surface acoustic wave device according to the fourth embodiment of the present invention, and FIG. 9 is i; FIG. 10 is a cross-sectional view taken along the line I-J of FIG. DESCRIPTION OF SYMBOLS 1... Piezoelectric substrate, 2... Input interdigital electrode, 3...
...Output interdigital electrode, 4a. 4b... Wiring electrode, 5
a, 5b, 5o. 5d... bonding pad, 6.
... Common electrode, 7... First thin film layer, 8...@2 thin film layer, 9... 11th. ¥1 2nd b-noi! L'[Yu/"'Ml conduction layer. 8 2nd Uraso counterfeit r1. 4th lobe 4th figure 1 Figure hard j inverse (M}Ii!) 5th figure 6b, 8JLi hate '7-j! 171 Thumbs Up Part 8 Lo No. q Figure

Claims (10)

【特許請求の範囲】[Claims] 1.圧電性基板上に薄膜から成る弾性表面波入出力変換
用すだれ状電極や弾性表面波反射器を設けた弾性表面波
装置において、すだれ状電極または反射器を、圧電性基
板面に接して電気絶縁性材料で形成された第1薄膜層と
この層に接して電気伝導性材料で形成された第2薄膜層
とから成る積層構造としたことを特徴とする弾性表面波
装置。
1. In a surface acoustic wave device in which a thin film interdigital electrode for surface acoustic wave input/output conversion or a surface acoustic wave reflector is provided on a piezoelectric substrate, the interdigital electrode or reflector is electrically insulated by being in contact with the surface of the piezoelectric substrate. 1. A surface acoustic wave device having a laminated structure comprising a first thin film layer made of an electrically conductive material and a second thin film layer made of an electrically conductive material in contact with this layer.
2.圧電性基板面側の電気絶縁性材料から成る第1薄膜
層を、圧電性基板面のすだれ状電極または反射器が形成
される部分に、一様な連続膜として形成したことを特徴
とする請求項1記載の弾性表面波装置。
2. A claim characterized in that the first thin film layer made of an electrically insulating material on the surface side of the piezoelectric substrate is formed as a uniform continuous film on a portion of the surface of the piezoelectric substrate where an interdigital electrode or a reflector is formed. Item 1. The surface acoustic wave device according to item 1.
3.圧電性基板面側の電気絶縁性材料から成る第1薄膜
層を、圧電性基板面のすだれ状電極または反射器が形成
される部分と、弾性表面波の伝搬路上とに、一様な連続
膜として形成したことを特徴とする請求項1記載の弾性
表面波装置。
3. The first thin film layer made of an electrically insulating material on the surface side of the piezoelectric substrate is formed into a uniform continuous film on the portion of the piezoelectric substrate surface where the interdigital electrode or reflector is formed and on the surface acoustic wave propagation path. 2. The surface acoustic wave device according to claim 1, wherein the surface acoustic wave device is formed as a.
4.第1薄膜層を形成する電気絶縁性材料が、酸化ケイ
素、又は酸化アルミニウム、又は窒化ケイ素、又は窒化
アルミニウムであることを特徴とする請求項1又は2又
は5記載の弾性表面波装置。
4. 6. The surface acoustic wave device according to claim 1, wherein the electrically insulating material forming the first thin film layer is silicon oxide, aluminum oxide, silicon nitride, or aluminum nitride.
5.第1薄膜層を形成する電気絶縁性材料が、ニオブ酸
リチウム又はタンタル酸リチウムであることを特徴とす
る請求項1又は2又は3記載の弾性表面波装置。
