JPH03163886A - Bioelement - Google Patents

Bioelement

Info

Publication number
JPH03163886A
JPH03163886A JP1303546A JP30354689A JPH03163886A JP H03163886 A JPH03163886 A JP H03163886A JP 1303546 A JP1303546 A JP 1303546A JP 30354689 A JP30354689 A JP 30354689A JP H03163886 A JPH03163886 A JP H03163886A
Authority
JP
Japan
Prior art keywords
substrate
membrane potential
organism
liposomes
living
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1303546A
Other languages
Japanese (ja)
Other versions
JP2883132B2 (en
Inventor
Minoru Saito
稔 斎藤
Katsuaki Umibe
海部 勝晶
Masakazu Kato
雅一 加藤
Hiroo Miyamoto
裕生 宮本
Takeshi Koyano
武 小谷野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP1303546A priority Critical patent/JP2883132B2/en
Publication of JPH03163886A publication Critical patent/JPH03163886A/en
Application granted granted Critical
Publication of JP2883132B2 publication Critical patent/JP2883132B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To utilize a bioelement for constructing a bio-computer having an information processing type simulating the visual sense of an organism by arraying liposomes composed of a living organism substance converting incident light into membrane potential fluctuation and a living-organism simulated substance onto a substrate in a two-dimensional manner. CONSTITUTION:Liposomes (artificial follicles) 30 formed by using one or both of a living organism substance capable of converting incident light into potential fluctuation on the inside and the outside of a membrane and/or a living-organism simulated substance are arrayed onto a substrate 41 in a two-dimensional manner, thus arranging the liposomes 30 in a very fine shape. Consequently, the field of the same minute membrane potential fluctuation as the field of membrane potential fluctuation in visual cells on a retina is acquired. Accordingly, a bioelement can be utilized for constructing a bio-computer having an information processing type simulating the visual sense of an organism.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、生物の光情報処理機能を模倣したバイオ素
子(こ開するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention is directed to the development of a biological device that imitates the optical information processing function of living organisms.

(従来の技術) 従来のコンピューターは、シリコン半導体素子等(こよ
って構戒ざれており、フィン・ノイマン(van Ne
umann)方式によって直列型の論理演算を実行する
(以下、ノイマン型コンピューターと称する。)もので
あった。この方式は、迅速な論理演算を行うことは出来
たが、多数の情報処理を同時に並行して行うことは本質
的に困難であるという欠点を有していた。
(Prior Art) Conventional computers are made using silicon semiconductor elements, etc.
It was a von Neumann computer (hereinafter referred to as a Neumann computer) that executed serial logical operations using the von Neumann method. Although this method was able to perform quick logical operations, it had the drawback that it was essentially difficult to process a large number of information in parallel.

これ(こ対し、生物学及び大脳生理学等の知見(こ基づ
いて、ノイマン型コンピューターでは満足し得なかった
様々な機能をもつコンピュータいわゆるバイオコンどユ
ータを実現しようとする試みが多数の研究者によって成
されている。
Based on this (and knowledge of biology, cerebral physiology, etc.), many researchers have made attempts to realize computers such as so-called biocomputers, which have various functions that could not be satisfied with the Neumann type computer. has been done.

例えば、生体の機能のうちの比較的研究が進んでいる視
覚機能を模倣して視覚情報を処理しようとするバイオコ
ンピュータもその一例である。
One example is a biocomputer that attempts to process visual information by imitating the visual function, which is a relatively well-researched biological function.

ここで、生体における視覚機能は以下に説明するような
ものである。
Here, the visual function in a living body is as explained below.

ます、視覚を司る器官である目は周知の通り視細胞によ
って構戊ざれている。この視細胞、特に網膜上(こ配列
している細胞は、色彩を識別する錐状体細胞と明暗を感
知する桿状体細胞とに大別することができる。
As is well known, the eye, which is the organ responsible for vision, is made up of photoreceptor cells. These photoreceptor cells, especially the cells arranged on the retina, can be roughly divided into cone cells, which distinguish colors, and rod cells, which detect brightness and darkness.

