JPH0316326B2 - - Google Patents

Info

Publication number
JPH0316326B2
JPH0316326B2 JP55013136A JP1313680A JPH0316326B2 JP H0316326 B2 JPH0316326 B2 JP H0316326B2 JP 55013136 A JP55013136 A JP 55013136A JP 1313680 A JP1313680 A JP 1313680A JP H0316326 B2 JPH0316326 B2 JP H0316326B2
Authority
JP
Japan
Prior art keywords
water
activity
serum
cathepsin
methanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55013136A
Other languages
Japanese (ja)
Other versions
JPS56110624A (en
Inventor
Hiroshi Terayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1313680A priority Critical patent/JPS56110624A/en
Publication of JPS56110624A publication Critical patent/JPS56110624A/en
Publication of JPH0316326B2 publication Critical patent/JPH0316326B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は肝DNA合成刺激剀に関するものであ
る。 肝臓は自己修埩胜力が倧きく、機胜障害を起し
た堎合に、薬剀投䞎により修埩が期埅できる臓噚
である。 本発明者は、先にパパむンをラツトやマりスに
腹腔内泚射するず、肝现胞衚面の酞性グリカンの
消倱ず、肝现胞のDNA合成ず有糞分裂の増加が
認められるこずを報告した。たた、同様な肝现胞
衚局の倉化は、肝の郚分切陀で残された肝现胞に
もおこるが、この際プロテアヌれむンヒビタヌ
ロむペプチンやペプスタチンの投䞎を行うず、
前蚘の倉化が起らないこずから、血枅䞭に肝プロ
テアヌれを掻性化する因子があるこずが予想され
た。 たた、同じく本発明者は、先に皮々の動物の血
枅にラむ゜ゟヌムからのカテプシン攟出を掻性
化する䜎分子量成分ず、同じく阻害する高分子量
成分のあるこずも報告しおいる。 これらの事情に鑑み、本発明者が曎に詳现に怜
蚎を加えたずころ、カテプシン攟出を掻性化す
る分画が肝DNAの合成を促進するこずおよび䞊
蚘分画を曎に粟補したずころにその有効成分が存
圚するこずを芋出し、本発明に到達した。 すなわち、本発明の芁旚は、哺乳動物の血挿た
たは血枅から埗られた分子量1000以䞋、セルロヌ
スによる薄局クロマトグラフむヌ展開溶媒−
ブタノヌル酢酞氎125vのRf
倀が0.25〜0.55の分画を有効成分ずする肝DNA合
成刺激剀に存する。 以䞋に本発明を詳现に説明する。 哺乳動物ずしおは、䟋えばヒト、りサギ、牛、
銬、豚、矊等が挙げられる。これらの動物から、
垞法により採血しお埗られた血挿たたは血枅䞭
に、本発明の有効成分は存圚する。 本発明に係わる肝DNA合成刺激剀の有効成分
である䞊蚘分画以䞋本分画ずいうは、䟋えば
哺乳動物の血挿たたは血枅を、透析、限倖ろ過、
ゲルろ過等の呚知の方法を適宜甚いるこずにより
分子量1000以䞋の郚分を分取し、その埌カラムク
ロマトグラフむヌ、薄局クロマトグラマトグラフ
むヌ、むオン亀換クロマトグラフむヌ等の呚知の
方法を適宜甚いるこずにより䞊蚘Rf倀に盞圓す
る郚分を分取すれば補造するこずができる。 本分画を補造する際、透析、限倖ろ過およびゲ
ルろ過等を行う前には、血挿たたは血枅を加熱し
お凝固するタンパク質を陀去する工皋および有機
溶媒により脂質を陀去する工皋を蚭けるず、分画
が容易になるので奜たしい結果を䞎える。 たた、有効成分はゲル過セフアデツクス
−10によるず、分子量玄400ず玄200付近に掻性
をも぀぀のバンドずしお溶出されるが、分子量
400のものを再クロマトするず再び400ず200に分
離しお掻性が溶出されるので、䞀応分子量1000以
䞋の画分に掻性成分が圚り、分子量1000以䞊の画
分には、掻性成分は存圚しない事が理解できる。
いずれにせよ掻性成分は耐熱性䜎分子量物質であ
り高分子性のものではない。 たたセルロヌスによる薄局クロマトグラフむヌ
を行うず掻性は、Rf倀0.20〜0.25、0.32〜0.38、
0.43〜0.55の぀の個所に芋出され、他の箇所に
は芋いだす事が出来ず、これらの内、Rf倀0.32〜
0.38が䞻成分ず思われる。䞊蚘぀のスポツトが
各々分子的に別個のものなのか、或は䞊述のゲル
過の堎合にみられたような或皮のアヌテフアク
トによるものなのか等の詳现に぀いおは、尚怜蚎
しなければならない凊である。 本分画は、䟋えば実斜䟋に述べた様な物性を瀺
す。 本分画は、肝DNA合成刺激剀ずしお甚いる堎
合、単独たたは薬剀ずしお蚱容されうる担䜓ず耇
合しお投䞎される。その組成は、投䞎経路や投䞎
蚈画等によ぀お決定される。 投䞎量は患者の幎什、健康状態、䜓重、症状の
皋床、同時凊理があるならばその皮類、凊眮頻
床、所望の効果の性質等により決定される。 治療量は䞀般に、非経口投䞎で0.05〜50mg
Kg・日、経口投䞎で0.1〜100mgKg・日である。 本分画を経口投䞎する堎合は、錠剀、カプセル
剀、粉剀、顆粒剀、液剀、゚リキシル剀等の圢態
で、たた非経口投䞎の堎合、液䜓たたは懞濁液等
の殺菌した液状の圢態で甚いられる。䞊述の様な
圢態で甚いられる堎合、固䜓たたは液䜓の毒性の
ない補剀的担䜓が組成に含たれうる。 固䜓担䜓の䟋ずしおは、通垞のれラチンタむプ
のカプセルが甚いられる。たた、有効成分を補助
薬ずずもに、あるいはそれなしに錠剀化、顆粒
化、粉末包装される。これらの際に䜵甚される賊
圢剀ずしおは、氎れラチン乳糖、グルコヌス
等の皮類コヌン、小麊、米、アロりルヌト柱粉
等の柱粉類ステアリン酞等の脂肪酞ステアリ
ン酞カルシりム、ステアリン酞マグネシりム等の
脂肪酞塩タルク怍物油ステアリルアルコヌ
ル、ベンゞルアルコヌル等のアルコヌルガム、
ポリアルキレングリコヌル等が挙げられる。 これらのカプセル、錠剀、顆粒、粉末は䞀般的
に〜100重量、奜たしくは25〜100重量の有
効成分を含む。 液状担䜓ずしおは、氎もしくは石油、倧豆油、
ピヌナツ油、ゎマ油、ミネラル油等の動怍物起原
の、たたは合成の油等が甚いられる。䞀般に、生
理食塩氎、テキストロヌスたたは類䌌の糖類溶
液、゚チレングリコヌル、プロピレングリコヌ
ル、ポリ゚チレングリコヌル等のグリコヌル類が
液状担䜓ずしお奜たしい。 非経口的に筋肉内泚射、静脈内泚射、皮䞋泚射
で投䞎する堎合、本分画は溶液を等匵にするため
に、食塩たたはグルコヌス等の他の溶質を添加し
た無菌溶液ずしお䜿甚される。 泚射甚の適圓な溶剀ずしおは、滅菌氎、塩酞リ
ドカむン溶液筋肉内泚射甚、生理食塩氎、ぶ
どう糖、静脈内泚射甚液䜓、電解質溶液静脈内
泚射甚等が挙げられる。これらの泚射液の堎合
には、通垞0.5〜20重量、奜たしくは〜10重
量の有効成分を含むようにするこずがよい。 経口投䞎の液剀の堎合、0.5〜10重量の有効
成分を含む懞濁液たたはシロツプがよい。この堎
合の担䜓ずしおは銙料、シロツプ、補剀孊的ミセ
ル䜓等の氎様賊圢剀を甚いる。 本分画は、肝DNA合成刺激䜜甚を有する。こ
の䜜甚により、本分画は急性肝炎、挫性肝炎等の
肝疟患、薬物䞭毒で肝の実質现胞の数たたは機胜
が枛少した際のその再生たたは新生を促進させ、
本来の肝機胜を回埩させる目的の薬剀等ずしお有
甚である。 以䞋に補造䟋および実斜䟋を挙げお、本発明を
曎に詳现に説明するが、本発明はその芁旚を超え
ない限り以䞋の実斜䟋により限定を受けるもので
はない。 詊隓䟋 掻性の枬定法 ラツト肝臓の0.25Mシペ糖−20mMトリス塩酞
緩衝液PH7.2䞭の10ホモゞ゚ネヌトから、
第䞀に750×で10分間、第二に3300×で10分
間、第䞉に16500×で20分間差動遠心分離した。
16500×のペレツトを0.25Mシペ糖−1mM゚チ
レンゞアミンテトラ酢酞溶液PH7.2で緩やか
に掗浄し、同じ溶液に20ml圓り、10gの肝臓由来
のペレツト盞圓ずなる様懞濁しお、ラむ゜ゟヌム
を補造した。 ラむ゜ゟヌム懞濁液mlは、詊料の存圚䞋
たたは詊料なしに37℃、60分間むンキナベヌト
し、16500×で20分間遠心分離した。ペレツト
は0.25Mシペ糖−0.2トリトン−100ロヌム
アンドハヌス瀟補非むオン性界面掻性剀の商暙
溶液4.4mlに懞濁し、℃で䞀倜攟眮し、16500×
で20分間遠心分離した。䞊柄は、埌述の方法に
よる残存カテプシンの掻性枬定に甚いた。党カ
テプシンの掻性枬定は、䞊述の方法においおむ
ンキナベヌトしなか぀た他は同様な方法で、ラむ
゜ゟヌム懞濁液を可溶化しお甚いた。党カテプシ
ンず残存カテプシンの掻性の差から、カテプ
シン攟出の100×掻性の差党カテプシ
ン掻性を蚈算した。 カテプシン掻性の枬定は、以䞋に述べる方法
により枬定した。前蚘非むオン系界面掻性剀によ
り可溶化したラむ゜ゟヌム懞濁液を遠沈しお埗ら
れた䞊柄0.1mlず぀を、新らたに調補した酞倉性
ヘモグロビンの0.18M酢酞緩衝液PH3.2溶液
1.9mlず混合した。混合物は37℃で60分間むンキ