5. 4. The surface acoustic wave device according to claim 1, wherein the electrically insulating material forming the first thin film layer is lithium niobate or lithium tantalate.
6.圧電性基板がニオブ酸リチウム単結晶よりなり、か
つ第1薄膜層が酸化ケイ素よりなることを特徴とする請
求項1又は2又は3記載の弾性表面波装置。
6. 4. The surface acoustic wave device according to claim 1, wherein the piezoelectric substrate is made of lithium niobate single crystal, and the first thin film layer is made of silicon oxide.
7.圧電性基板がタンタル酸リチウム単結晶よりなり、
かつ第1薄膜層が酸化ケイ素よりなることを特徴とする
請求項1又は2又は3記載の弾性表面波装置。
7. The piezoelectric substrate is made of lithium tantalate single crystal,
4. The surface acoustic wave device according to claim 1, wherein the first thin film layer is made of silicon oxide.
8.圧電性基板が水晶よりなり、かつ第1薄膜層がニオ
ブ酸リチウム又はタンタル酸リチウムよりなることを特
徴とする請求項1又は2又は3記載の弾性表面波装置。
8. 4. The surface acoustic wave device according to claim 1, wherein the piezoelectric substrate is made of quartz, and the first thin film layer is made of lithium niobate or lithium tantalate.
9.圧電性基板面に接して電気絶縁性材料からなる第1
薄膜層を成膜した後、電気伝導性材料からなる第2薄膜
層を第1薄膜層の上に成膜し、第2及び第1薄膜層を加
工して配線パターン及びすだれ状電極または反射器を形
成することを特徴とする弾性表面波装置の製造方法。
9. A first plate made of an electrically insulating material is in contact with the piezoelectric substrate surface.
After depositing the thin film layer, a second thin film layer made of an electrically conductive material is deposited on the first thin film layer, and the second and first thin film layers are processed to form wiring patterns and interdigital electrodes or reflectors. A method of manufacturing a surface acoustic wave device, comprising: forming a surface acoustic wave device.
10.圧電性基板上に薄膜から成る弾性表面波入出力変
換用すだれ状電極や弾性表面波反射器を設けた弾性表面
波装置の製造において、圧電性基板面側から順に電気絶
縁性材料からなる第1薄膜層と電気伝導性材料からなる
第2薄膜層とを形成させ、第2薄膜層を加工する工程で
、第1薄膜層を圧電性基板面に対する保護層とすること
を特徴とする弾性表面波装置の製造方法。
10. In manufacturing a surface acoustic wave device in which a surface acoustic wave input/output conversion interdigital electrode made of a thin film and a surface acoustic wave reflector are provided on a piezoelectric substrate, a A surface acoustic wave characterized in that, in the process of forming a thin film layer and a second thin film layer made of an electrically conductive material and processing the second thin film layer, the first thin film layer is used as a protective layer for the piezoelectric substrate surface. Method of manufacturing the device.
JP14958789A 1989-06-14 1989-06-14 Surface acoustic wave device and manufacture thereof Pending JPH0316409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14958789A JPH0316409A (en) 1989-06-14 1989-06-14 Surface acoustic wave device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14958789A JPH0316409A (en) 1989-06-14 1989-06-14 Surface acoustic wave device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0316409A true JPH0316409A (en) 1991-01-24