第5図は、桿状体細胞(以下、桿状体と称する場合もあ
る。)の概略図である。11は円盤膜、13は結合繊毛
、15はミトコンドリア、17はゴルジ体、19はミオ
イド、21は核、23は外節、25は内節、27はシナ
ブス接合部、28は桿状体である。
FIG. 5 is a schematic diagram of a rod cell (hereinafter sometimes referred to as a rod). 11 is a disc membrane, 13 is a connecting cilia, 15 is a mitochondria, 17 is a Golgi apparatus, 19 is a myoid, 21 is a nucleus, 23 is an outer segment, 25 is an inner segment, 27 is a synaptic junction, and 28 is a rod.

網膜に配列された桿状体28に外部(図面左側)から光
が入射すると、円盤膜11に存在する光応答性蛋白質で
あるロドブシンに変化を生し、このロドブシン(こ補欠
分子族として共有結合しているシス(cis)一レチナ
ールかトランス(trans)一レチナールに変化する
ことによって円盤膜11内に包含ざれでいるカルシウム
イオンが細胞質に放出される。
When light enters the rods 28 arranged in the retina from the outside (left side of the drawing), changes occur in rhodobusin, a photoresponsive protein present in the disc membrane 11, and this rhodobusin (which is covalently bonded as a prosthetic group) By changing into cis-retinal or trans-retinal, calcium ions contained within the disc membrane 11 are released into the cytoplasm.

細胞貢で増えたカルシウムイオンは外節23の細胞膜の
ナトリウムチャネルを閉し細胞の膜電位の過分極を引き
起す。これはシナブス接合部27への信号となり抑制性
神経伝達物質の放出速度が減少しシナブス後ニューロン
の興奮が起こる。この信号は次々と神経細胞間を伝播し
て脳で高度に情報処理される。このように、視覚では、
光によって生した網膜上の視細胞の膜電位変化の場が脳
で情報処理されパターン認識される。
The increased calcium ions in the cell membrane close the sodium channels in the cell membrane of the outer segment 23, causing hyperpolarization of the cell's membrane potential. This becomes a signal to the synaptic junction 27, reducing the release rate of inhibitory neurotransmitters and causing excitation of post-synabular neurons. These signals propagate between neurons one after another and are processed at a high level in the brain. In this way, visually,
The field of changes in membrane potential of photoreceptor cells on the retina caused by light is processed by the brain and recognized as a pattern.

(発明が解決しようとする課題) しかしながら、上述のような視覚機能を模倣したバイオ
コンピュータを構築する際に、視細胞の役割を無機系或
いは有機系から成る半導体を用いたフォトダイオード等
の光応答性素子で達成しようとした場合、フォトダイオ
ード等が外部からの情報である光子を電子に変換するこ
とによって生じる電流により外部情報を得る構造である
ため、フォトダイオードを二次元配列することで視細胞
の膜電位変化の場に対応する電流変化の場は得られるか
、フォトダイオード等を微細に配列するにも限界がある
ことから、精緻な電流変化の場を得ることは困難である
(Problem to be solved by the invention) However, when constructing a biocomputer that imitates the visual function described above, the role of photoreceptor cells is replaced by a photoresponsive device such as a photodiode using an inorganic or organic semiconductor. If you try to achieve this with a photoreceptor cell, you can use a two-dimensional array of photodiodes to obtain external information using a current generated by converting photons, which are information from the outside, into electrons. It is difficult to obtain a field of current change corresponding to the field of membrane potential change, since there are limits to the fine arrangement of photodiodes and the like.

この発明はこのような点に鑑みなされたものであり、従
ってこの発明の目的は、生物の視覚を模倣した情報処理
形態を持つバイオコンどユータの構築に利用出来るよう
なバイオ素子を提供することにある。
This invention has been made in view of these points, and therefore, the purpose of this invention is to provide a bioelement that can be used to construct a biocomputer with an information processing form that imitates the visual sense of living things. be.

(課題を解決するための手段) この目的の達75l2ヲ図るため、この発明のバイオ素
子によれば、生体物質及び生体類似物質の一方又は双方
を用いて形IIiされ、入射した光を膜電位変化に変換
するリポソームを基板上に二次元配列して成ることを特
徴とする。
(Means for Solving the Problems) In order to achieve this object, the biodevice of the present invention is formed using one or both of a biological material and a biosimilar material, and the incident light is converted to a membrane potential. It is characterized by a two-dimensional array of liposomes that convert into a substance on a substrate.