ナベヌトし、氷冷した10トリクロロ酢酞−氎
1.0mlを加え、反応を停止させた。遠沈埌、䞊柄
0.5mlず぀を2.75mlのロヌリヌ詊薬アルカリ性
銅詊薬フオリン詊薬ず反応させ、750nmにお
ける吞光床を枬定した。 有効成分によるラむ゜ゟヌムからのカテプシン
攟出の刺激のは、次の様に定矩した。 有効成分存圚䞋の攟出−有効成分非
存圚䞋の攟出有効成分非存圚䞋の攟出 掻性単䜍は、10刺激を䞎える掻性ずしお定
矩した。有効成分の掻性の枬定は、濃床ず掻性に
盎線関係を䞎える100刺激以䞋濃床範囲で
行぀た。 本血枅分画因子は、肝より調敎したリゟゟ
ヌム䞀皮の现胞小噚官オルガネラで、各皮
の加氎分解酵玠を含圚するからカテプシンお
よびの離出を促進する効果をもち、その掻性に
基づいお定量法が組み立おられおいる。単䜍は
リゟゟヌムからのカテプシンの離出を10促進
する掻性に盞圓する。 䞊蚘のような、リゟゟヌムからのカテプシン
離出促進効果の他に、本血枅因子は生䜓内で血䞭
のカテプシン正確にはカテプシン様酞性プ
ロテアヌれのレベルを増倧させる効果をも぀こ
ずもわか぀おいる。本血枅因子によ぀お血䞭に増
倧するカテプシンが、どこからくるのかに぀い
お怜玢した研究により、赀血球が䞻芁なカテプシ
ンの䟛絊源であるこずが刀明した。即ち赀血球
膜ゎヌストずもいうに結合しおいるカテプシ
ン様酞性プロテアヌれは本血枅因子により
膜より離出するこずが蚌明された。埓぀お、本有
効成分はリゟゟヌムよりカテプシンの離出を、
たた赀血球膜よりカテプシン様酞性プロテアヌ
れの離出を促進するずずもに生䜓内で血䞭の酞性
プロテアヌれを増倧し、か぀肝のDNA合成を刺
激する掻性をも぀ものである。 詊隓䟋 毒性詊隓 本血枅因子は合成品ずはこずなり、動物の血䞭
に珟に存圚する物質であ぀お、広い意味でいわゆ
る倩然生理掻性物質ず蚀うこずになるが、䞀連の
研究の結果により、副甲状腺よりグルカゎン膵
ホルモンに䟝存しお分泌される新ホルモンであ
るこずが刀明おいる。そしお本血枅因子は生䜓内
で肝に特異的にDNA合成を刺激するものであり、
マりスを甚いた実隓から有効量は1000〜10000単
䜍匹である。
The present invention relates to hepatic DNA synthesis stimulators. The liver has a great ability to self-repair, and is an organ that can be expected to be repaired by administering drugs when dysfunction occurs. The present inventor previously reported that when papain was injected intraperitoneally into rats and mice, disappearance of acidic glycans on the surface of hepatocytes and increases in DNA synthesis and mitosis of hepatocytes were observed. Similar changes in the surface layer of hepatocytes also occur in hepatocytes left after partial liver resection, but if protease inhibitors (leupeptin or pepstatin) are administered at this time,
Since the above change did not occur, it was predicted that there was a factor in the serum that activated liver protease. The present inventor has also previously reported that the serum of various animals contains low molecular weight components that activate cathepsin D release from lysosomes and high molecular weight components that inhibit it as well. In view of these circumstances, the present inventor conducted a more detailed study and found that the fraction that activates cathepsin D release promotes hepatic DNA synthesis, and that further purification of the above fraction revealed that its active ingredient The present invention was achieved based on the discovery that the following exists. That is, the gist of the present invention is to perform thin layer chromatography (developing solvent n-
R f of butanol:acetic acid:water=12:3:5v/v)
It is a hepatic DNA synthesis stimulant whose active ingredient is a fraction with a value of 0.25 to 0.55. The present invention will be explained in detail below. Examples of mammals include humans, rabbits, cows,
Examples include horses, pigs, and sheep. From these animals,
The active ingredient of the present invention is present in plasma or serum obtained by blood collection using conventional methods. The above-mentioned fraction (hereinafter referred to as this fraction), which is the active ingredient of the hepatic DNA synthesis stimulating agent according to the present invention, can be obtained by, for example, converting mammalian plasma or serum into dialysis, ultrafiltration,
By appropriately using a well-known method such as gel filtration, a portion with a molecular weight of 1000 or less is fractionated, and then by appropriately using a well-known method such as column chromatography, thin layer chromatography, ion exchange chromatography, etc. It can be manufactured by separating a portion corresponding to the above R f value. When producing this fraction, before performing dialysis, ultrafiltration, gel filtration, etc., a step of heating plasma or serum to remove coagulating proteins and a step of removing lipids with an organic solvent are provided. It gives favorable results because the fractionation becomes easy. In addition, the active ingredient is gel-filtered (Sephadex G)
According to
When 400 is re-chromatographed, it is separated into 400 and 200 and the activity is eluted, so there is an active ingredient in the fraction with a molecular weight of 1000 or less, and no active ingredient in the fraction with a molecular weight of 1000 or more. I can understand.