Family

ID=15478464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14958789A Pending JPH0316409A (en) 1989-06-14 1989-06-14 Surface acoustic wave device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0316409A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07135443A (en) * 1993-11-11 1995-05-23 Nec Corp Surface acoustic wave device
US7295089B2 (en) 2003-02-24 2007-11-13 Murata Manufacturing Co., Ltd. Surface acoustic wave filter and communication apparatus
JP2008067289A (en) * 2006-09-11 2008-03-21 Fujitsu Media Device Kk Surface acoustic wave device and filter
JP2008072316A (en) * 2006-09-13 2008-03-27 Fujitsu Media Device Kk Elastic wave device, resonator and filter
JP2008078739A (en) * 2006-09-19 2008-04-03 Fujitsu Media Device Kk Elastic wave device and filter
WO2015098694A1 (en) * 2013-12-26 2015-07-02 株式会社村田製作所 Elastic wave device, and production method therefor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57159113A (en) * 1981-03-27 1982-10-01 Toshiba Corp Surface acoustic wave resonator
JPS5955615A (en) * 1982-09-24 1984-03-30 Hitachi Ltd Elastic surface wave device and its producing method
JPS5979622A (en) * 1982-10-29 1984-05-08 Toshiba Corp Elastic surface wave element
JPS5920722B2 (en) * 1980-02-19 1984-05-15 株式会社神戸製鋼所 Metal powder manufacturing equipment using gas atomization method
JPS6141445A (en) * 1984-04-04 1986-02-27 アエスクラツプ−ベルケ アクチエンゲゼルシヤフト フオ−マルズ イエツタ− ウント シエ−ラ− Surgical instrument for enlarging edge of wound
JPS61236207A (en) * 1985-04-12 1986-10-21 Hitachi Ltd Manufacture of surface acoustic wave resonator
JPS62168411A (en) * 1986-01-20 1987-07-24 Victor Co Of Japan Ltd Surface acoustic wave resonator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920722B2 (en) * 1980-02-19 1984-05-15 株式会社神戸製鋼所 Metal powder manufacturing equipment using gas atomization method
JPS57159113A (en) * 1981-03-27 1982-10-01 Toshiba Corp Surface acoustic wave resonator
JPS5955615A (en) * 1982-09-24 1984-03-30 Hitachi Ltd Elastic surface wave device and its producing method
JPS5979622A (en) * 1982-10-29 1984-05-08 Toshiba Corp Elastic surface wave element
JPS6141445A (en) * 1984-04-04 1986-02-27 アエスクラツプ−ベルケ アクチエンゲゼルシヤフト フオ−マルズ イエツタ− ウント シエ−ラ− Surgical instrument for enlarging edge of wound
JPS61236207A (en) * 1985-04-12 1986-10-21 Hitachi Ltd Manufacture of surface acoustic wave resonator
JPS62168411A (en) * 1986-01-20 1987-07-24 Victor Co Of Japan Ltd Surface acoustic wave resonator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07135443A (en) * 1993-11-11 1995-05-23 Nec Corp Surface acoustic wave device
US7295089B2 (en) 2003-02-24 2007-11-13 Murata Manufacturing Co., Ltd. Surface acoustic wave filter and communication apparatus
JP2008067289A (en) * 2006-09-11 2008-03-21 Fujitsu Media Device Kk Surface acoustic wave device and filter
JP2008072316A (en) * 2006-09-13 2008-03-27 Fujitsu Media Device Kk Elastic wave device, resonator and filter
JP2008078739A (en) * 2006-09-19 2008-04-03 Fujitsu Media Device Kk Elastic wave device and filter
WO2015098694A1 (en) * 2013-12-26 2015-07-02 株式会社村田製作所 Elastic wave device, and production method therefor
US9998091B2 (en) 2013-12-26 2018-06-12 Murata Manufacturing Co., Ltd. Elastic wave device and fabrication method thereof

Similar Documents

Publication Publication Date Title
US7888841B2 (en) Boundary acoustic wave device
CN115314018B (en) Surface acoustic wave filter and preparation method thereof
EP1538748A2 (en) Elastic boundary wave device and method of manufacturing the same
WO2021136756A1 (en) Transducer structure for single-port resonator with transverse mode suppression
WO2006003933A1 (en) Electronic part and manufacturing method thereof
JP5025963B2 (en) Electronic component, method for manufacturing the same, and electronic device using the electronic component
WO2012124210A1 (en) Method for producing elastic wave device
CN108768334B (en) Manufacturing method of TC-SAW IDT copper process
US7213322B2 (en) Method for manufacturing surface acoustic wave device
CN111010126A (en) Surface acoustic wave filter structure of layered electrode and preparation method thereof
JPH10335974A (en) Elastic boundary wave element
JPH0316409A (en) Surface acoustic wave device and manufacture thereof
JP2007336417A (en) Surface acoustic wave element and manufacturing method thereof
JP2006186623A (en) Surface acoustic wave element, manufacturing method thereof, and surface acoustic wave device
CN117118388A (en) Multilayer composite wafer and thin film elastic wave device
JP2020057952A (en) Surface acoustic wave device and manufacturing method of the same
JPS5955615A (en) Elastic surface wave device and its producing method
EP0744830B1 (en) Surface acoustic wave device and production method thereof
WO2002045262A1 (en) Acoustic wave device
JPH02301210A (en) Frequency adjustment method for surface acoustic wave device
JPH08316782A (en) Surface acoustic wave element
JPS5994910A (en) Frequency fine adjusting method
JPS6346605B2 (en)
US7939988B2 (en) Acoustic wave device
JPH11163662A (en) Surface acoustic wave filter