この発明の実施に当たり、前述のリポソーム内に膜電位
感受性蛍光色素を内包させるのが好適である。
In carrying out this invention, it is preferable to encapsulate a membrane potential-sensitive fluorescent dye within the aforementioned liposome.

さらにこの発明の実施に当たり、前述のリポソームの基
板への固定を抗原一抗体反応を利用して行なうのが好適
である。
Furthermore, in carrying out the present invention, it is preferable to immobilize the liposomes to the substrate using an antigen-antibody reaction.

(作用) この発明のバイオ素子によれば、入射した光を膜内外の
電位変化に変換し得る生体物質及び又は生体類似物質よ
り成るリポソーム(人工小胞)を基板上に二次元配列し
てあるため、さらに、リポソームは非常に微細に配列出
来るため、網膜上の視細胞での膜電位変化の場と同様な
精緻な膜電位変化の場か得られる。
(Function) According to the biodevice of the present invention, liposomes (artificial vesicles) made of a biological material and/or biosimilar material that can convert incident light into potential changes inside and outside the membrane are arranged two-dimensionally on a substrate. Furthermore, since liposomes can be arranged very finely, a field of precise membrane potential changes similar to the field of membrane potential changes in photoreceptor cells on the retina can be obtained.

また、リポソーム内に膜電位感受性蛍光色素を内包させ
た場合は、膜電位変化の場と、この場に対応する蛍光強
度変化の場とが得られるので、当該バイオ素子の利用度
がざらに高まる。
In addition, when a membrane voltage-sensitive fluorescent dye is encapsulated in a liposome, a field of membrane potential change and a field of fluorescence intensity change corresponding to this field are obtained, which greatly increases the utilization of the biodevice. .

また、リポソームの基板への固定を抗原一抗体反応によ
り行うと、その手順としでば先ず基板に抗体から或る膜
を形成しこれの不要部分を例えばガリウムイオン等のイ
オンど−ム等を照射して変性除去し残存する抗体により
二次元パターンを作戊し、その後この抗体にリポソーム
を固定することが出来る。このため、リポソーム自体が
イオンビーム等によって加工されることがないため、リ
ポソームの変質を生じさせることなくバイオ素子か得ら
れる。
In addition, when immobilizing liposomes on a substrate by an antigen-antibody reaction, the procedure is to first form a certain film on the substrate from antibodies, and then irradiate unnecessary parts of this film with an ion beam such as gallium ions. After denaturation and removal, a two-dimensional pattern is created using the remaining antibody, and then liposomes can be immobilized on this antibody. Therefore, since the liposome itself is not processed by an ion beam or the like, a biodevice can be obtained without causing any deterioration of the liposome.

(実施例) 以下、図面を参照して、この発明のバイオ素子の実施例
につき詳細に説明する。なお、説明に用いる各図は、こ
の発明を理解出来る程度に各構成戊分の寸法、形状及び
配置関係を概略的に示してある。
(Example) Hereinafter, examples of the biodevice of the present invention will be described in detail with reference to the drawings. Note that each figure used in the explanation schematically shows the dimensions, shapes, and arrangement relationships of each component to the extent that the present invention can be understood.

リポソームの7整 始め(こ、生体物質及び生体頬似′#J質を用いて形成
ざれ、入射した光を膜電位変化に変換するリポソームを
以下に説明するように調整する。
Liposomes are prepared using biological materials and biological materials, and liposomes that convert incident light into changes in membrane potential are prepared as described below.

先ず、下記の式で示されるリン脂質ジパルミトイルホス
ファチジルコリン(シグマ社製)ヲ94重量%、下記■
式で示されるリン脂質抗原を1重量%、下記■式で示ざ
れるジアゾカルボン酸脂質を5重量%の割合で含む混合
脂質を用意する。なお、■式で示されるリン脂質抗原は
合戊により得ている。
First, 94% by weight of the phospholipid dipalmitoylphosphatidylcholine (manufactured by Sigma) represented by the following formula, and the following ■
A mixed lipid containing 1% by weight of a phospholipid antigen represented by the formula and 5% by weight of a diazocarboxylic acid lipid represented by the following formula (2) is prepared. Note that the phospholipid antigen represented by the formula (2) was obtained by synthesis.