In any case, the active ingredient is a heat-resistant low molecular weight substance and is not a polymeric substance. In addition, when thin layer chromatography using cellulose is performed, the activity is R f value of 0.20 to 0.25, 0.32 to 0.38,
It is found in three places with R f value of 0.43 to 0.55, and cannot be found in other places, and among these, R f value is 0.32 to 0.32.
0.38 seems to be the main component. The details of whether the three spots mentioned above are molecularly distinct, or whether they are caused by some kind of artefact as seen in the case of gel filtration, remain to be investigated. It is. This fraction exhibits physical properties such as those described in Examples. When this fraction is used as a hepatic DNA synthesis stimulant, it is administered alone or in combination with a pharmaceutically acceptable carrier. Its composition is determined by the route of administration, administration schedule, etc. The dosage is determined depending on the patient's age, health condition, weight, severity of symptoms, type of concurrent treatment, if any, frequency of treatment, nature of desired effect, etc. Therapeutic doses generally range from 0.05 to 50 mg per parenteral dose.
kg/day, orally 0.1 to 100 mg/Kg/day. When this fraction is administered orally, it is used in the form of tablets, capsules, powders, granules, solutions, elixirs, etc., and when administered parenterally, it is used in the form of sterile liquids such as liquids or suspensions. It will be done. When used in the forms described above, solid or liquid non-toxic pharmaceutical carriers can be included in the composition. As an example of a solid carrier, conventional gelatin-type capsules are used. The active ingredient may also be tabletted, granulated, or packaged as a powder with or without adjuvants. Excipients used in combination include water: gelatin: types of lactose, glucose, etc.: starches such as corn, wheat, rice, arrowroot starch, fatty acids such as stearic acid, calcium stearate, magnesium stearate, etc. Fatty acid salts: Talc: Vegetable oil: Alcohols such as stearyl alcohol and benzyl alcohol: Gum,
Examples include polyalkylene glycol. These capsules, tablets, granules and powders generally contain 5 to 100% by weight of active ingredient, preferably 25 to 100% by weight. Liquid carriers include water, petroleum, soybean oil,
Oils of animal or plant origin or synthetic oils such as peanut oil, sesame oil, mineral oil, etc. are used. Generally, physiological saline, textulose or similar saccharide solutions, and glycols such as ethylene glycol, propylene glycol, polyethylene glycol, and the like are preferred as liquid carriers. When administered parenterally by intramuscular, intravenous, or subcutaneous injection, the fraction is used as a sterile solution with the addition of other solutes such as saline or glucose to make the solution isotonic. Suitable vehicles for injection include sterile water, lidocaine hydrochloride solution (for intramuscular injection), physiological saline, dextrose, intravenous fluids, electrolyte solutions (for intravenous injection), and the like. These injection solutions usually contain 0.5 to 20% by weight, preferably 1 to 10% by weight of the active ingredient. In the case of liquid preparations for oral administration, suspensions or syrups containing 0.5 to 10% by weight of the active ingredient are preferred. In this case, aqueous excipients such as fragrances, syrups, and pharmaceutical micelles are used as carriers. This fraction has hepatic DNA synthesis stimulating action. Due to this action, this fraction promotes the regeneration or new generation of liver parenchymal cells when their number or function decreases due to liver diseases such as acute hepatitis and chronic hepatitis, or drug addiction.
It is useful as a drug for restoring the original liver function. The present invention will be explained in more detail with reference to production examples and examples below, but the present invention is not limited by the following examples unless it exceeds the gist thereof. Test Example Activity Measurement Method From 10% homogenate of rat liver in 0.25M sucrose-20mM Tris-HCl buffer (PH7.2),