一方、膜電位感受性蛍光色素としての例えば3,3′−
ジブロビルチオ力ルポシアニンヨウ化物(日本感光色素
製の商品名diS−03(5) )を含み、KCI!を
93mM及びNaCI!を7mMの濃度で含む水溶液を
用意する。ここで、diS−03(5)の含有量は、必
要とする蛍光強度が得られるような値にする。蛍光強度
を得ない場合は、diS−C3(5)は用いない。
On the other hand, for example, 3,3'-
KCI! 93mM and NaCI! An aqueous solution containing 7mM is prepared. Here, the content of diS-03(5) is set to a value that provides the required fluorescence intensity. When not obtaining fluorescence intensity, diS-C3 (5) is not used.

次1こ、この水溶液に上述の混合脂質を分散させる。さ
らに、得られた脂質懸濁液に対し超音波をかけた後この
懸濁液を100.0009の条件で遠心分離機にかける
。遠心分離後の上清に含まれているリポソームを、この
発明のバイオ素子構築のために用いる。
Next, the above mixed lipid is dispersed in this aqueous solution. Furthermore, after applying ultrasonic waves to the obtained lipid suspension, this suspension is centrifuged under the conditions of 100.0009. Liposomes contained in the supernatant after centrifugation are used to construct the biodevice of this invention.

以上のように調整したリポソームの構造の模式図を第2
図に示す。第2図からも理解出来るように、このリポソ
ーム30は、その内部に膜電位感受性蛍光色素としての
diS−03(5) 37を内包しており、ざらに、リ
ン脂質ジバルミトイルホスファチジルコリン31で構成
ざれる脂質二重層中に、ジアゾカルボン酸脂貢358含
んでいる。また、リン脂質抗原33は、■式からも理解
出来るように、その親木基に芳香環を有するため、頭部
極性基が嵩高〈なっている。従って、リン脂質抗原33
は、リン脂質ジバルミトイルホスファチジルコリン31
で構成される脂質二重層の曲率の大きい側即ち脂質二重
層の外側に存在する確率が高く、第2図に示すように脂
貢二重層の外側壁に存在する。
A schematic diagram of the structure of the liposome prepared as described above is shown in the second figure.
As shown in the figure. As can be understood from FIG. 2, this liposome 30 contains diS-03 (5) 37 as a membrane potential-sensitive fluorescent dye inside, and is roughly composed of the phospholipid dibalmitoylphosphatidylcholine 31. The separated lipid bilayer contains 358 diazocarboxylic acid lipids. Furthermore, as can be understood from the formula (2), the phospholipid antigen 33 has an aromatic ring in its parent group, so the head polar group is bulky. Therefore, phospholipid antigen 33
is the phospholipid dibalmitoylphosphatidylcholine 31
It has a high probability of being present on the side of the lipid bilayer with greater curvature, that is, on the outside of the lipid bilayer, as shown in FIG. 2, and is present on the outer wall of the lipid bilayer as shown in FIG.

リポソームの、′二査 次に、上述の如く調整したリポソームの特性を調べるた
めに、少量のリボンーム懸濁液(上述の土清)を、K(
lを7mM及びNaCAを93mMの濃度で含む水溶液
に加え攪拌する。次に、攪拌の終えた溶液に対し、ジア
ゾカルボン酸脂質のジアゾ基かtrans−cis変化
を起す波長360nmの光及びcis−trans変化
を起す波長450nmの光を間欠的に交互(こ照射する
。ざらに、両光の照射停止期間において波長622nm
の光を照射してこの溶液を励起させて波長670nmの
蛍光強度(「)を測定する。また、上述の蛍光強度の測
定とは別にリポソームの膜電位変化(脱分極が正)ΔE
を微小電極により直撞測定する。
Next, in order to investigate the properties of the liposomes prepared as described above, a small amount of the ribbon-like suspension (the above-mentioned soil solution) was mixed with K (
1 to an aqueous solution containing 7mM of NaCA and 93mM of NaCA and stirred. Next, the stirred solution is intermittently and alternately irradiated with light with a wavelength of 360 nm that causes a trans-cis change in the diazo group of the diazocarboxylic acid lipid and light with a wavelength of 450 nm that causes a cis-trans change. Roughly, the wavelength is 622 nm during the irradiation stop period of both lights.
The solution is excited by irradiation with light, and the fluorescence intensity (') at a wavelength of 670 nm is measured.In addition to the measurement of the fluorescence intensity described above, the change in membrane potential of the liposome (positive depolarization) ΔE
is directly measured using a microelectrode.

蛍光強度(「)及び膜電位夫々の測定結果を、縦軸に蛍
光強度の変化率ΔF(%)及び膜電位変化ΔE (mV
)をとり、横軸に時間をとり第3図に示す。ここで、Δ
Fは下記■式により求まる。
The measurement results of fluorescence intensity ( ) and membrane potential are plotted on the vertical axis as the rate of change in fluorescence intensity ΔF (%) and the change in membrane potential ΔE (mV
) and time is plotted on the horizontal axis as shown in Figure 3. Here, Δ
F is determined by the following formula (■).

但し、■式中の「。とは、ジアゾカルポン酸脂質が完全
にtrans型に変化するまで450nm光を溶液に充
分(こ照射した場合の溶液から得られる蛍光強度である
However, "." in formula (2) is the fluorescence intensity obtained from the solution when the solution is sufficiently irradiated with 450 nm light until the diazocarboxylic acid lipid completely changes to the trans type.

ΔF=100  (F  Fo ) /Fo  ・=■
また、第3図中の時間軸に沿って矢印を付した各点のう
ちのΔ印を付した点は、溶液に対し360nm光を照射
した点を意味し、目印を付した点は溶液に対し450n
m光を照射した点を意味する。勿論各点(こおける光照
射(よ、ある所定の時間を以って行っている。
ΔF=100 (F Fo ) /Fo ・=■
Also, among the points marked with arrows along the time axis in Figure 3, the points marked with Δ mean the points where the solution was irradiated with 360 nm light, and the points marked with marks indicate the points where the solution was irradiated with 360 nm light. Against 450n
m means the point irradiated with light. Of course, each point is irradiated with light for a certain predetermined period of time.

第3図からも明らかなように、Δ「、ΔE夫々の変化具
合は両者で(まぼ一致しており、上述の如く調整したリ
ポソームは、入射された光を膜電位変化(こ変換し、さ
らにその膜電位変化をリポンームに内包された蛍光色素
の蛍光強度変化に変換出来るものであることが分る。
As is clear from Figure 3, the degree of change in Δ' and ΔE is almost the same in both cases, and the liposome prepared as described above changes the membrane potential of the incident light. Furthermore, it is found that the change in membrane potential can be converted into a change in the fluorescence intensity of the fluorescent dye contained in the lipome.

なお、このリポソームが、360nm光によって膜電位
の脱分極を生ずるのは、リポソーム中のジアゾカルボン
酸脂質がtrans型からcis型に変化することによ
りリポソームの膜の構造が変化しイオン透過牲が増大す
るためと考えられる。
The reason why the membrane potential of this liposome is depolarized by 360 nm light is because the diazocarboxylic acid lipid in the liposome changes from the trans type to the cis type, which changes the structure of the liposome membrane and increases ion permeability. This is thought to be for the purpose of

冗 4基 の〉 次に、この発明のバイオ素子を構戒するため、基板に抗
体を単分子膜として形成する処理操作(こついて説明す
る。この実施例では、基板表面の平面性と処理操作の簡
便さとから基板としてガラス基板を用いた場合につき説
明する。しかし、基板は、ポリスチレン等、その他任意
好適な材料からなる基板としても良い。
Next, in order to prepare the biodevice of this invention, we will explain the processing operation (techniques) for forming the antibody as a monomolecular film on the substrate.In this example, we will discuss the flatness of the substrate surface and the processing operation. A case will be described in which a glass substrate is used as the substrate due to its simplicity.However, the substrate may be made of any other suitable material such as polystyrene.

まず、オクタデシルトリクロロシランに基板を予め浸潰
することによって、基板表面を疎水化処理する。
First, the substrate surface is hydrophobized by pre-immersing the substrate in octadecyltrichlorosilane.

また、リン脂質抗原35(第2図参照。特に■式のリン
脂質抗原の芳香環近傍)に対して得られた抗体γ−グロ
プリンを、ラングミュアープロジェット( Langm
uir−Blodc+ett)膜形成装百の水槽のサブ
フェイズ水溶液上に展開し、水溶液表面を圧縮すること
によって水溶液上(こ抗体の単分子膜を形成する。この
単分子膜は、抗体分子の持つ極性分布のため、ある一定
の方向性、即ち抗体の抗原との結合領域を下にして形成
される。
In addition, the antibody γ-globulin obtained against phospholipid antigen 35 (see Figure 2, especially near the aromatic ring of the
(uir-Blodc+ett) Film Formation Device A monomolecular film of the antibody is formed on the aqueous solution by compressing the surface of the aqueous solution. Because of their distribution, they are formed in a certain direction, ie, with the antigen-binding region of the antibody facing down.