Differential centrifugation was performed first at 750 x g for 10 minutes, second at 3300 x g for 10 minutes, and third at 16500 x g for 20 minutes.
Gently wash 16,500×g of pellets with 0.25M sucrose-1mM ethylenediaminetetraacetic acid solution (PH7.2), and suspend in the same solution so that each 20ml is equivalent to 10g of liver-derived pellets to produce lysosomes. did. Lysosomal suspensions (2 ml) were incubated with or without sample at 37°C for 60 min and centrifuged at 16500 xg for 20 min. Pellets are 0.25M sucrose-0.2% Triton X-100 (trademark of nonionic surfactant manufactured by Rohm and Haas)
Suspend in 4.4 ml of solution, leave at 4℃ overnight, and incubate at 16500×
Centrifuged at g for 20 minutes. The supernatant was used to measure the activity of residual cathepsin D by the method described below. To measure the activity of total cathepsin D, a lysosomal suspension was solubilized and used in the same manner as described above, except that incubation was not used. The percentage of cathepsin D release (100×(difference in activity)/total cathepsin D activity) was calculated from the difference in activity between total cathepsin D and residual cathepsin D. Cathepsin D activity was measured by the method described below. 0.1 ml of the supernatant obtained by centrifugation of the lysosomal suspension solubilized with the nonionic surfactant was added to a freshly prepared 0.18 M acetate buffer (PH3.2) of acid-denatured hemoglobin. solution
Mixed with 1.9ml. The mixture was incubated at 37°C for 60 min and then diluted with ice-cold 10% trichloroacetic acid-water.
1.0 ml was added to stop the reaction. After centrifugation, supernatant
0.5 ml each was reacted with 2.75 ml of Lowry's reagent (alkaline copper reagent + fluorin reagent), and the absorbance at 750 nm was measured. The % stimulation of cathepsin D release from lysosomes by the active ingredient was defined as follows. (% release in the presence of active ingredient) - (% release in the absence of active ingredient)/(% release in the absence of active ingredient) One unit of activity was defined as the activity providing 10% stimulation. The activity of the active ingredient was measured over a concentration range that provided a linear relationship between concentration and activity (below 100% stimulation). This serum fraction (factor) has the effect of promoting the release of cathepsin D and L from lysosomes (a type of organelle containing various hydrolytic enzymes) prepared from the liver. A quantitative method has been constructed based on its activity. One unit corresponds to an activity that promotes the release of cathepsin D from lysosomes by 10%. Cathepsin D from lysosomes, as mentioned above.
In addition to the effect of promoting withdrawal, this serum factor is also known to have the effect of increasing the level of cathepsin D (more precisely, cathepsin D-like acid protease) in the blood in vivo. Research into where cathepsin D, which is increased in the blood by this serum factor, comes from has revealed that red blood cells are the main source of cathepsin D. That is, it was demonstrated that cathepsin D (like acidic protease) bound to the red blood cell membrane (also called ghost) is released from the membrane by this serum factor. Therefore, this active ingredient inhibits the release of cathepsin D from lysosomes.
It also has the activity of promoting the release of cathepsin D-like acidic protease from the red blood cell membrane, increasing the amount of acidic protease in the blood in vivo, and stimulating DNA synthesis in the liver. Test Example Toxicity Test This serum factor is not a synthetic product, but is a substance that actually exists in the blood of animals, and in a broad sense can be called a natural physiologically active substance.As a result of a series of studies, It has been found that it is a new hormone secreted by the parathyroid glands that is dependent on glucagon (pancreatic hormone). This serum factor stimulates DNA synthesis specifically in the liver in vivo.
From experiments using mice, the effective amount is 1,000 to 10,000 units/mouse.

【衚】 䞊蚘実隓に䜿甚したマりスは各矀匹で、たた
血枅因子の比掻性は25000単䜍mgであ぀たが、
投䞎埌36h、48h埌においおも死亡䟋は党くなか
぀た。本血枅因子は殆ど玔品に近く粟補されおお
り、この粟補暙品の比掻性は108〜109単䜍mgに
達しおいる。肝DNA合成刺激剀の有効量は104単
䜍マりス以䞋であり、重量で瀺すず4ÎŒgKg䜓
重以䞋ずなり、急性毒性は党く考えられない。 補造䟋 ステツプ 牛血枅30を等量の氎ず混合し、塩酞でPH4.5
ずし、100℃に20分間加熱した。冷华埌テフロン
デナポン瀟フツ玠暹脂の商暙垃で、凝固した
蛋癜質をろ別し、残枣は氎で回掗滌した。ろ液
ず掗液を䜵せ、ろ玙でろ過した。この段階のも
のを加熱血枅ろ液ずいう加熱血枅ろ液は氎酞化
ナトリりムで䞭和し、次いでロヌタリヌ゚バポレ
ヌタヌで蒞発也固した。 ステツプ ステツプで埗られた也燥物を適圓量の氎に溶
かし、有機溶媒〔゚タノヌル−゚チル゚ヌテル
3vおよび゚チル゚ヌテル〕で脂質を
抜出した。有機溶媒局は氎で掗滌した。氎局ず氎
性掗液を䜵せ、ロヌタリヌ゚バポレヌタヌで濃瞮
した。この段階のものを脱脂質材料ずいう ステツプ ステツプで埗られた脱脂質材料を氎で垌釈
し、塩化ナトリりム濃床が1.5M以䞋になるよう
にした。溶液は、デキストラン補の限倖ろ過膜
バむオ゚ンゞニアリング瀟商暙名ダむダフむル
タヌ−05T−以䞋−05T膜ずいうを甚いた
限倖ろ過にかけた。ろ液この段階のものを−
05Tろ液ずいうは、分子量5000未満の成分を含
み、これをデキストラン補の限倖ろ過膜バむオ
゚ンゞニアリング瀟商暙名ダむダフむルタヌ−
05H−以䞋−05H膜ずいうを甚いた限倖ろ過
にかけた。掻性の倧郚分は、分子量500未満の成
分を含む−05H膜のろ液この段階のものを
−05Hろ液ずいうに回収されたが、−05H膜
の残枣この段階のものを−05H残枣ずいう
にも、䞀郚残぀た。 ステツプ −05Hろ液をPH5.0に調敎し、Na+型匱酞性
カチオン亀換暹脂ロヌムアンドハヌス瀟商暙ア
ンバヌラむトCG−50−10-5Mの塩酞で平衡化
のカラムクロマトグラフむヌにかけた。ろ液をカ
ラムに入れた埌、10-5Mの塩酞で、ろ液のA260on
吞収が無芖できるたで掗滌した。暹脂に吞着され
た掻性郚分は、1Mアンモニア氎で流出させた。
アンモニア氎の先端付近の掻性郚分を塩酞で䞭和
し、ロヌタリヌ゚バポレヌタヌで蒞発也固した。
この段階のものをCG−50アンモニア流出物ずい
う ステツプ CG−50アンモニア流出物を速かに゚タノヌル
およびメタノヌルで回ず぀掗滌し、残枣を氎に
溶かし、䞍玔物を遠心分離により陀いた。䞊柄を
デキストランゲルフアルマシアフアむンケミカ
ルズ瀟商暙セフアデツクス−10を甚い、掻
性、280nmおよび260nmの吞光床をモニタヌした
ゲルろ過にかけた。 掻性は぀のバンドに分れた。぀は分子量玄
200の䜍眮のピヌクこのものをMW−200成分ず
いうであり、今぀は分子量玄400の䜍眮のピ
ヌクこのものをMW−400成分ずいうである。
それぞれの成分を蒞発也固した。 ステツプ ステツプで埗られたMW−200成分を゚タノ
ヌルおよびメタノヌルで回ず぀掗滌し、残枣を
76メタノヌル−氎に溶かした。メタノヌル性溶
液は、シリカゲルカラムに入れ、76メタノヌル
−氎および氎でカラムを掗滌した。掻性は、76
メタノヌル−氎流出液および氎流出液の぀の郚
分に分れた。埌者の比掻性は、前者のそれより倧
きい。氎流出液を蒞発也固し、残枣を87メタノ
ヌル−氎に溶かし、再びシリカゲルでカラムクロ
マトグラフ凊理した。カラムは87メタノヌル−
氎、76メタノヌル―氎および氎で掗滌した。掻
性は87メタノヌル―氎流出液および氎流出液に
回収されたが、氎流出液の比掻性の方が87メタ
ノヌル―氎流出液の比掻性より高い。 ステツプ ステツプの氎流出液を蒞発也固し、セルロヌ
スメルク瀟補、非螢光性を甚いた薄局クロマ
トグラフむヌにかけ、−ブタノヌル酢酞氎
125vの溶媒系で展開した。掻性の
ある垯Rf0.25−0.55の䞭の螢光垯Rf0.33−
0.44氎で抜出し、抜出物をワツトマン3MM箙
を甚いたペヌパヌクロマトグラフむヌにかけ、䞊
蚘の溶媒系で展開し、掻性郚分を氎で抜出しお同
様に再クロマトグラフした。 ステツプ ステツプの比掻性20×103単䜍mg以䞊の郚
分を集め、也燥物を少量の80゚タノヌル―氎、
メタノヌルですみやかに掗滌した。残枣を少量の
氎に溶かし、枛圧デシケヌタヌ䞭に保存する。
このものを粟補血枅因子ずする ステツプ 粟補血枅因子を含氎゚タノヌルで順次差抜出し
たずころ、90〜80゚タノヌルず15〜゚タノ
ヌルの郚分に掻性が認められた。 補造䟋で補造したものに぀いおの結果は、衚
に瀺した。
[Table] Three mice were used in each group in the above experiment, and the specific activity of serum factors was 25,000 units/mg.
There were no deaths at 36 or 48 hours after administration. This serum factor has been purified almost to a pure product, and the specific activity of this purified sample reaches 10 8 to 10 9 units/mg. The effective amount of the hepatic DNA synthesis stimulant is less than 10 4 units/mouse, and the weight is less than 4 ÎŒg/Kg body weight, so acute toxicity is not expected at all. Production example (step) Mix 30% of bovine serum with an equal amount of water and adjust to PH4.5 with hydrochloric acid.
and heated to 100°C for 20 minutes. After cooling, the coagulated protein was filtered off using a Teflon cloth (a trademark of Dupont's fluorocarbon resin), and the residue was washed twice with water. The filtrate and washing solution were combined and filtered through filter paper. The heated serum filtrate (at this stage is referred to as heated serum filtrate) was neutralized with sodium hydroxide and then evaporated to dryness on a rotary evaporator. (Step) The dried product obtained in step was dissolved in an appropriate amount of water, and lipids were extracted with an organic solvent [ethanol-ethyl ether (1:3 v/v) and ethyl ether]. The organic solvent layer was washed with water. The aqueous layer and aqueous washings were combined and concentrated on a rotary evaporator. (The material at this stage is referred to as the delipidated material.) (Step) The delipidated material obtained in step was diluted with water so that the sodium chloride concentration was 1.5M or less. The solution was subjected to ultrafiltration using an ultrafiltration membrane made from dextran (trademark: Diafilter G-05T, manufactured by Bioengineering Co., Ltd., hereinafter referred to as G-05T membrane). Filtrate (at this stage, G-
The 05T filtrate) contains components with a molecular weight of less than 5000, which is filtered using a dextran ultrafiltration membrane (Bio Engineering Co., Ltd. trade name Diafilter G-
05H (hereinafter referred to as G-05H membrane) was subjected to ultrafiltration. Most of the activity is caused by the G-05H membrane filtrate (at this stage, which contains components with a molecular weight of less than 500).
-05H filtrate), but the residue of G-05H membrane (this stage is called G-05H residue)
Some of it remained. (Step) Adjust the G-05H filtrate to pH 5.0 and equilibrate with Na + type weakly acidic cation exchange resin (Rohm and Haas trademark Amberlite CG-50-10 -5 M hydrochloric acid).
column chromatography. After putting the filtrate into the column, add A 260 on of the filtrate with 10 -5 M hydrochloric acid.
Washed until absorption was negligible. The active moieties adsorbed on the resin were flushed out with 1M aqueous ammonia.
The active part near the tip of the ammonia water was neutralized with hydrochloric acid and evaporated to dryness using a rotary evaporator.
(The product at this stage is referred to as CG-50 ammonia effluent.) (Step) The CG-50 ammonia effluent was quickly washed twice with ethanol and methanol, the residue was dissolved in water, and impurities were removed by centrifugation. . The supernatant was subjected to gel filtration using dextran gel (Sephadex G-10, a trademark of Pharmacia Fine Chemicals) and monitoring activity and absorbance at 280 nm and 260 nm. The activity was divided into two bands. One is the molecular weight of approx.
One is the peak at the molecular weight position of 200 (this is referred to as the MW-200 component), and the other is the peak at the molecular weight approximately 400 (this is referred to as the MW-400 component).
Each component was evaporated to dryness. (Step) Wash the MW-200 component obtained in step three times with ethanol and methanol to remove the residue.
Dissolved in 76% methanol-water. The methanolic solution was placed in a silica gel column and the column was washed with 76% methanol-water and water. Activity is 76%
It was divided into two parts: methanol-water effluent and water effluent. The specific activity of the latter is greater than that of the former. The aqueous effluent was evaporated to dryness and the residue was dissolved in 87% methanol-water and column chromatographed again on silica gel. Column is 87% methanol
Washed with water, 76% methanol-water and water. Activity was recovered in the 87% methanol-water and water effluents, but the specific activity of the water effluent was higher than the specific activity of the 87% methanol-water effluent. (Step) The water effluent from the step was evaporated to dryness and subjected to thin layer chromatography using cellulose (manufactured by Merck & Co., Ltd., non-fluorescent), and was subjected to n-butanol:acetic acid:water (12:3:5v/v). ). Fluorescent band (R f 0.33−) within the active band (R f 0.25−0.55)
0.44) Extracted with water, subjected the extract to paper chromatography using Watzman 3MM paper, developed with the above solvent system, extracted the active portion with water and rechromatographed in the same manner. (Step) Collect the parts of Step with a specific activity of 20×10 3 units/mg or more, and add the dried product to a small amount of 80% ethanol-water,
It was quickly washed with methanol. Dissolve the residue in a small amount of water and store in a vacuum desiccator.
(This is referred to as the purified serum factor) (Step) When the purified serum factor was sequentially differentially extracted with aqueous ethanol, activity was observed in the 90-80% ethanol and 15-0% ethanol portions. The results for the products manufactured in the manufacturing example are shown in Table 1.
It was shown to.

【衚】 なお衚䞭で を付したものは、次の粟補ス
テツプに甚いおいないものの参考デヌタである。 粟補血枅因子の物性は以䞋の通りである。 無色。氎に可溶。メタノヌルおよび他の有機溶
媒に比范的難溶。氎溶液は、通垞260nmおよび
280nmに吞収極倧を瀺さない。 モリツシナ反応による糖の怜出 陰性 ポヌリヌ反応によるむミダゟヌル基の怜出 陰性 ペヌドプラチネヌト反応による硫黄の怜出 陜性 ゚ヌルリツヒ詊薬−ゞメチルアミノベンズ
アルデヒド塩酞によるむンドヌル黄色に
発色たたは−カルバミル基の怜出 詊隓䟋 生䜓䞭の肝臓のDNA合成に䞎える効果 補造䟋で補造した加熱血枅ろ液掻性玄1.2単
䜍mgを氎に溶かしお、掻性が200〜400単䜍
mlの詊料を調補した。 たた、加熱血枅ろ液を前蚘匱酞性カチオン亀換
暹脂のクロマトグラフむヌおよびペヌパヌクロマ
トグラフむヌRf0.52〜0.76により、郚分粟補
血枅因子掻性玄265単䜍mgを調補し、粟補
血枅因子は補造䟋で調補したものを甚い、䞡者は
生理食塩氎に溶解させお甚いた。 各詊料毎に䜓重が19〜24gのマりス〜匹
に、衚に瀺した方法により腹腔内に泚射した。
マりスを殺す1.5時間前に、14C−チミゞン5.0〜
50.7Cimolを1ÎŒCi腹腔内に泚射した。シナミ
ツト−タンハりザヌ法により肝臓のDNAを集め、
取り蟌たれた攟射胜は、−ゞプニルオキ
サゟヌルの0.6トル゚ン溶液をシンチレヌシペ
ン液ずするシンチレヌシペンスペクトロメヌタヌ
によりカりントした。DNAは、デむツシナの方
法により、子牛の胞線のDNAを暙準ずしお枬定
した。結果は衚に瀺した。 なお、コントロヌルずしお、生理食塩氎を腹腔
内に泚射した。
[Table] Data in parentheses in the table is reference data that is not used in the next purification step. The physical properties of the purified serum factor are as follows. colorless. Soluble in water. Relatively sparingly soluble in methanol and other organic solvents. Aqueous solutions are usually 260nm and
Does not show absorption maximum at 280nm. Detection of sugar by Moritshu reaction Detection of imidazole group by negative Pauly reaction Detection of sulfur by negative iodoplatinate reaction Detection test of indole (yellow color) or N-carbamyl group by positive Ehrrich reagent (p-dimethylaminobenzaldehyde + hydrochloric acid) Example Effect on DNA synthesis in the liver in living organisms The heated serum filtrate produced in the production example (activity approximately 1.2 units/mg) is dissolved in water, and the activity is 200 to 400 units/mg.
ml samples were prepared. In addition, partially purified serum factors (activity approximately 265 units/mg) were prepared from the heated serum filtrate by chromatography using the weakly acidic cation exchange resin and paper chromatography (R f 0.52 to 0.76). The one prepared in the production example was used, and both were dissolved in physiological saline. Each sample was injected intraperitoneally into 2 to 3 mice weighing 19 to 24 g according to the method shown in Table 2.
1.5 hours before killing mice, 14C -thymidine (5.0~
50.7 Ci/mol) was injected intraperitoneally at 1 ÎŒCi. Liver DNA was collected using the Schmitt-Tannhauser method.
The incorporated radioactivity was counted using a scintillation spectrometer using a 0.6% toluene solution of 2,5-diphenyloxazole as the scintillation liquid. DNA was measured using the calf's thorax DNA as a standard using Deitshu's method. The results are shown in Table 2. Note that as a control, physiological saline was injected intraperitoneally.

【衚】【table】

Claims (1)

【特蚱請求の範囲】[Claims]  哺乳動物の血挿たたは血枅から埗られた分子
量200〜400、セルロヌスによる薄局クロマトグラ
フむヌ展開溶媒−ブタノヌル酢酞氎
125vのRf倀が0.20〜0.25、0.32〜
0.38、0.43〜0.55、非極性の溶媒に難溶で含氎メ
タノヌル、含氎゚タノヌルおよび氎に可溶、カチ
オン亀換暹脂に吞着するずずもにアンモニアで溶
出、シリカゲルクロマトグラフ凊理により76乃
至87メタノヌル䞭でシリカゲルに吞着し氎で溶
出、以䞊の分画を有効成分ずする肝DNA合成刺
激剀。
1 Molecular weight 200-400 obtained from mammalian plasma or serum, thin layer chromatography using cellulose (developing solvent: n-butanol: acetic acid: water =
12:3:5v/v) Rf value is 0.20~0.25, 0.32~
0.38, 0.43-0.55, slightly soluble in non-polar solvents, soluble in aqueous methanol, aqueous ethanol and water, adsorbed on cation exchange resin and eluted with ammonia, silica gel in 76%-87% methanol by silica gel chromatography A hepatic DNA synthesis stimulant whose active ingredients are the above fractions that are adsorbed to and eluted with water.
JP1313680A 1980-02-06 1980-02-06 Stimulating agent for synthesis of hepatic dna Granted JPS56110624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1313680A JPS56110624A (en) 1980-02-06 1980-02-06 Stimulating agent for synthesis of hepatic dna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1313680A JPS56110624A (en) 1980-02-06 1980-02-06 Stimulating agent for synthesis of hepatic dna

Publications (2)

Publication Number Publication Date
JPS56110624A JPS56110624A (en) 1981-09-01
JPH0316326B2 true JPH0316326B2 (en) 1991-03-05

Family

ID=11824736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1313680A Granted JPS56110624A (en) 1980-02-06 1980-02-06 Stimulating agent for synthesis of hepatic dna

Country Status (1)

Country Link
JP (1) JPS56110624A (en)

Also Published As

Publication number Publication date
JPS56110624A (en) 1981-09-01

Similar Documents

Publication Publication Date Title
JP5607013B2 (en) Bioactive fraction of Eurycoma longifolia
Evans et al. Acute bracken poisoning in homogastric and ruminant animals
US6051613A (en) Nitrogen monoxide production suppressor
JPS63316730A (en) Antiviral agent
CN112979743A (en) Betulinic acid derivative and application thereof
WO1998025631A1 (en) Treatment of osteoarthritis by administering poly-n-acetyl-d-glucosamine
JPH01157995A (en) Internal ester of genglioside having analgesic-anti-inflammatory activity
Schröder et al. Azo reduction of salicyl-azo-sulphapyridine in germ-free and conventional rats
JPH0228115A (en) Physiologically active substance and pharmaceutical composition containing the same substance
NL7905251A (en) METHOD FOR RECOVERING A NATURAL SUBSTANCE WITH ANTI-PSORIATIC EFFECT AND PHARMACEUTICAL PREPARATION BASED THEREOF
US6726932B2 (en) Fatty acid-containing composition
DE69928375T2 (en) ANALGETICS FROM SNAKE POISON
JP2002535281A (en) Pharmaceutical compositions capable of regulating the expression of adhesion molecules
JPS6219525A (en) Production of plant-originated bioactive substance and composition containing said substance
JPH0316326B2 (en)
SAMTER Nasal polyps: an inquiry into the mechanism of formation
Lake-Bakaar et al. Dose-dependent effect of continuous subcutaneous verapamil infusion on experimental acute pancreatitis in mice
Davis Auranofin
KR102208221B1 (en) A Pharmaceutical Composition For Preventing Or Treating Neuromuscular Diseases
DE3204631A1 (en) THERAPEUTIC AGENT AND ITS USE
JP5037778B2 (en) Anti-monocyte activity of pepper family betel leaf extract
Pathak et al. Free radical scavenging activity of Albizia lebbeck methanolic extract in arthritic rats
JPH09500262A (en) Production of toxin-binding biopolymer and its use
RU2763761C1 (en) Hepatoprotective humic agent
CN111110665B (en) Application of vitamin K3 in preparing anti-anaphylactoid medicines