続いて、この抗体からなる単分子膜を水平付着法(こよ
り、表面を疎水化処理した基板の表面に移し取り、基板
上CこL8膜を形成する。第4図は、この状態の基板4
11Fr模式的に示した基板断面図である。43は抗体
からなるLB膜を示している。抗体は、抗原との結合領
域が基板41側とは反対側(基板上方方向)を向くよう
1こ移し取られる。
Next, the monomolecular film made of this antibody is transferred to the surface of the substrate whose surface has been made hydrophobic by a horizontal adhesion method to form a C-L8 film on the substrate. Figure 4 shows the substrate 4 in this state.
FIG. 11 is a schematic cross-sectional view of a substrate 11Fr. 43 indicates an LB membrane made of antibodies. The antibody is transferred once so that the antigen-binding region faces the side opposite to the substrate 41 side (in the upward direction of the substrate).

なお、この実施例では、1B膜形成装Mを用いて基板4
1の表面上に抗体を付着させでいたが、簡単のためには
、抗体を適当な溶液に溶解させこの溶液に疎水処理を施
した基板41を直接浸潰しでも、抗体を基板41上に吸
着させることができる。
In this example, the substrate 4 is formed using a 1B film forming apparatus M.
However, for simplicity, the antibody can be adsorbed onto the substrate 41 by dissolving the antibody in an appropriate solution and directly immersing the hydrophobically treated substrate 41 in this solution. can be done.

リポソームの二;一配夕1 次に、抗体のLB膜が形成ざれた基板41をリポソーム
懸濁液(上述の上清)中に浸潰することによって抗原一
抗体反応を行なわせて、リポソームを基板41上に二次
元配列させる。この結果、実施例のバイオ素子を得る。
Liposome 2; 1. Next, the substrate 41 on which the LB film of the antibody has been formed is immersed in the liposome suspension (the above-mentioned supernatant) to perform an antigen-antibody reaction, and the liposome is A two-dimensional array is formed on the substrate 41. As a result, the biodevice of Example is obtained.

第1図(A)及びCB)は、このバイオ素子の説明1こ
供する図であり、特に第1図(A)は、リポソーム30
が基板41{こ固定された状態を模式的に示した図、第
1図(8)は実施例のバイオ素子の一部分を模式的に示
した図である。
FIGS. 1(A) and CB) are diagrams that provide an explanation of this biodevice. In particular, FIG. 1(A) shows the liposome 30
FIG. 1 (8) is a diagram schematically showing a state in which the substrate 41 is fixed. FIG. 1 (8) is a diagram schematically showing a part of the biodevice of the example.

なお、リポソームを所定の二次元的なパターンで配列す
る場合、先ず基板41上の抗体から成るLB膜43の不
要部分を例えばガリウムイオン等のイオンビーム、或い
はエレクトロンビームを走査しながら照射して変性除去
し残存する抗体(こより所定の二次元パターンを作成し
、その後この抗体にリボソームを固定させて行うのが好
適である。この方法によれば、リポソーム自体がイオン
ビームヤエレクトロンどームによって加工ざれることが
ないため、リポソームの変質が防止出来好適である。
Note that when arranging liposomes in a predetermined two-dimensional pattern, first the unnecessary portions of the LB film 43 made of antibodies on the substrate 41 are denatured by irradiating them with an ion beam such as gallium ions or a scanning electron beam. It is preferable to create a predetermined two-dimensional pattern from the remaining antibody after removing it, and then fix ribosomes to this antibody. According to this method, the liposome itself is processed by an ion beam electron beam. This is preferable because deterioration of the liposomes can be prevented.

先I豊4笠逗u4詔 次に、上述の如く作製した実施例のバイオ素子を、K(
lを7mM及びNaCI2a93mMの濃度で含む水溶
液中fこ浸漬し、リポソームの懸濁液の場合と同様に、
波長360nm光或いは450nm光をバイオ素子に照
射した後波長622nm光を照射してこのバイオ素子を
励起させ波長670nmの蛍光強度を測定した。この結
果、バイオ素子の状態においても、第3図と同様、リボ
ンームの膜電位変化に対応する蛍光強度変化を示すこと
が分った。
Next, the biodevice of the example prepared as described above was transferred to K(
As in the case of the liposome suspension,
After irradiating the bio-device with light with a wavelength of 360 nm or 450 nm, the bio-device was irradiated with light with a wavelength of 622 nm to excite the bio-device, and the fluorescence intensity at a wavelength of 670 nm was measured. As a result, it was found that even in the state of the biodevice, the fluorescence intensity changes corresponding to the change in the membrane potential of the ribbon beam, as shown in FIG. 3.

上述においては、この発明のバイオ素子の実施例につき
説明したが、この発明は上述の実施例のみに限定ざれる
ものではなく、以下に説明するような種々の変更又は変
形を加えることが出来る。
Although the embodiments of the biodevice of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various changes and modifications as described below can be made.

まず、上述の実施例で述べた数値的条件は、この発明の
理解を容易1こするための好適例であり、この発明の目
的の範囲内で設計の変更等が可能であること明らかであ
る。
First, the numerical conditions described in the above-mentioned embodiments are preferred examples to facilitate understanding of the present invention, and it is clear that changes in the design are possible within the scope of the purpose of the present invention. .

また、上述の実施例ではバイオ素子の作製にジアゾカル
ボン酸脂質を用いていたが、これの代りにスビロビラン
のような他の有機材料、或いはロドブシンのような生体
材料を用いても実施例と同様な効果を期待出来る。
In addition, in the above example, a diazocarboxylic acid lipid was used to prepare the biodevice, but the same effect as in the example may be obtained by using other organic materials such as subirobilan or biomaterials such as rhodobucin instead. You can expect great effects.

(発明の効果) 上述した説明からも明らかなように、この発明のバイオ
素子は、入射した光を二次元的に配列ざれたリポンーム
の膜電位変化の場に変換することが出来る.,ざらにま
た、リポソームに膜電位感受性蛍光色素を内包させるこ
とにより、入射した光を二次元的1こ配列ざれたソポン
ームの蛍光強度変化の場に変換出来る。従って、生物の
視覚を模倣した情報処理形態をもつバイオコンピュータ
の情報処理装置、入力装置或いは出力装M等に利用する
ことか出来る。
(Effects of the Invention) As is clear from the above explanation, the biodevice of the present invention can convert incident light into a field of membrane potential changes in two-dimensionally arranged lipomes. Moreover, by incorporating a membrane potential-sensitive fluorescent dye into liposomes, incident light can be converted into a field of fluorescence intensity changes in a two-dimensional array of soponomes. Therefore, it can be used as an information processing device, an input device, an output device M, etc. of a biocomputer that has an information processing form that imitates the visual sense of living things.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)及び(B)は、実施例のバイオ素子の説明
に供する図、 第2図は、実施例のリポソームの構造を模式的に示した
図、 第3図は、実施例のリポソーム及びバイオ素子の光応答
特性を示す図、 第4図は、抗体付着基板の説明に供する図、第5図は、
桿状体細胞を概略的に示した図である。 30・・・リポソーム 31・・・リン脂貢ジパルミトイルホスファチジル]リ
ン 33・・・リン脂貢抗原 35・・・ジアゾカルボン酸脂貢 37・・・膜電位感受性蛍光色素 41・・・基板、      43・・・抗体。
Figures 1 (A) and (B) are diagrams for explaining the biodevice of the example, Figure 2 is a diagram schematically showing the structure of the liposome of the example, and Figure 3 is a diagram for explaining the biodevice of the example. A diagram showing the photoresponse characteristics of liposomes and biodevices, FIG. 4 is a diagram for explaining the antibody-attached substrate, and FIG.
FIG. 2 is a diagram schematically showing rod cells. 30... Liposome 31... Phospholipid conjugate dipalmitoyl phosphatidyl] Phosphorus 33... Phospholipid tributary antigen 35... Diazocarboxylic acid lipid conjugate 37... Membrane potential sensitive fluorescent dye 41... Substrate, 43 ···antibody.

Claims (1)

【特許請求の範囲】 (1)生体物質及び生体類似物質の一方又は双方を用い
て形成され、入射した光を膜電位変化に変換するリポソ
ームを基板上に二次元配列して成ることを特徴とするバ
イオ素子。(2)請求項1に記載のバイオ素子において
、前記リポソーム内に膜電位感受性蛍光色素を内包させ
て成ること を特徴とするバイオ素子。 (3)請求項1又は2に記載のバイオ素子において、 前記リポソームは、前記基板上に抗原−抗体反応を利用
して固定されていること を特徴とするバイオ素子。
[Claims] (1) It is characterized by a two-dimensional array of liposomes formed using one or both of a biological material and a biosimilar material and converting incident light into a change in membrane potential on a substrate. Bio-element. (2) The biodevice according to claim 1, wherein the liposome includes a membrane potential-sensitive fluorescent dye. (3) The biodevice according to claim 1 or 2, wherein the liposome is immobilized on the substrate using an antigen-antibody reaction.
JP1303546A 1989-11-22 1989-11-22 Bio element Expired - Fee Related JP2883132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1303546A JP2883132B2 (en) 1989-11-22 1989-11-22 Bio element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1303546A JP2883132B2 (en) 1989-11-22 1989-11-22 Bio element

Publications (2)

Publication Number Publication Date
JPH03163886A true JPH03163886A (en) 1991-07-15
JP2883132B2 JP2883132B2 (en) 1999-04-19

Family

ID=17922305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1303546A Expired - Fee Related JP2883132B2 (en) 1989-11-22 1989-11-22 Bio element

Country Status (1)

Country Link
JP (1) JP2883132B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007509479A (en) * 2003-10-20 2007-04-12 カタリーナ・フィリッピーナ・ヤンセン Suspension for generating electron current and use and production method of the suspension
WO2010143702A1 (en) * 2009-06-08 2010-12-16 ソニー株式会社 Fuel cell, process for manufacture of fuel cell, electronic device, enzyme-immobilized electrode, biosensor, energy conversion element, cell, cell organelle, and bacterium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007509479A (en) * 2003-10-20 2007-04-12 カタリーナ・フィリッピーナ・ヤンセン Suspension for generating electron current and use and production method of the suspension
WO2010143702A1 (en) * 2009-06-08 2010-12-16 ソニー株式会社 Fuel cell, process for manufacture of fuel cell, electronic device, enzyme-immobilized electrode, biosensor, energy conversion element, cell, cell organelle, and bacterium

Also Published As

Publication number Publication date
JP2883132B2 (en) 1999-04-19

Similar Documents

Publication Publication Date Title
Valizadeh et al. Quantum dots: synthesis, bioapplications, and toxicity
Yang et al. Layer-by-layer construction of novel biofunctional fluorescent microparticles for immunoassay applications
ATE255911T1 (en) METHOD FOR PRODUCING MICRO CAPSULES
DE69231195D1 (en) Methods of making diagnostic agents
EP0529775A1 (en) Arraying process of ultra-small objects and fabrication process of ultra-fine structure by using the arraying process
CA2169980A1 (en) Method for obtaining improved image contrast in migration imaging members
JPH0315702B2 (en)
KR19980702179A (en) 3D colorimetric test assembly
Hartelt et al. Imaging of respiratory network topology in living brainstem slices
JPH03163886A (en) Bioelement
Kishimoto et al. Recent advances in optical manipulation of cells and molecules for biological science
RU2624853C2 (en) Method of creation of kits of microspheres optically coded by fluorescent nanocrystals and carrying recognizing biological molecules on their surface
JPH03171686A (en) Bioelement
Goodman Goodman's Medical Cell Biology
JPS63111428A (en) Bioelement and its production
JPH05133795A (en) Bio-element
JPH046446A (en) Bioelement
JPH04273028A (en) Biological element and manufacture thereof
JPH06140688A (en) Photoresponsive excitable artificial film and manufacture thereof and bio element
JPH04353725A (en) Manufacture of bio-element
US8568659B2 (en) Fiber optic device
Rea et al. Micro-and nano-optical devices from diatom nanostructures: Light control by mother nature
JPH05175574A (en) Bio element
CA2601003A1 (en) Quantum dot template for fast and simultaneous detection of different infectious agents
JP2651301B2 (en) Method for manufacturing bio device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees