JPH03162814A - Cleaner - Google Patents

Cleaner

Info

Publication number
JPH03162814A
JPH03162814A JP17930090A JP17930090A JPH03162814A JP H03162814 A JPH03162814 A JP H03162814A JP 17930090 A JP17930090 A JP 17930090A JP 17930090 A JP17930090 A JP 17930090A JP H03162814 A JPH03162814 A JP H03162814A
Authority
JP
Japan
Prior art keywords
main body
dust
fan
vacuum cleaner
floor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17930090A
Other languages
Japanese (ja)
Other versions
JPH0744911B2 (en
Inventor
Hirohide Miwa
三輪 博秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Cosmos Electric Co Ltd
Original Assignee
Tokyo Cosmos Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Cosmos Electric Co Ltd filed Critical Tokyo Cosmos Electric Co Ltd
Priority to JP17930090A priority Critical patent/JPH0744911B2/en
Publication of JPH03162814A publication Critical patent/JPH03162814A/en
Publication of JPH0744911B2 publication Critical patent/JPH0744911B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To easily separate dust by separating the dust by spraying or hitting a jet stream on a material to be cleaned by reusing fan trailing flow energy and utilizing an ultrasonic wave, and furthermore, eliminating static electricity by humidification. CONSTITUTION:Part of a fan trailing flow blows out from a nozzle 22 passing a circulating tube 21 as jet gas, and the dust can be separated from the material to be cleaned by hitting it with the material to be cleaned. The dust separated and entered the air flow is easily sucked from an inlet 17, and is introduced to a filter 18. The energy of the fan trailing flow is converted to mechanical hitting or vibration, etc., with the principles of a wind mill and a blade, then, the dust can be separated by hitting or vibrating the material to be cleaned. When the hitting is used, it is enough to vibrate a hitting piece in the up-and-down direction with a wind force, for example, the rotation of the wind mill of axis flow and axis orthogonal flow, etc., is converted to up-and-down motion with a cam or a crank, etc. Also, a humidification room and the a static electricity elimination agent adding room of an ion generating room 32, etc., are provided on the middle way to a circulating tube 21 which circulates the fan trailing flow, and the static electricity can be eliminated by fitting the humidificated or ionized jet gas on the material to be cleaned in the neighborhood of the inlet 17, which facilitates separation by the air flow of the dust or a brush.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は住宅等の建築物の屋内や、平面域を有する屋
外構造物等で使用され、空気を吸込むためのファン及び
そのファンを駆動するモータを内蔵した主体を床上に移
動させて帰除を行う掃除機に関するものである. 「従来の技術」 従来の動力掃除機は、動力として屋内では交流商用電源
、屋外では内燃機関等が用いられている。
[Detailed Description of the Invention] "Industrial Application Field" This invention is used indoors of buildings such as houses, outdoor structures having a flat area, etc., and is used to drive a fan for sucking air and the fan. This relates to a vacuum cleaner that moves a main body with a built-in motor onto the floor to remove the dirt. "Prior Art" Conventional power vacuum cleaners use an AC commercial power supply indoors and an internal combustion engine outdoors.

最近二次電池を電源とした小容量のハンディ型も市販さ
れるようになったが、これは小容量・小能力で、机上・
ソファ・自動車内・限定された床面上の局所等に使用さ
れるが、部屋全体の掃除には容量不足である.本格的な
掃除には床上型が使用される. 以下最も使用例が多い交流商用電源を動力源とする床上
型のものについて従来の技術を説明する.従来の本格的
床上型のものは第15図に示すように、主体11が車輪
l2で床上を移動できるようにされ、その主体ll内に
ファン13が収容され、ファンl3はモータ14で回転
されて、ファン13の回転により主体1lから空気を吸
込み、他端の排気口15から排気され、その吸込口に剛
性および/まはたは可撓性の吸込気管16の一端が連結
され、吸込気管l6の多端に各種の交換可能な吸込口l
7が取付けられ、吸込口17より吸込まれた空気は主体
11内のフィルタ18に通されフィルタl8でダストが
吸収される.モータl4に接続された電源コード19は
主体2中に捲き取り収納され、引き出すときスプリグを
付勢し、格納するときはスプリグの弛緩力で捲き取るよ
うになっているものが多い. 吸込口17は床面用の左右に細長いもの、円形でブラシ
がつき、毛足の長いもの、槍状で隙間に差し入れる細隙
吸込用のもの等が一般に準備され、交換使用可能になっ
ている.また床面用の吸込口l7は床板・ゴム・ビニー
ル等の平滑表面や、たたみの如き準平滑表面用と、じゅ
うたんの如く毛が植わっている表面とで、吸込口の形状
を変化する手動切替レバー等が付されている. 吸込気管l6は手で支持するための剛性のものと、主体
1lの位置に関せず吸込口l7を移動させるための変形
容易な可撓性のものとを組み合わせたり、可撓性のもの
に直接吸込口l7を接続したりして使用できるようにな
っている.フィルタ1日は吸い取った気流中のダストを
濾しとり、ダストを集積するためのもので、後方のファ
ン13やモータl4にダストが付着するのを防止するの
にも役立つ.ファンl3より流れ出る気流はモータl4
を通過し、モータl4の冷却にも役立ち、最後は排出口
l5から排出される.一般住宅用で床上用は500W程
度の電力のもので、この電力は被掃除物に付着したり、
静電気で被掃除物に吸引付着したりしたダストを吸込気
流で遊離するために先ず使用され、次いでダストを吸気
管l6中に気流で搬送するために使用され、更にフィル
タl8の細孔や集積したダストの間隙を気流が通過する
ために使用される.吸引口l7からフィルタ18を通過
するまでの気流にエネルギーを与えるための負圧と流量
を創生するためにファン13とモータ14とが使用され
る.ファンl3を通過した気流はエネルギーを与えられ
、加圧されて正圧となり、更にモータ14等を冷却して
後部排出口l5から大量の高速気流として放出される.
この放出気流は騒音の主発生源となり、掃除中は会話で
きない状態である.掃除中の床面上の移動には可撓管や
支持管を作業者が手で引っ張ることにより主体11を移
動させるものが大部分である.また、この間電源コード
l9は伸びたままで引きずって移動する.別に床面用吸
引口l7と主体11の把持棒とを床に斜垂直に直線状に
直結したものがあるが、掃除効率が悪いために大型で、
重量大で、かつコード付きである.床面用大型のコード
レス掃除機としては掃除ロボットとして試作提案された
ものや一部業務用のものが発表されているが、何れも、
ダストの吸収を強くし、かつダストがつまったフィルタ
に気流を通すため掃除に必要な電力の利用効率が悪く、
内蔵の二次電池が大型で重くなり、全体として大型とな
り、家庭や一般用として実用化されていない.掃除ロボ
ットは無人での走行と掃除動作を主目的として作られて
いる.しかし、従来の入力での押し、引き等での走行方
式との差が大きすぎて中間の動力走行手動操舵のものが
発表されていない. 「発明が解決しようとする課題」 従来のものは吸込力で被掃除体に付着したダストを取る
ため強い吸込み力を必要とし、ダストが付いたフィルタ
に気流を通過させるため強い流れを必要とし、ファン、
モータが大型となった.コードレスにするには、内燃機
関は空気を汚染するので室内に使用できないので、何ら
かの形式の電池(二次電池・燃料電池等)を利用し、主
体内に格納する必要がある.しかし、−C住宅用でも5
00W程度で2R間連続使用可能とすると、12■で8
OA}Iを必要とする.電池容量としては100All
程度必要となり、電池が外形寸法・重量共に大きくなり
すぎて実用性に乏しい. コードレスの床上用のものは、掃除ロボット等として業
務用に発表されているが、掃除電力を300Wに、使用
時間を15分に限定しても電池重量は2. 4 kg程
度となり、家庭用には寸法・重量・価格面で実用し得す
、業務用に限定されている。
Recently, small-capacity, hand-held models powered by secondary batteries have become available on the market, but these have small capacity and low power, and can be used on desks.
It is used on sofas, inside cars, and in limited areas on the floor, but it does not have enough capacity to clean an entire room. For serious cleaning, a floor-mounted type is used. Below, we will explain the conventional technology for the floor-mounted type that is powered by AC commercial power, which is the most frequently used type. As shown in FIG. 15, in the conventional full-scale floor-top type, a main body 11 is movable on the floor with wheels 12, a fan 13 is housed in the main body 11, and the fan 13 is rotated by a motor 14. Air is sucked in from the main body 1l by the rotation of the fan 13, and exhausted from the exhaust port 15 at the other end, and one end of a rigid and/or flexible suction trachea 16 is connected to the suction port. Various replaceable suction ports on the other end of l6
7 is attached, air sucked in through the suction port 17 is passed through a filter 18 in the main body 11, and dust is absorbed by the filter 18. In many cases, the power cord 19 connected to the motor 14 is wound up and stored in the main body 2, and when pulled out, a spring is energized, and when retracted, it is wound up by the relaxing force of the sprig. The suction ports 17 are generally available as elongated ones on the left and right for floor surfaces, circular ones with brushes and long bristles, and spear-shaped ones for slit suction that can be inserted into gaps, and can be used interchangeably. There is. In addition, the suction port 17 for floor surfaces can be manually switched to change the shape of the suction port for smooth surfaces such as floorboards, rubber, vinyl, semi-smooth surfaces such as tatami mats, and surfaces with hairs such as carpets. Comes with levers etc. The suction trachea l6 may be a combination of a rigid one that can be supported by hand and a flexible one that is easily deformed to move the suction port l7 regardless of the position of the main body 1l, or a flexible one that can be easily deformed to move the suction port l7 regardless of the position of the main body 1l. It can be used by directly connecting suction port l7. The filter 1 is used to filter out dust from the sucked airflow and collect the dust, and is also useful for preventing dust from adhering to the rear fan 13 and motor 14. The airflow flowing out from fan l3 is caused by motor l4
It also serves to cool the motor l4, and is finally discharged from the outlet l5. For general residential use and on-floor use, the power is approximately 500W, and this power may adhere to the objects being cleaned.
It is first used to liberate dust that has attracted and adhered to the object to be cleaned due to static electricity using the suction airflow, and then is used to transport the dust into the suction pipe l6 by the airflow. Used to allow airflow to pass through gaps in the dust. A fan 13 and a motor 14 are used to create a negative pressure and a flow rate to give energy to the airflow from the suction port l7 to the filter 18. The airflow passing through the fan l3 is given energy and pressurized to a positive pressure, which further cools the motor 14 and the like, and is discharged from the rear exhaust port l5 as a large amount of high-speed airflow.
This discharged airflow becomes the main source of noise, making it impossible to have a conversation while cleaning. Most of the movement on the floor during cleaning involves moving the main body 11 by manually pulling a flexible tube or support tube by the operator. Also, during this time, the power cord l9 remains stretched and is dragged. There is another type in which the floor suction port 17 and the gripping rod of the main body 11 are directly connected in a straight line obliquely perpendicular to the floor, but it is large and has poor cleaning efficiency.
It is heavy and comes with a cord. As for large cordless vacuum cleaners for floor surfaces, prototypes have been proposed as cleaning robots and some models for commercial use have been announced, but in both cases,
Because it strongly absorbs dust and passes airflow through the dust-filled filter, the efficiency of using the electricity required for cleaning is poor.
The built-in secondary battery is large and heavy, and the overall size is large, making it unsuitable for home or general use. Cleaning robots are designed primarily for unmanned running and cleaning operations. However, the difference between the conventional drive system, which uses push and pull input, and the like is too great, so an intermediate power drive system with manual steering has not been announced. ``Problems to be solved by the invention'' Conventional cleaners require strong suction force to remove dust attached to objects to be cleaned, and require strong airflow to pass through the dust-covered filter. fan,
The motor has become larger. To make it cordless, an internal combustion engine cannot be used indoors because it pollutes the air, so it is necessary to use some type of battery (secondary battery, fuel cell, etc.) and store it inside the main body. However, even for -C residential use, 5
If continuous use is possible for 2R at about 00W, 8 at 12■
OA}I is required. Battery capacity is 100All
This makes the battery too large in both external dimensions and weight, making it impractical. Cordless floor-type models have been announced for commercial use as cleaning robots, etc., but even if the cleaning power is limited to 300W and the usage time is limited to 15 minutes, the battery weight is 2. It weighs approximately 4 kg, making it practical for household use in terms of size, weight, and price, but is limited to commercial use.

電池を小容量とするには掃除機のエネルギー使用効率を
少なくとも倍程度に高める必要があるが従来そのような
高効率の掃除機は存在せず、高効率化の必要がある.ま
た高効率化ができれば主体の小型、軽量化、低騒音化、
移動性の向上、使い勝手の向上をはかることができる. 高効率化の手法としてファンl3より凍れ出た気流(フ
ァン後流と記す)のエネルギーを利用して吸込口付近に
ファン後流を噴出しその噴出流でダストを遊離させるこ
と(実公昭43−22616号公報や、ファン後流で吸
込口付近のブラシを回転させるもの(実公昭39−36
553号公報)等の1!案が公知である.しかし後者の
吸込気管で吸込口が主体から延伸している時は、吸込気
管にファン後流を吸込口へ供給するための還流気管を複
合することは、重量と寸法から取扱困難となり、またフ
ァン後流を循環使用しており、かつファン後流がモータ
を冷却するため、ファン後流が高温となり、安全性及び
気体密度低下で噴気のダスト遊離効果やブラシ回転効果
が減少するので未だ実用されていない。
In order to reduce the battery capacity, it is necessary to at least double the energy usage efficiency of vacuum cleaners, but there is no vacuum cleaner with such high efficiency in the past, so there is a need to improve efficiency. In addition, if we can improve efficiency, we can make the main components smaller, lighter, and have lower noise.
It can improve mobility and usability. As a method of increasing efficiency, the energy of the airflow frozen from the fan l3 (referred to as fan wake) is used to eject a fan wake near the suction port, and the dust is released by the jet (Jikko Sho 43). -22616 publication, and the one that rotates the brush near the suction port in the wake of the fan (Utility Model Publication No. 39-36
553 Publication) etc. 1! The proposal is publicly known. However, when the latter suction trachea has a suction port extending from the main body, combining the suction trachea with a return trachea for supplying the fan wake to the suction port becomes difficult to handle due to weight and size, and the fan Since the wake is circulated and the fan wake cools the motor, the fan wake becomes high temperature, which reduces safety and gas density, reducing the dust release effect of the fume and the brush rotation effect, so it is still not in practical use. Not yet.

更にブラシを回転することは、床面材との摩擦が大きく
、回転トルクとして大きな値が必要であり、このためフ
ァン後流の圧力損失が大きく、ファンの背圧を高める欠
点があり、実用化を妨げていた。
Furthermore, rotating the brushes causes large friction with the floor material and requires a large value of rotational torque, which causes a large pressure loss in the wake of the fan and has the disadvantage of increasing the back pressure of the fan, making it difficult to put it into practical use. was hindering.

床面専用掃除機では、延伸吸込気管が不要となるが、此
の場合は非床面の掃除ができない欠点があった. 床面専用で延伸吸気管を使用しないものは人間が立位で
掃除機を移動するための操作体を有するものが報告され
ている. 又その操作体のa械的操作でクラッチを操作し動力で前
・後進等を行うものが報告されているが機械的であるた
め操作の種類が限定され、操作に力が必要であり、非剛
性の牽引索や連結体を使用できないので、移動・格納に
不便な点があった,掃除ロボットでは遠隔操作可能なも
のが発表されているが掃除機を電子的手動制御で動力走
行させるものは、コード附,コードレス何れも発表され
ていない.ロボットは高価格で、走行晴度・障害物対策
等実用上多くの問題点を有する.勿論電子的手動制御勤
力走1テで遠隔操作可能のものはない. 又、掃除ロボットで遠隔操作可能のものも、机や椅子等
で送信器と受信器との連絡路が遮断されると、動作が不
安定になる欠点があった.一般に掃除作業は定形化して
おり、ほぼ定期的に同じ場所を同じような順序で掃除し
ている.家庭等では主婦が主として担当しており、生活
レベルの向上や、共働き家族の増大等で省力化・自動化
が要望されているが、掃除効率の悪いままでコ−ドレス
にする従来技術では小型・軽量・安価で実用性あるロボ
ット実現は全く困難であった.もし従来技術で敢えて自
動化に挑戦すると、極めて大型で、高価なものとなり、
実用に耐えないものとなる. またロボット化時のプログラミングを容易にするために
学習機能を有するものが発表されているが何れも、走行
距離センサと走行方向センサとから床上の位置を計算し
、その位置を時系列的に記憶する方式であり、計算が複
雑で、精度・価格等で問題があり、プログラムも大量と
なる問題があった. 「課題を解決するための手段」 この発明によれば掃除機の電力(またはエネルギー)使
用効率を上昇するために次の手段の何れか、または組み
合わせを利用する。
A floor vacuum cleaner does not require an extended suction pipe, but it has the disadvantage that it cannot clean non-floor surfaces. It has been reported that vacuum cleaners that are used exclusively for floor surfaces and do not use an extended intake pipe have an operating body that allows a person to move the cleaner while standing. In addition, it has been reported that the clutch is operated by mechanical operation of the operating body and the power is used to move forward or backward, but since it is mechanical, the types of operation are limited, force is required for operation, and it is non-conforming. Since a rigid tow rope or connecting body cannot be used, it is inconvenient to move and store the robot.While some cleaning robots have been announced that can be controlled remotely, there are no vacuum cleaners that are powered by electronic manual control. Neither corded nor cordless versions have been announced. Robots are expensive and have many problems in practical use, such as how to deal with clear conditions and obstacles. Of course, there is no electronic manual control system that can be controlled remotely. Additionally, cleaning robots that can be controlled remotely have the disadvantage that their operation becomes unstable if the communication path between the transmitter and receiver is blocked by a desk, chair, etc. Generally, cleaning work is standardized, and the same areas are cleaned in the same order almost regularly. Housewives are primarily in charge of cleaning at home, and as the standard of living improves and the number of dual-income families increases, there is a demand for labor-saving and automation. It has been extremely difficult to create a lightweight, inexpensive, and practical robot. If we dared to try automation using conventional technology, it would be extremely large and expensive.
It becomes impractical. In addition, robots with a learning function have been announced to facilitate programming during robotization, but all of them calculate the position on the floor from the travel distance sensor and the travel direction sensor, and store the position in chronological order. This method was complicated in calculations, had problems with accuracy, cost, etc., and required a large amount of programs. "Means for Solving the Problem" According to the present invention, any one or a combination of the following means is used to increase the power (or energy) usage efficiency of a vacuum cleaner.

(a)  フ・アン後流の一部を吸気孔付近に還流気管
を通して還流し、そのファン後波をノズルから吸気口付
近の前方にジヱントとして噴出させ、そのジェントを被
掃除体に入射して被掃除体からダストを遊離させる. 中)ファン後流の一部を還流気管を通じて吸気孔付近に
還流し、そのファン後流によって8l械的な叩打・振動
を被掃除体に直接またはブラシの毛等を介して与え、ダ
ストを遊離する. (c)  ファン後流又はファンの入力側の気流を加温
手段・イオン手段等の静電気除去機能に通し、これを噴
気として吸気口付近に戻し被掃除物に当てることにより
、静電気で吸着しているダストを遊離する。
(a) A part of the fan wake is refluxed near the intake hole through the recirculation trachea, and the fan wake is jetted from the nozzle forward near the intake port as a jet, and the jet is made to enter the object to be cleaned. Releases dust from the object to be cleaned. (Middle) A part of the fan wake is returned to the vicinity of the intake hole through the return trachea, and the fan wake gives 8L mechanical beating and vibration to the object to be cleaned, either directly or through brush bristles, etc., to liberate dust. do. (c) By passing the airflow from the fan's wake or the input side of the fan through a static electricity removal function such as a heating means or ionizing means, and returning it as fumes to the vicinity of the intake port, the airflow is attracted to the object by static electricity. Frees the dust that is present.

(d)  フィルタが、吸込気流からダストを濾しとる
部分と、フィルタに付着したダストを掻き落とし等で除
去する部分との双方を巡回移動するようにする。併せて
ダスト除去部ではファン後流の少なくとも一部を吸込時
と逆方向にフィルタに通過させダストの除去に利用する
(d) The filter is configured to circulate between a portion where dust is filtered out from the suction airflow and a portion where dust adhering to the filter is removed by scraping or the like. At the same time, in the dust removal section, at least a portion of the flow after the fan is passed through the filter in a direction opposite to that during suction, and used for removing dust.

(e)  吸気日付近に超音波発振源を設け、空気の超
音波振動により、被掃除物からダストを遊離する。
(e) An ultrasonic oscillation source is provided near the intake day, and the ultrasonic vibration of the air liberates dust from the object to be cleaned.

この他の発明によれば床用吸気口、ダストフィルタ、フ
ァン、ファン駆動器が主体に収納され、その主体に床面
を回動およびまたは滑動する主体重量支持具が設けられ
た床面用掃除機において、更に非床面掃除を可能とする
ため、次の構造の少なくとも一つを有する。
According to another aspect of the present invention, there is provided a floor cleaner in which a floor inlet, a dust filter, a fan, and a fan driver are housed in a main body, and the main body is provided with a main body weight support that rotates and/or slides on the floor surface. In order to further enable non-floor cleaning, the machine has at least one of the following structures.

(a)  ファンの吸気側に連結するように非床面掃除
用可撓気管を取付け、取外し可能なように接続するため
の結合口が主体に設けた構造. (b)  主体にそのファンの吸気側と連結された非床
面用可撓気管が取付けられ、その可廃気管を保持する保
持具が主体に設けた構造. (c)  小型(ハンディ)のコードレス掃除機が主体
に着脱自在に取付けた構造. この他の発明によれば床面用で、人間が立位で、手によ
り主体を床面上で移動させるための操作体が主体に固定
的に、または取付角が自由に変動可能な如くに取付けら
れ、その操作体に非床面用吸気管の保持、又は、ハンデ
ィ・コードレス掃除機の保持部が設けられている. 更にこの他の発明によれば主体に床面上を動力走行する
駆動および操舵機構が設けられた掃除機において、少く
とも下記の何れか一つの電子式手動制御機構を有する. (a)  主体に設けた把持体または牽引索などの操作
体に、その握り部(以下手元部と呼ぶ)に、前後進、左
右進、方向変換・回転等の自走駆動と操舵を制御する電
子回路、および/または掃除機能を制御する電子回路を
設けた電子式手動制御機構。
(a) A structure in which a flexible trachea for cleaning non-floor surfaces is attached so as to be connected to the intake side of the fan, and a connection port is provided in the main body for removable connection. (b) A structure in which a flexible trachea for non-floor surfaces connected to the intake side of the fan is attached to the main body, and a holder for holding the disposable trachea is provided on the main body. (c) A structure in which a small (handy) cordless vacuum cleaner is detachably attached to the main body. According to another invention, the operating body is for use on a floor surface, and the operating body for moving the main body on the floor surface by hand when a person is standing is fixed to the main body or the mounting angle is freely variable. The operating body is equipped with a holder for a non-floor suction pipe or a holder for a handy cordless vacuum cleaner. Furthermore, according to another invention, a vacuum cleaner mainly equipped with a drive and steering mechanism for power running on a floor surface has at least one of the following electronic manual control mechanisms. (a) Control self-propelled drive and steering such as forward and backward movement, left and right movement, direction change/rotation, etc. on the grip part (hereinafter referred to as the hand part) of the operating body such as a grip or tow rope provided on the main body. Electronic circuitry and/or electronic manual control mechanism provided with electronic circuitry to control the cleaning function.

由)主体とは別に設け、人手により入力されて赤外線・
無線等による自走用駆動・操舵制御および/または掃除
機能制御のための信号を送信するコントローラと、主体
上に設け、そのコントローラからの信号を受信するリモ
ート制御信号受信部とよりなる手動制御機構。
) It is set up separately from the main body, and is input manually and infrared rays.
A manual control mechanism consisting of a controller that transmits signals for self-propelled drive/steering control and/or cleaning function control by wireless, etc., and a remote control signal receiving section provided on the main body and receiving signals from the controller. .

(c)  受信部のセンサーが机・椅子等で妨害されな
いように主体に対し十分な高さで設置された機構。
(c) A mechanism installed at a sufficient height relative to the subject so that the sensor in the receiving section is not obstructed by desks, chairs, etc.

先きの発明の床面用で主体が移動自在とされ、ダストの
吸取りを容易としかつコードレスとしたものに、軌力走
行機構を設けるとともに、走行駆動・操舵や掃除機機能
の制御回路を設け、更にコンピュータを内蔵し、予め人
間が手動により制御し特定領域を掃除し、その時の各制
御回路の制御シーケンスや必要に応じて位置センサ出力
を、時間、および/または走行距離の函数として記憶し
た学習プログラムを人間の始動によって実行し、最初の
掃除行動を自動的に繰り返すように構成されている. 掃除実行中に学習したプログラムにない障害物との接触
(センサ、又はモータ電流より)により、その時点で停
止すると共に走行及び/又は帰除機能を中断し、音・光
等によりアラームを発生する.障害物を除去後、再スタ
ート・スイッチを作動することにより、自動走行・掃除
の実行を再開する.前記コードレス床面掃除機に、更に
動力走行機能を付加するとともに、イメージセンサや超
音波レーダ等による外囲情況認識センサを設け、コンピ
ュータの判断機能により少なくとも次の何れか一つの機
能を有せしめる. (萄 基本的な自動走行プログラム実行に当たり、走路
上の障害物を認識して回避および/またはロボットアー
ムや徘除バリャ等により排除する機能.(ロ)床面の情
況(平滑面/たたみ/しゅうたん等を認識し、吸込口の
条件を変化する機能.(c)  oボットアームにより
非床面可撓気管端に設けられた非床画用吸込口を用い、
センサで壁面、棚面、設置物体表面等の情況をL2識し
て掃除を行う機能. 「実施例」 第1図はこの発明を床面用掃除機に適用した実施例を示
し、第l5図と対応する部分に同一符号を付けてある.
主体11内にはファン13、モータl4、ダストフィル
タ1Bが設けられ、土体1lは車輪12により床面上を
移動自在とされている.この例では床面用であるため、
主体1lの底面の前方部に床面用吸気口17が半円筒状
に開口され、その中心部が吸込気管l6でフィルタl8
の吸込側に連結されている.吸気口l7の外周端部は床
面と適当な圧力で接触する.モータl4と主体11の後
端に設けられた排気口15との間のファン後流のi1N
!Rに還流気管21の一端が連結され、還流気管2lは
前方に延長され、その他端は、吸気口l7の開口部に形
成されたノズル22に連結される.排気口15に分岐調
整翼23が設けられ、分岐調整翼23を調整してJノF
気量と還流との比を調整し、還流量は98%以下とされ
る。つまり吸気口l7からの吸込景が、ノズル22から
の噴出量より多くされる。
The earlier invention was designed for use on floor surfaces and had a movable main body, which made it easy to absorb dust and was cordless.It was equipped with a track running mechanism and a control circuit for running drive, steering, and vacuum cleaner functions. , furthermore, it has a built-in computer and is manually controlled by a human in advance to clean a specific area, and the control sequence of each control circuit at that time and the position sensor output as necessary are stored as a function of time and/or travel distance. The learning program is executed by a human trigger and is configured to automatically repeat the initial cleaning behavior. If it comes into contact with an obstacle that is not in the learned program during cleaning (from the sensor or motor current), it will stop at that point, interrupt the running and/or homing function, and generate an alarm with sound, light, etc. .. After removing the obstacle, operate the restart switch to resume automatic driving and cleaning. The above-mentioned cordless floor cleaner is further equipped with a power running function, is equipped with an ambient situation recognition sensor using an image sensor, an ultrasonic radar, etc., and has at least one of the following functions using a computer judgment function. (营) A function that recognizes obstacles on the track and avoids them and/or eliminates them using a robot arm, wandering barrier, etc. when executing a basic automatic driving program. A function that recognizes sputum, etc. and changes the conditions of the suction port. (c) Using the non-floor drawing suction port provided at the end of the non-floor flexible trachea by the o-bot arm,
A function that uses sensors to recognize the situation on walls, shelves, surfaces of installed objects, etc. and performs cleaning. ``Embodiment'' FIG. 1 shows an embodiment in which the present invention is applied to a floor cleaner, and parts corresponding to those in FIG. 15 are given the same reference numerals.
A fan 13, a motor 14, and a dust filter 1B are provided within the main body 11, and the earth body 1l is movable on the floor by wheels 12. In this example, it is for the floor, so
A floor air intake port 17 is opened in the front part of the bottom surface of the main body 1l in a semi-cylindrical shape, and the center thereof is an intake pipe l6 and a filter l8.
It is connected to the suction side of the The outer peripheral end of the intake port l7 contacts the floor surface with appropriate pressure. i1N of the fan downstream between the motor l4 and the exhaust port 15 provided at the rear end of the main body 11
! One end of the reflux trachea 21 is connected to R, the reflux trachea 2l is extended forward, and the other end is connected to a nozzle 22 formed at the opening of the intake port 17. A branch adjustment blade 23 is provided at the exhaust port 15, and the branch adjustment blade 23 is adjusted to
The ratio of air volume to reflux is adjusted, and the reflux amount is set to 98% or less. In other words, the amount of suction from the intake port l7 is made larger than the amount of ejection from the nozzle 22.

ファン後流の一部は還流気管2lを通ってノズル22か
ら高速噴気(ジェット気流)として噴出し、これを?m
ti除体に当てることによりダストを被掃除体から遊離
させる。一度遊離して気流中に入ったダストは吸気口l
7より容易に吸込まれてフィルタ18に導びかれる. 従来の掃除機では、電力はファンモータI4に与えられ
、更にファンl3を経由して気流にエネルギーとして与
えられる.気流エネルギーは、吸込口l7で被掃除物か
らダストをil離するのに消費され、ついで、吸込気管
16中を通過しつつダストを搬送するのに消費される.
後者は前者に比して少ない.更にフィルタ18の細孔を
通過したり、フィルタ面に濾されて集積しているダスト
中を通過するために大量のエネルギーを消費する.その
後ファン13を通過しエネルギーを与えられるとともに
、モータ14の冷却を行い、後部排気口l5から大量の
高速気流として放出される.即ち電力の大部分は、排気
の運動エネルギーとして棄てさられている.この発明で
はこの廃棄エネルギーを再利用して、吸気口l7付近で
被掃除物からダストを遊離するのに利用している。
A part of the fan wake passes through the recirculation trachea 2l and is ejected from the nozzle 22 as a high-speed jet stream. m
Dust is released from the object to be cleaned by applying it to the Ti removal body. Once the dust is released and enters the airflow, it is removed from the intake port l.
7 is more easily sucked in and guided to the filter 18. In conventional vacuum cleaners, power is applied to the fan motor I4, which in turn is applied as energy to the airflow via the fan l3. Airflow energy is expended in moving the dust away from the object to be cleaned at the suction port 17 and then in transporting the dust through the suction trachea 16.
The latter is less common than the former. Furthermore, a large amount of energy is consumed to pass through the pores of the filter 18 and to pass through the dust filtered and accumulated on the filter surface. After that, it passes through the fan 13 and is given energy, cools the motor 14, and is discharged as a large amount of high-speed airflow from the rear exhaust port 15. In other words, most of the electric power is wasted as kinetic energy in the exhaust gas. In the present invention, this waste energy is reused and used to release dust from the object to be cleaned near the intake port l7.

モータl4は一般に強力小型のもので、ファン後流によ
り鉄損・w4損による発熱を冷却するように設計される
.このため、モータ通過後の後流は高い温度となる.こ
れがそのままノズル22に還流されると、つまり分岐調
整器23が排出量をOに設定された場合は、ファン後流
は何度も循環加熱されて全系が異常に温度上昇(最近、
収塵中のダニの殺虫にこの温度上昇を利用するものがあ
る)し、循環気流密度が低下しダスト遊離能力が低下す
る.しかしこの発明では分岐調整器23を調整してノズ
ル22からの噴出量が吸気口17からの吸込量より小、
例えば98%以下とする.従って、少くとも2%以上の
冷い新鮮な空気が吸込混入し、噴出気流の温度を下げる
ことができる.これには最適な比率が存在する。またこ
の2%以上の吸込空気は、吸気口17において噴気によ
りダストが吸気口l7以外に飛び出すことを防止する効
果を有する. 又還流気管21として冷却フィン24を有する金属管の
如き熱交換機能を有するものとし、その冷却フィン24
を外気に露出させることでファン後流の還流されるもの
の温度を冷却することができる.あるいは第1図に示す
ように還疏気管2l内に、水で濡れた広い表面を有する
繊維や紙などの含水フィルム25を気流と平行に配し還
流が気化熱で冷却されるようにする.含水フィルム25
は還流気管2lの下のタンク26内の水が毛細管現象で
含水フィルム25に吸上げられるようにする.この含水
フィルム25による冷却は還流に湿度を与え、後述する
被掃除体の静電気除去にも有用であり、又噴気中の氷分
子の添加は気体密度を上昇し、ダスト遊M能力も改善す
る。
The motor l4 is generally a powerful and small one, and is designed to cool the heat generated by iron loss and w4 loss using the fan flow. Therefore, the temperature of the wake after passing through the motor is high. If this is returned to the nozzle 22 as it is, that is, if the branch regulator 23 sets the discharge amount to
Some devices use this temperature rise to kill mites in dust collection), and the density of circulating airflow decreases, reducing the ability to release dust. However, in this invention, the branch regulator 23 is adjusted so that the amount of ejection from the nozzle 22 is smaller than the amount of suction from the intake port 17.
For example, set it to 98% or less. Therefore, at least 2% or more of cold fresh air is sucked in and the temperature of the ejected air can be lowered. There is an optimal ratio for this. In addition, this intake air of 2% or more has the effect of preventing dust from flying out of the intake port 17 due to the fumes at the intake port 17. In addition, the reflux trachea 21 has a heat exchange function such as a metal tube having cooling fins 24, and the cooling fins 24
By exposing the fan to the outside air, it is possible to cool down the temperature of the refluxed material in the wake of the fan. Alternatively, as shown in FIG. 1, a water-containing film 25 such as fiber or paper having a wide surface wetted with water is placed in the reflux tube 2l parallel to the air flow so that the reflux is cooled by the heat of vaporization. Water-containing film 25
This allows the water in the tank 26 below the reflux trachea 2l to be drawn up into the water-containing film 25 by capillary action. This cooling by the water-containing film 25 imparts humidity to the reflux, which is also useful for removing static electricity from the object to be cleaned, which will be described later.Addition of ice molecules in the fumes increases the gas density and improves the dust transfer M ability.

ファン後流のエネルギーを、風車や翼の原理で機械的な
叩打、振動等にかえ、被掃除物を叩いたり、振動させた
りすることによりダストを遊離させることもできる.そ
の叩打を利用する場合は風力で叩打片を上下に振動すれ
ばよく、例えば軸流や軸直交流等の風車の回転をカムや
クランク等で上下動に変換すればよい。又流体素子の原
理で発振させることもできる.第2図は「からざを(連
tll)J方式を用いた例である.吸気口l2と還流気
管21の出口とを並べ還流気管21の出口に円筒状回転
体28が回転自在に保持され、円筒状回転体28の周面
には図示の如く例えば5ケ所に切欠部が形威され、その
各切欠部には回転体28の軸と平行な軸29の回りに自
由に回転する弁翼31が設けられている.弁H3lは還
流により回転体28の外へ引き起され、回転体2日とそ
の外側の還流気管21との間に形成される空間を弁翼3
lがふさぐようになって還流で弁131が駆動され回転
体2日が回転し、床面に弁翼3lが衝突して床面を叩打
する.その叩打により弁翼31は回転体28の切欠部に
収納され、再び還流気管2l中の気流中に入る.回転体
28に設ける弁翼3lの数は自由に設計できる.図示例
では回転体28の1回転で弁翼3lは床面を5回叩打す
る.弁!iiE3Lの面積が大きいことと、弁5131
と床面との摩擦が小さなこと機械的変換段数が少ないこ
ととで後流背圧の上昇は少ない利点がある. ダストが静電気により被掃除物に吸着している場合にそ
の静電気を除くためにファン後流を還流する還流気管2
1の途中に例えば第3図に示す加湿室、第l図に示すイ
オン発生室32等の静電気除去剤添加室を設け、加湿や
イオン添加された噴気を吸気口17付近の11掃除物に
当てることによって静電気を除去し、ダストの気流やブ
ラシによる遊離を容易にするものである.イオン発生室
32は例えば放電′:4極間に還流を流し、放電させて
イオン化する. 気流エネルギーはフィルタl8の通過時、特に濾された
ダストがフィルタ表面に集積している場合、最大の損失
を発生する.掃除機の電力使用効率を上げるためには、
この集積したダストをなるべく早期に除去する必要があ
る.このために一例を第4図に示す如く、フィルタ18
は円筒状とされ、その軸心まわりに回転され、円筒状フ
ィルタl8の底面から吸込気管l6よりの気流をフィル
タl8内に導入し、フィルタ18を通して外周に放出さ
せるが、その外周に放出し、ダストを濾しフィルタ上に
ダストを集積する部分は回転中心に対しθ。の角度範囲
とし、残りの角度範囲θ,は例えばスクレーパ−33で
フィルタ18に集積したダストを掻き落とす部分とし、
フィルタ18はこのθ。,θ,の各部を順次交互に巡回
する.よってフィルタl8に集積したダストは早期に除
去される。フィルタ1日の下側にダスト貯溜室34が設
けられ、ダスト貯溜室34は必要によりその底部を外し
貯溜ダストを除くことができる。スクレーバ−33はフ
ィルタl8の内側に配され第4図Bに示す斯面を有し、
その下部でダスト貯溜室34に固定される。スクレーパ
−33は円筒状フィルタ18の回転に対して引きはがし
たダストを下方向に移動させる分力を発生する如くネジ
状にねじられている.スクレーパ−33の縁はフィルタ
l8にθ,の領域で接するように取り付けられる。図示
例では3枚のスクレーパ−33の縁とフィルタl8との
間隔は、フィルタ進行方向において順次狭くなっている
.また、θ。の領域ではフィルタ1日の内部が外部より
圧力が高く気流は内より外にフィルタ18を通過するが
、θ1の領域ではフィルタl8の内部より外部の圧力が
高くなり、気流が外より内に通過し、スクレーパ−33
のダストの掻き落とし時、掻き落としたダストが再びフ
ィルタl8上に戻ることを防止し、更に掻き落としても
残留したダストを外から内に向かう気流により除去する
.このために部材35でフィルタl8の(11部分の外
面を覆い、その内部にファン後流の一部を導入する. 図示例ではフィルタ18として開な材質のものとしたが
、金属や合成樹脂等のメッシュの上に紙フィルタ等を重
ねることにより柔な無端ベルト状のものとし、同樺な概
念で実現することができる.ベルトは巡回途中の通路を
何回も屈曲させることができ、広大なフィルタ而積を狭
い空間の内部に形成することができる. 省電力とするために、超音波を吸込口付近の被掃除物に
当てることもできる.単なる気流でダストを遊離させる
と、気流が定常時になるためにダストの遊離が不十分に
なる.このため、ファン後流の還流を噴気して用いると
、ファン後流が乱流であるため、被掃除物に付着したダ
ストをゆすぶる作用が働き、また、叩打、振動で被掃除
物をゆすぶったり、ブラシの毛でゆすぶったりするとダ
ストの遊離が増進される.しかし、これらでは、そのゆ
すぶりの周波数が低く、ダスト遊離には未だ不満足の場
合がある.人間の可聴周波領域の発振源を用いて空気圧
(音圧)振動を与えることも勿論有効であるが、人間に
は不快感を与える上に、充分な音圧の指向性が得にくく
、不要な方向への音圧の輻射が生じ効率も低下する.可
聴領域以上(15kHz以上)の超音波発振源を用いる
とするどい指向性とすることができ、集束等の可能な振
動源が得られる.更に周波数が高すぎると、発振源から
空気への輻射効率が劣化し、また伝達損失が生じるが、
掃除機に用いる場合は到達距離は50以下でよく、広い
周波数範囲での最適値の選択が可能になる. 第5図に超音波発振源を取り付けた吸込口17付近の構
造図を示す.超音波発振源としては電磁力を用いたもの
、電歪を用いたもの、磁歪を用いたもの等を使用するこ
とができる。図示例ではPVDF (ボリフッ化ビニリ
デン)の電歪効果を用いてある.半円筒状吸気口l7の
内周面にPVDF膜36が付けられている.第5図Aは
厚さ方同電歪を用いており、吸気口l7の内周面に貼り
つけられているが、第5図Bは横方向電歪を用いており
、吸気口17の内周面との間に空気層37が介在する.
何れも半円筒状で、その半円筒の軸中心f上に音圧が集
束し、その付近の被掃除物やダストを強力に振動させ、
ダストを遊離する.従来の掃除機が一つの吸込気管によ
り、先端の吸気口を交換することにより床面用、その他
壁面、棚、設置物、間隙部等の非床面用を全てカバーし
ていたが、少なくとも床面用は吸込口と主体とを直結す
ることにより吸込気管を不要とすることができる.一般
住宅での使用頻度からみても床面の掃除が大部分であり
、非床面の使用頻度は僅かである.したがって、この発
明では移動、自走に便利なように床面用吸込口は主体と
一体とし、別に非床面用吸込気管の取付け、取外し可能
な連結口を主体に設けるか、または非床面用吸込気管を
作り付けとして主体に接続しておくか等の手段で汎用性
をももたせる.床面用、非床面用の吸込気路は、切換使
用可能とするが、同時使用可としてもよい.後者では非
床面用は未使用時に吸気路を閉じておく必要がある. 非床面用吸込気管を主体に作り付けにし、かつ、その主
体への保持具を後述の手で入力により主体を移動する時
の把持具(操作体)と兼用させた時の例を第6図に示す
.剛性の非床面用吸込気管38が接続部39を介して主
体11に取付けられ、非床面用吸込気管38は主体l1
内で吸込気管L6と連結され、その連結部に切替え弁4
lが設けられ、外部の操作により切替え弁41を操作し
て、吸込気管16と38との何れかをフィルタ18側に
連通させることができる.非床面用吸込気管38の他端
は可撓性の吸込気管42に連結され、可撓性吸込気管4
2は変換可能な吸気口43に接続される.可撓性吸込気
管42の先端部は非床面用吸込気管38に設けられた箱
44内に収容される.非床面用吸込気管38は主体11
を操作する操作体をも兼ねており、その先端は把手部4
5とされ、また吸込気管38は矢印の方向に垂直より±
90’程度自由に角度を変えられ、フリース}ツプでそ
の角度に停止するようにすることが望ましい。
The energy from the wake of the fan can be converted into mechanical hitting or vibration using the principles of windmills or blades, and the dust can be released by hitting or vibrating the object to be cleaned. When using the beating, the striking piece may be vibrated up and down by wind power, and for example, the rotation of a windmill such as axial flow or cross-axis flow may be converted into vertical motion using a cam, a crank, or the like. It is also possible to oscillate using the principle of fluid elements. Figure 2 is an example of using the Karazawo (rentll) J method.The inlet port l2 and the outlet of the reflux trachea 21 are aligned, and the cylindrical rotating body 28 is rotatably held at the outlet of the reflux trachea 21. As shown in the figure, the circumferential surface of the cylindrical rotating body 28 is formed with notches at five locations, for example, and each of the notches has a valve blade that freely rotates around an axis 29 parallel to the axis of the rotating body 28. 31 is provided.The valve H3l is pulled out of the rotating body 28 by the reflux, and the space formed between the rotating body 2 and the reflux trachea 21 outside the valve H3l is provided with a valve blade 3.
1 becomes blocked, the valve 131 is driven by the reflux, the rotor 2 rotates, and the valve blade 3l collides with the floor, striking the floor. By this beating, the valve blade 31 is accommodated in the notch of the rotating body 28, and enters the airflow in the recirculation trachea 2l again. The number of valve blades 3l provided on the rotating body 28 can be freely designed. In the illustrated example, the valve blade 3l hits the floor five times in one rotation of the rotating body 28. valve! ii The large area of E3L and the valve 5131
This has the advantage that the rise in wake back pressure is small due to the small friction with the floor surface and the small number of mechanical conversion stages. Reflux trachea 2 that circulates the backflow of the fan to remove static electricity when dust is attracted to the object to be cleaned due to static electricity
For example, a static electricity remover addition chamber such as the humidification chamber shown in FIG. 3 or the ion generation chamber 32 shown in FIG. This removes static electricity and makes it easier for dust to be released by air currents or brushes. In the ion generation chamber 32, for example, discharge ': reflux is caused to flow between four electrodes, and the ionization is caused by discharge. The greatest loss of airflow energy occurs when passing through filter 18, especially if filtered dust accumulates on the filter surface. To increase the power usage efficiency of your vacuum cleaner,
It is necessary to remove this accumulated dust as early as possible. For this purpose, as shown in FIG.
has a cylindrical shape and is rotated around its axis, and the airflow from the suction trachea l6 is introduced into the filter l8 from the bottom surface of the cylindrical filter l8, and is discharged to the outer periphery through the filter 18. The part that filters dust and collects dust on the filter is θ with respect to the center of rotation. The remaining angle range θ is the part where the dust accumulated on the filter 18 is scraped off by the scraper 33, for example.
The filter 18 has this θ. , θ, sequentially and alternately. Therefore, the dust accumulated on the filter l8 is quickly removed. A dust storage chamber 34 is provided below the filter 1, and the bottom of the dust storage chamber 34 can be removed if necessary to remove the stored dust. The scraper 33 is arranged inside the filter 18 and has the surface shown in FIG. 4B,
It is fixed to the dust storage chamber 34 at its lower part. The scraper 33 is twisted in a threaded manner so as to generate a force that moves the scraped dust downward in response to the rotation of the cylindrical filter 18. The edge of the scraper 33 is attached so as to be in contact with the filter l8 in the area θ. In the illustrated example, the distances between the edges of the three scrapers 33 and the filter l8 are gradually narrowed in the filter advancing direction. Also, θ. In the area of θ1, the pressure inside the filter 18 is higher than the outside, and the airflow passes through the filter 18 from the inside to the outside. However, in the area of θ1, the pressure outside the filter 18 is higher than the inside, and the airflow passes inward from the outside. Scraper 33
When the dust is scraped off, the scraped dust is prevented from returning to the filter 18, and the dust that remains even after scraping is removed by the airflow directed from the outside to the inside. For this purpose, the member 35 covers the outer surface of the (11) portion of the filter 18, and a part of the fan flow is introduced into the member 35. In the illustrated example, the filter 18 is made of an open material, but metal, synthetic resin, etc. By layering paper filters, etc. on top of the mesh, a flexible endless belt can be realized using the same concept.The belt can bend the path many times while traveling, A filter volume can be formed inside a narrow space. To save power, ultrasonic waves can also be applied to the object to be cleaned near the suction port. If the dust is released with a simple airflow, the airflow becomes steady. For this reason, if the return flow from the fan's wake is used as a jet, the turbulent flow of the fan's wake will have an effect of shaking the dust attached to the object to be cleaned. In addition, shaking the object to be cleaned by hitting or vibrating it, or shaking it with the bristles of a brush can increase the release of dust.However, these methods have a low frequency of shaking, and are still effective in releasing dust. It may be unsatisfactory.It is of course effective to apply air pressure (sound pressure) vibrations using an oscillation source in the human audio frequency range, but it causes discomfort to humans and requires sufficient directivity of sound pressure. This makes it difficult to obtain sound pressure, which causes sound pressure to be radiated in unnecessary directions, reducing efficiency.Using an ultrasonic oscillation source in the audible range or higher (15kHz or higher) can provide sharp directivity, and vibrations that can be focused, etc. Furthermore, if the frequency is too high, the radiation efficiency from the oscillation source to the air will deteriorate and transmission loss will occur.
When used in a vacuum cleaner, the range may be less than 50, making it possible to select the optimum value over a wide frequency range. Figure 5 shows a structural diagram of the vicinity of the suction port 17 where the ultrasonic oscillation source is attached. As the ultrasonic oscillation source, one using electromagnetic force, one using electrostriction, one using magnetostriction, etc. can be used. The illustrated example uses the electrostrictive effect of PVDF (polyvinylidene fluoride). A PVDF membrane 36 is attached to the inner peripheral surface of the semi-cylindrical intake port l7. 5A uses electrostriction in the thickness direction and is pasted on the inner circumferential surface of the intake port 17, while FIG. An air layer 37 is interposed between the outer surface and the surrounding surface.
Both have a semi-cylindrical shape, and the sound pressure is focused on the axial center f of the semi-cylindrical part, strongly vibrating the objects to be cleaned and dust in the vicinity.
Releases dust. Conventional vacuum cleaners have a single suction pipe, and by replacing the air intake port at the tip, they cover all surfaces, including floor surfaces and non-floor surfaces such as walls, shelves, installations, and gaps. For surface use, a suction pipe can be eliminated by directly connecting the suction port to the main body. Judging from the frequency of use in general homes, most of the cleaning is done on floors, and the frequency of use on non-floor surfaces is small. Therefore, in this invention, for convenience of movement and self-propulsion, the floor suction port is integrated with the main body, and the main body is provided with a connection port that allows the suction trachea for non-floor surfaces to be attached and removed separately. Versatility can be provided by means such as having a built-in suction trachea connected to the main body. The suction air passages for floor and non-floor surfaces can be used selectively, but they may also be used simultaneously. In the latter case, for non-floor use, the intake passage must be closed when not in use. Figure 6 shows an example in which a suction trachea for non-floor surfaces is built into the main body, and the holding device for the main body is also used as a gripping tool (operating body) for moving the main body by manual input, which will be described later. It is shown in A rigid non-floor suction trachea 38 is attached to the main body 11 via a connection 39, and the non-floor suction trachea 38 is connected to the main body l1.
It is connected to the suction trachea L6 inside, and a switching valve 4 is installed at the connection part.
1 is provided, and by operating the switching valve 41 by an external operation, either the suction trachea 16 or 38 can be made to communicate with the filter 18 side. The other end of the non-floor suction trachea 38 is connected to a flexible suction trachea 42 .
2 is connected to a convertible intake port 43. The distal end of the flexible suction trachea 42 is housed in a box 44 provided in the non-floor suction trachea 38. The suction trachea 38 for non-floor surfaces is the main body 11
It also serves as an operating body for operating the
5, and the suction trachea 38 is oriented ± from perpendicular to the direction of the arrow.
It is desirable to be able to freely change the angle by about 90' and to be able to stop at that angle with a fleece snap.

床面用掃除機において棚、壁、天井等の非床面の掃除に
上述の如く土体1lに非床面用吸込気管38.42を接
続して用いることができる.しかし吸込気管は取扱上動
作が拘束されたり、他物に当ったりして不便な場合があ
る.このため第6図に示すように汎用のハンディ(小型
)な電池内蔵のコードレス掃除器46を主体l1の操作
体47(又は主体11)の箱48に収納、又は着脱容易
に取付けておくことにより、床面移動掃除中、任意の場
合にコードレス掃除器46で、吸込気管に煩わされるこ
となく非床面の掃除を行うことができる.操作体47に
充電用接栓49を設けておき、小型コードレス掃除器4
6をWi4Bに収容した時に掃除器46の充電端子を接
栓49に接続する構造とすると、使用上便利である.主
体11が交流電源で動作する場合は第7図に示すように
充電器51を主体l1にもたせることができるし、主体
11がコードレスの場合は、第7図Bに示すように主体
l1を外部や保管台や格納箱に設けられた充電器52に
接続した場合、ハンディ・コードレス掃除器46にも充
電電圧が並列に分配されるようにすることができる.又
主体2の蓄電池53aからハンディ・コードレス掃除器
46の蓄電池を充電するようにすることもできる.此等
を切替えにより適宜組合せ利用することができる.又主
体l1に対する充電期間とハンディ・コードレス掃除8
46に対する充電期間とが重ならないように充電を時間
的にずらすことにより充電器の最大電流を低くすること
ができる。充電は、主体IIが保管台や格納箱に設置/
収納された時に行われ、再使用したい時には既に充電が
完了していることが望ましい.主体11を設置や収納時
に自動的な(又は手動的な)接栓接続や電磁結合で給電
され主体l1及びハンディ・コードレス掃除器46の双
方の充電完了で自動的に充電回路が断となるようにする
と充電忘れを防止できる。
A floor vacuum cleaner can be used to clean non-floor surfaces such as shelves, walls, ceilings, etc. by connecting the non-floor suction pipes 38 and 42 to the soil body 1l as described above. However, the suction trachea may be inconvenient in handling as it may be restricted in movement or may hit other objects. For this purpose, as shown in FIG. 6, a general-purpose handy (small) cordless vacuum cleaner 46 with a built-in battery is housed in the box 48 of the operating body 47 (or the main body 11) of the main body l1, or is easily attached and detached. During floor movable cleaning, non-floor surfaces can be cleaned using the cordless vacuum cleaner 46 at any time without being bothered by the suction trachea. A charging plug 49 is provided on the operating body 47, and the small cordless vacuum cleaner 4
If the charging terminal of the vacuum cleaner 46 is connected to the plug 49 when the vacuum cleaner 46 is housed in the Wi4B, it is convenient for use. When the main body 11 operates on an AC power source, the charger 51 can be placed on the main body l1 as shown in FIG. When connected to a charger 52 provided in a storage stand or storage box, the charging voltage can be distributed in parallel to the handy cordless vacuum cleaner 46 as well. Moreover, the storage battery of the handy cordless vacuum cleaner 46 can be charged from the storage battery 53a of the main body 2. These can be used in combination as appropriate by switching. Also, charging period and handy cordless cleaning for main body l1 8
By staggering the charging in time so that the charging period for 46 does not overlap, the maximum current of the charger can be lowered. For charging, the main body II is installed on a storage stand or storage box.
This is done when the battery is stored, and it is desirable that charging is already completed when you want to use it again. When the main body 11 is installed or stored, power is supplied by automatic (or manual) plug connection or electromagnetic coupling, and the charging circuit is automatically disconnected when both the main body 11 and the handy cordless vacuum cleaner 46 are fully charged. This will prevent you from forgetting to charge the battery.

電源コードl9による商用電源の利用に代え、二次電池
を主体11に収納し、ファンモー夕l4を駆動すること
により主体11をコードレスとし、移動、動力走行に便
とする.休止期間中に充電が行われる.この場合前述し
た各種のダスト分離手段と、フィルタのダスト除去手段
とを用いることにより電力利用効率を上昇し、所電電力
が低減され、主体内の二次電池が小型・軽量となり、は
しめて家庭等汎用コードレス掃除機が実現される.手動
による掃除機の移動をより容易とするために、主体11
に動力走行および操舵機構を設け、この動力走行機能お
よび/または掃除機能を手動で電子的に制御可能とする
ことにより、人間は制御部(スインチや可変抵抗器等)
の操作のみで、ほとんど掃除のための労力を免れること
が可能となる。動力源としては電気力を用い、自動車、
運搬車等で用いられる技術を応用することで容易に実現
できる。コードの有無を問わない.単純化した場合、走
行、停止と、前進、後進と、左右回転等の操舵でよいが
、局所的移動を要する場合は、左右進用の別の駆動輪で
、前後進と別に左右進を可能とすると多大の利便がある
.掃除a能としては単純化した場合、ファンの作動/停
止や、平屑面/l.;ゆうたん面での吸気口切替や、床
面/非床面の切替等が必要である。
Instead of using commercial power through the power cord 19, a secondary battery is housed in the main body 11 and the fan motor 14 is driven to make the main body 11 cordless, making it convenient for movement and power running. Charging takes place during the idle period. In this case, by using the various dust separation means mentioned above and the dust removal means of the filter, the power usage efficiency is increased, the required electric power is reduced, the secondary battery in the main body is made smaller and lighter, and finally the household A general-purpose cordless vacuum cleaner will be realized. In order to make it easier to move the vacuum cleaner manually, the main body 11
By providing a power travel and steering mechanism to the vehicle, and making it possible to manually and electronically control the power travel function and/or cleaning function, humans can control the control unit (sinch, variable resistor, etc.).
By just doing this, you can save most of the effort for cleaning. Electric power is used as a power source, and automobiles,
This can be easily achieved by applying technology used in transportation vehicles, etc. It does not matter whether there is a code or not. In a simplified case, steering such as running, stopping, moving forward, backward, and turning left and right is sufficient, but if local movement is required, separate drive wheels for left and right movement can be used to move left and right separately from forward and backward movement. There is great convenience in doing so. Simplified cleaning functions include fan activation/stopping, flat dust surface/l. ;It is necessary to switch the intake port on the floor surface and switch between floor surface and non-floor surface.

これらの電子制1nはなるべく一ケ所にまとめた制御部
により行われることが望ましい.第9図は第6図の把手
部45にその電子制御部を設けた例で、把手部45は、
支持棒53(剛性吸込気管を兼用したちの38、兼用し
ないもの47)の先端円筒に滑動する如く嵌合され、支
持棒53に対して主体l1の方向に押したり、逆に引い
たり、左右にねしり回転できるようになっていて、支持
棒53の先端とはスプリングにより押引、左右ねじりと
もに中立位置に保持される.例えば第10図.第11図
に示すように支持棒53が把手部45内に挿入され、把
手部45が支持捧53に軸方向に移動自在かつ回動自在
に保持され、コイルばね5556で軸方向及び回動方向
においてそれぞれ中立点に保持される.t!!手部45
内で支持棒53に軸方向に配列されて縦向きのマイクロ
スインチ5758が取付けられ、これらマイクロスイッ
チ57,58の操作子ローラ57a,58a間に駆動突
部59が把手部45の内面より突出している。マイクロ
スイッチ57.58の間に横向きのマイクロスイッチ6
1.62が逆向きに支持棒53に取付けられ、これらマ
イクロスイッチ61.62の操作子ローラ61a,62
aの間に第11図に示すように駆動突部59が位置して
いる.第12図に示すように握り部54内にマイクロス
イッチ63が収容され、その操作子ローラ63aが握り
部54から突出し、握り部54の全体にゴムカバー64
がかぶされている.人間が把手部45の握り部5lを握
って押すと、中立位置より把手部45が主体方向に移動
し、ばね56が縮み、ばね55が伸びマイクロスイッチ
57の操作子ローラ57aが馴動突部59で駆動され、
このマイクロスイッチ5コが作動し、前進のモータが作
動する.逆に握り剖54を手前に引くと駆動突部59で
マイクロスイッチ5Bが作動し後進する。同様に握り部
54で把手部45を右に回動(ねじる)すると駆動突剖
59でマイクロスイッチ61が作動し、右進し、把手部
45を左に回動すると駆動突部59でマイクロスイッチ
62が作動し左進する握り部54をそのゴム力バー64
の外から握りしめることによってマイクロスイッチ63
が接となり、ファンモータl4が作動する.その握りを
ゆるめるとか手を放すことによってマイクロスイッチ6
3が断となり、ファンモータl4が停止する.このよう
に主要mlを片手で手元部で制御できるようにすると、
使用上多大の利便が得られる.主体l1に幻する牽引索
の握り部に同様の押しボタンスイッチ群やジョイスティ
ック等による制御部を設けてもよく、また別に主体と操
作部を信号線群を収納したコードで接続してもよい.ジ
ョイスティックのように可変抵抗器で制御すれば速度の
制御も可能であり、また任意の角度の方向に向きをかえ
ることもできる. 赤外線や無線、超音波等によるコードレス信号伝達手段
を用いたリモートコントロールは掃除ロボット等に用い
られた例があるがむしろ非ロボットの動力走行掃除機に
有用である.手元のコントローラ部のボタンやジョイス
ティック等の操作で主体の走行や掃除動作を制御する. しかし、部屋の中等では、机や椅子等が送・受信路を遮
断すると動作不安定となる.第13図に示す如くリモー
トコントロールユニット65からの信号を受信する土体
11のアンテナ6Gを床上高い位置とすることで通信路
を確保できる,主体11にマイクロコンピュータ(以下
マイコンと呼ぶ)等を内蔵し、少なくとも前記制御部(
マイクロスインチやジョイスティック等)の開閉や制御
情況必要に応じて超音波の反射波等の位置センサ出力等
を時間または走行距離lの函数として記憶可能とし、予
め人間が特定の掃除領域について手動制御で掃除、つま
り最初に場所と方向とを主体に設定し、その後主体の移
動を行い、その時の制御シーケンス掃除を行い、主体の
方向を変更することはその時の時間(又は走jテ距離)
と方向とをマイコンに学習記憶させる.次回からは初回
の出発位置に初期姿勢に主体をセットして始動ボタンを
押すか、または予めマイコンにプログラムされた時間の
到来ごとに、初回に学習した制9′nシーケンスに従っ
て掃除行動を繰り返す。初期セット姿勢の差、走行速度
の差等で長時間(または長走行距離)の間に位置誤差が
集積することがあり、このために位置センサや接触セン
サ、近接センサ等により掃除領域内での位置誤差の修正
を行ってもよい.例えば学習プログラムの内容よりも、
早く障害物にぶつかるとその障害物に対する学習プログ
ラム上の距離に主体の走行距離計を設定修正する. 従来の掃除ロボットは走行距離センサと走行方向センサ
とで主体の位置を計算し、その位置を記憶(学習)する
方式であり、複雑な計算プログラムを必要とし、精度も
よくない欠点があった.この発明では走行及び掃除のた
めの各スイッチの開・閉や、可変抵抗器の角度等を操作
の度毎に、走行距j!I!(又は時間)の函数として記
憶するからプログラムは簡単である。要所々々で超音波
パルスを送信し、その反射信号を学習時と比較し、位置
誤差を計算、修正することで、累積する誤差を除くこと
ができる.壁や定置物体とは、近接又は接触センサで確
認してプログラム上のシーケンスに距離カウンタを修正
することができる.このようにして電力効率を上げ床面
用掃除機のコードレス化が実用的に可能となると床掃除
は大幅に自動化、省力化ができる.非床面掃除は床上走
行のみ自動化し、非床面掃除は手動化し、人間が主体と
ともに伴走する等の半自動化を行うことができる. 一回目以降、椅子移動や、小物物品の放置等により、初
回のシーケンス走行途中走行障害物に衝突することがあ
り得る.この時は、予め主体に接触センサを設けておく
か、走行の中断や方向の変化や、モータ電流変化等から
接触を検出し、直ちに制御プログラム・シーケンスを止
め、走行駆動や掃除m能を停止し、音又は光等でアラー
ムを発し、人間の補助を求めるようにする.人間がその
障害物を除去し、掃除機の姿勢を正してから再スタート
ボタンを押すと、制御プログラムシーケンスが継続した
動作を開始し、走行及び掃除機能が再開される。更に特
定時間経過しても人間の補助がなく障害が除かれない時
は、全機能を停止するようにすると、電池の消耗を防止
することができる。
It is desirable that these electronic controls 1n be performed by a control unit that is located in one place. FIG. 9 is an example in which the electronic control unit is provided in the handle portion 45 of FIG. 6, and the handle portion 45 is
It is slidably fitted into the cylinder at the end of the support rod 53 (38 which doubles as a rigid suction trachea, 47 which does not double as a rigid suction trachea), and can be pushed against the support rod 53 in the direction of the main body l1, pulled in the opposite direction, and moved left and right. The tip of the support rod 53 is held in a neutral position both by pushing and pulling and by twisting from side to side by a spring. For example, Figure 10. As shown in FIG. 11, the support rod 53 is inserted into the handle part 45, and the handle part 45 is held by the support rod 53 so as to be movable and rotatable in the axial direction, and is supported by a coil spring 5556 in the axial and rotational directions. are held at their neutral points. T! ! Hand part 45
Vertical micro switches 5758 are arranged in the axial direction on the support rod 53, and a driving protrusion 59 protrudes from the inner surface of the handle 45 between the operator rollers 57a and 58a of these micro switches 57 and 58. ing. Horizontal microswitch 6 between microswitches 57 and 58
1.62 is attached to the support rod 53 in the opposite direction, and the operator rollers 61a, 62 of these microswitches 61.62
As shown in FIG. 11, a driving protrusion 59 is located between a. As shown in FIG. 12, a microswitch 63 is housed in the grip portion 54, its operator roller 63a protrudes from the grip portion 54, and a rubber cover 64 is provided over the entire grip portion 54.
It is covered. When a person grasps and presses the grip part 5l of the handle part 45, the handle part 45 moves from the neutral position toward the main body, the spring 56 contracts, the spring 55 stretches, and the operator roller 57a of the microswitch 57 moves to the adjustment protrusion. Driven by 59,
These five microswitches operate, and the forward motor operates. Conversely, when the grip 54 is pulled toward the user, the microswitch 5B is actuated by the drive protrusion 59, and the vehicle moves backward. Similarly, when the handle part 45 is rotated to the right using the grip part 54, the microswitch 61 is activated by the drive protrusion 59, and when the handle part 45 is rotated to the left, the microswitch 61 is activated by the drive protrusion 59. 62 is activated and the grip portion 54 moves to the left by its rubber force bar 64.
Microswitch 63 by squeezing it from the outside.
is connected, and fan motor l4 operates. By loosening your grip or releasing your hand, the micro switch 6
3 is disconnected, and fan motor l4 stops. In this way, if you can control the main ml with one hand,
It offers great convenience in use. A control section using a similar group of push button switches, a joystick, etc. may be provided in the grip of the tow rope that appears on the main body l1, or the main body and the operating section may be separately connected by a cord containing a group of signal lines. If you control it with a variable resistor like a joystick, you can control the speed, and you can also change the direction at any angle. Remote control using cordless signal transmission means such as infrared rays, radio waves, and ultrasonic waves has been used for cleaning robots, etc., but it is more useful for non-robot powered vacuum cleaners. The robot's running and cleaning operations are controlled by operating the buttons and joystick on the controller at hand. However, in a room, etc., if a desk, chair, etc. blocks the transmission/reception path, operation becomes unstable. As shown in FIG. 13, the main body 11 has a built-in microcomputer (hereinafter referred to as microcomputer), etc., which can secure a communication path by placing the antenna 6G of the earth body 11 at a high position above the floor, which receives the signal from the remote control unit 65. and at least the control unit (
Position sensor outputs such as reflected waves of ultrasonic waves can be stored as a function of time or travel distance l as needed, allowing humans to manually control specific areas to be cleaned in advance. To clean, first set the location and direction to the subject, then move the subject, perform the control sequence cleaning at that time, and change the direction of the subject at that time (or distance traveled)
The microcomputer learns and memorizes the direction and direction. From the next time onwards, the cleaning action will be repeated according to the sequence 9'n learned the first time, either by setting the main body in the initial posture at the initial starting position and pressing the start button, or each time a pre-programmed time in the microcomputer arrives. Position errors may accumulate over a long period of time (or over long distances) due to differences in initial set postures, differences in running speed, etc., and for this reason, position sensors, contact sensors, proximity sensors, etc. You may also correct the position error. For example, rather than the content of the learning program,
If you hit an obstacle early, the subject's odometer is set and corrected to the distance specified in the learning program to that obstacle. Conventional cleaning robots use a travel distance sensor and a travel direction sensor to calculate the position of the robot and memorize (learn) that position, which requires a complex calculation program and has the disadvantage of poor accuracy. In this invention, each time you open/close each switch for running and cleaning, or operate the angle of a variable resistor, etc., the traveling distance j! I! The program is simple because it is stored as a function of (or time). Accumulating errors can be removed by transmitting ultrasonic pulses at key points, comparing the reflected signals with those during learning, and calculating and correcting position errors. Walls and stationary objects can be identified with proximity or contact sensors and the distance counter can be corrected according to the sequence in the program. In this way, if power efficiency is increased and it becomes practical to use cordless floor vacuum cleaners, floor cleaning can be greatly automated and labor-saving. For non-floor cleaning, only the running on the floor can be automated, non-floor cleaning can be automated manually, and semi-automation can be performed, such as a human accompanying the main subject. After the first run, moving your chair or leaving small items unattended may cause you to collide with obstacles during the first sequence run. In this case, either install a contact sensor in the main body in advance, or detect contact from an interruption in travel, a change in direction, a change in motor current, etc., and immediately stop the control program/sequence and stop the travel drive and cleaning function. Then, it will issue an alarm with sound or light, etc., and request human assistance. Once the person clears the obstruction and straightens the cleaner, the user presses the restart button, and the control program sequence begins continued operation and the drive and cleaning functions are resumed. Furthermore, if the fault cannot be removed without human assistance even after a certain period of time has elapsed, all functions can be stopped to prevent battery consumption.

テーププレーヤ等を主体に設置し、自動掃除の開始、終
了、全期間等、適当な期間音楽を流し、人間に知らせる
と、他の行動をしている人間とのインターフェースが改
善される. 先に述べたコードレス床面用掃除機が実用的に可能にな
れば主体にイメージセンサ(’rv用等)や超音波エコ
ーによるレーダ等を設置し、その映像情報やエコー情報
を分析する高度の認識、判断機能を有するコンピュータ
を内蔵せしめ、更にコンピュータにより指令されるロボ
ットハンドを設け、 小形の走行路上障害物は予め前方に設けたバリャーによ
って左右に押しのけ、大形の障害物はロボットハンドで
除去するようにし、自動化をより完全にすることができ
る, 床而が平滑面(板、ビニール、リノリウム、ゴム等)、
準平滑面(たたみ)またはじゅうたんの如き植毛面、m
物面等の何れかを認識し、吸込口の床面接触部やブラシ
の毛や、噴出口、超音波集束点等の床面や植毛面との距
離を最適に自動調節することができる. 非床面可撓吸込気管の端部の吸気口43をロボットハン
ドで掴み、非床面の情況を認識判断しながら自動掃除を
行うこともできる. 以上により最終目標の無人・自動的掃除機が実現される
. 以上、各項目ごとにその作用を説明したが、任意のもの
を組み合わせることができ、相乗的な作用・効果を期待
できることは勿論である.最近ダニ等の害が注目され殺
ダニ機構として高速気流による衝突殺虫や、気流を閉ル
ープとして循環させモータ発熱を利用した昇温により殺
虫する方式が発表されている.しかし掃除効率を上昇す
ると、気流は高速である必要はなく、又循環気流も十分
温度上昇しない場合がある.特にコードレスにした場合
は気流速度上昇や、閉ループ循環加熱は、蓄電池を不必
要に消耗させる.そこでこの発明では掃除終了後、主体
を保管台に設置したり格納箱に収納した時、保管台や格
納箱に設けられた給電接栓端子と、主体の受電接栓端子
とが自動的に接触したり(手動で接栓侵入してもよ(b
)重量や接触をマイクロスイッチで検出して、電磁結合
コイルを励磁する等の結合により、外部又は保管台・格
納箱に設けられた充電器が主体及びハンディ・コードレ
ス掃除器に給電して夫々の蓄電池を充電する.その時第
18図に示すように主体等の充電中の蓄電池53aの電
力でダスト貯溜室34のヒータ67に通電してダストを
加熱したり、殺虫・殺カビ・殺菌等の薬剤を加熱で蒸散
・気化・霧化してダスト貯溜室34に導入したりするこ
とで外部の交流t源から殺虫・殺カビ・殺菌のためのエ
ネルギーを得るようにし、M電池53aの電力消耗を防
止すると共に大きな電力を殺虫・カビ・菌に利用できる
ようにする. 加熱にはダスト貯溜室34の専用電気ヒータ67のみな
らず、閉ループ循環気流を用いることもできる. 加熱には充電器52と、蓄電池53aとを経由せず直接
交流電源を用いてもよい.この場合制御回路は増えるが
、充電器52と蓄電池53aの負荷を低下することがで
きる. 充電と、殺虫・殺カビ・殺菌とを別々にずらした期間で
行うようにすると充電器と蓄電池、あるいは、交流電源
の電流容量を小とすることができス 充電の場合と同じく、主体を保管、格納すると、自動的
に殺虫・殺カビ・殺菌の過程が行われるようにすると、
人間が終了まで待たなくてもよく、又殺虫・殺カビ・殺
菌処理を忘れることもないという利点がある. 使用電力当たりの掃除効率を上昇し、ファンおよびファ
ンモー夕等の使用電力を総合的に減少させるのが第1の
発明であり、これによりコードレス化が実用化されるが
、コード付の場合でも低電力化は、ファン騒音の低下に
役立ち、ファン後流の利用による排気の減少は、排気か
ら生として発生される騒音の減少に役立ち排気消音器(
マフラー)の利用を可能にする.このため掃除機の低騒
音化の利点を有する.また主体の軽量・小型化に役立ち
、移動に便利になる.上述の各種の構戒は相互に組合せ
使用してもよい。
If a tape player or similar device is installed as the main device and music is played for an appropriate period of time, such as the start, end, and entire period of automatic cleaning, to notify humans, the interface with humans performing other activities will be improved. If the above-mentioned cordless floor vacuum cleaner becomes practical, it will be equipped with an image sensor (for RVs, etc.) and an ultrasonic echo radar, etc., and an advanced system that analyzes the video and echo information will be installed. It is equipped with a built-in computer that has recognition and judgment functions, and is also equipped with a robot hand that is commanded by the computer. Small obstacles on the road are pushed left and right by a barrier placed in front of the vehicle, and large obstacles are removed by the robot hand. This allows for more complete automation, when the floor is a smooth surface (board, vinyl, linoleum, rubber, etc.),
Semi-smooth surface (tatami) or carpet-like flocked surface, m
It can recognize any object, etc., and automatically adjust the distance between the floor surface of the suction port, the brush bristles, the jet port, the ultrasonic focus point, etc., to the floor surface or bristle surface. It is also possible to grasp the inlet port 43 at the end of the non-floor flexible suction trachea with a robot hand and perform automatic cleaning while recognizing and judging the situation on the non-floor surface. Through the above steps, the final goal of an unmanned and automatic vacuum cleaner will be realized. The effects of each item have been explained above, but it is of course possible to combine any items and expect synergistic effects and effects. Recently, attention has been paid to the harmful effects of mites, etc., and methods for killing insects have been announced, such as impact killing using high-speed airflow, and methods that circulate airflow in a closed loop and use heat generated by a motor to increase temperature. However, when cleaning efficiency is increased, the airflow does not need to be high-velocity, and the temperature of the circulating airflow may not increase sufficiently. Especially when going cordless, increased airflow speeds and closed-loop circulating heating can unnecessarily drain the battery. Therefore, in this invention, when the main body is placed on a storage stand or stored in a storage box after cleaning, the power supply connector terminal provided on the storage stand or storage box automatically comes into contact with the power reception connector terminal of the main body. (You can also enter the plug manually (b)
) By detecting weight and contact with a microswitch and energizing an electromagnetic coupling coil, a charger installed externally or in a storage stand/storage box supplies power to the main unit and the handy cordless vacuum cleaner. Charge the storage battery. At that time, as shown in FIG. 18, the heater 67 in the dust storage chamber 34 is energized by the power of the storage battery 53a being charged in the main body to heat the dust, and the insecticidal, fungicidal, and sterilizing agents are evaporated by heating. Energy for killing insects, killing fungi, and sterilizing is obtained from an external AC source by vaporizing and atomizing it and introducing it into the dust storage chamber 34, thereby preventing power consumption of the M battery 53a and generating a large amount of power. Make it usable for insecticide, mold, and fungi. For heating, not only the dedicated electric heater 67 in the dust storage chamber 34 but also closed-loop circulating airflow can be used. For heating, an AC power source may be used directly without going through the charger 52 and the storage battery 53a. In this case, although the number of control circuits increases, the load on the charger 52 and the storage battery 53a can be reduced. By performing charging and insecticidal/moldicidal/sterilization separately and at staggered periods, the current capacity of the charger, storage battery, or AC power source can be reduced. When stored, the insecticidal, fungicidal, and sterilizing processes are automatically performed.
There is an advantage that humans do not have to wait until the process is finished, and there is no need to forget about insecticidal, fungicidal, or sterilizing treatments. The first invention is to increase the cleaning efficiency per unit of electricity used and to reduce the overall electricity consumption of fans and fan motors, etc. This makes cordless systems practical, but even with cords, the cleaning efficiency is reduced. Electrification helps reduce fan noise, and reducing exhaust emissions through the use of fan wakes helps reduce the noise generated raw from the exhaust.
muffler). Therefore, it has the advantage of reducing the noise of the vacuum cleaner. It also helps make the main body lighter and smaller, making it easier to move. The various precepts described above may be used in combination with each other.

請求項lの(a)〜(c)/請求項6の何れか又はその
任意を紐み合わせて電力に対する掃除効率をあげ、ファ
ンモータの電力を軽減し、かつコードレスとし、電池容
量を少とするとともに、コードレス小型・軽量・低騒音
・床用吸気管レスの入力移動J,W除機は、性能/価格
比がよく、価格絶対値も普及性のある使い勝手のよい第
1レベルの掃除機となる.その一例の外観は第6図で与
えられる.更に請求項8の(a)を組み合わせると、人
間は制御部のみを操作すればよく、主体は動力走行能力
を有するので更に省力化できる.第6図の把手部を第9
図とするとともに把手部からの制御信号線を支持棒53
と一体化して主体内に導く。第2レベルの掃除機となる
. 請求項8の(b)と組み合わせる場合は、リモコンとな
るので、むしろ非床面は市販の小型ハンディ(二次電地
使用)掃除機に譲り、第13図に示す如くリモコン受信
器を付加するのが性能/価格比がよく、使い勝手のよい
第2−Aレヘルの掃除機を与える. 前記第2レベルまたは第2−Aレベルの掃除機に、請求
項9を組み合わせることで、学習機能付の第3レベル、
第3−Aレベルの掃除機となる。
By combining any of (a) to (c) of claim 1/claim 6 or any of them, the cleaning efficiency with respect to electric power is increased, the electric power of the fan motor is reduced, the fan motor is made cordless, and the battery capacity is reduced. In addition, the cordless, compact, lightweight, low-noise, floor intake pipe-less input movement J and W vacuum cleaners have a good performance/price ratio, and are easy-to-use, first-level vacuum cleaners with a good absolute price value and widespread use. becomes. The appearance of an example is given in Figure 6. Furthermore, when (a) of claim 8 is combined, a person only needs to operate the control section, and the main body has power running capability, resulting in further labor savings. The handle part in Figure 6 is
As shown in the figure, the control signal line from the handle is connected to the support rod 53.
It integrates with the body and leads it into the subject. It becomes a second level vacuum cleaner. When combined with (b) of claim 8, since it becomes a remote control, rather the non-floor surface is left to a commercially available small handy vacuum cleaner (using a secondary electric ground), and a remote control receiver is added as shown in Fig. 13. provides a 2-A level vacuum cleaner that has a good performance/price ratio and is easy to use. By combining claim 9 with the second level or 2-A level vacuum cleaner, a third level with a learning function,
It becomes a 3rd-A level vacuum cleaner.

掃除機は格納位置で、予め商用電源により、内藏二次電
池の充電が行われる.l8納位置または他の特定の位置
(部屋の片隅等)を起点として、初回に人間が掃除を行
い、その時の各種(走行および掃除)制j1l信号の接
・断情況を、時間または主体の走行距離または位置の函
数として、内蔵マイコンに記憶する(即ち、学習する)
。時間よりも走行距離の函数とした方が一般に高い位置
精度が得られる.走行距離は主体に付属する車輪の回転
から得られる. 上記の方式は、起点における主体の設置姿勢、(特に走
行方向角)や、走行途中の走行抵抗変動での方向角変動
等があると、走行位置はその誤差角が積分されるため、
位置精度が低下する。この誤差を予め見越して、学習時
に一走査時の帰路巾を少しずつ重ねる等をして対策する
ことができる。
While the vacuum cleaner is in the stored position, the internal rechargeable battery is charged in advance using commercial power. The first time a person cleans, starting from the storage position or another specific position (such as a corner of a room), the connection/disconnection status of various (travelling and cleaning) signals at that time is calculated based on the time or the subject's travel. Store (i.e., learn) in the built-in microcontroller as a function of distance or position
. Generally, higher positional accuracy can be obtained by using a function of travel distance rather than time. The distance traveled is obtained from the rotation of the wheels attached to the main body. In the above method, if there is a change in direction angle due to the installation posture of the main body at the starting point (especially the running direction angle) or a change in running resistance during running, the running position is determined by integrating the error angle.
Position accuracy decreases. This error can be anticipated in advance and countermeasures can be taken by, for example, increasing the return width for one scan little by little during learning.

しかし広い部屋で連続走行して掃除を行うと、最後では
掃除残りを生じたり、壁に掃除機の端が当たったりする
危険がある.これ等は(a)接触または近接センサを複
数主体に設け、直線走査走行で前方壁に接触または近接
するまで走行して停止し、隣の走査線に横這い走行で移
動し、接触または近接情況から姿勢を補正し、更に走行
距離を補正して新たな走査に入るようにすることで修正
できる.更には(b)超音波エコーを前後のX方向、左
右のY方向に出し、その主反射波の到来時間(位置情報
)を学習時同時に記憶し、第2回以後はそのエコー記憶
を再現するように主体の操舵を制御すると、ほぼ忠実に
学習時の位置を再現しながら走行することができる.更
に高度には(c)超音波レーダやイメージセンサ等によ
り位置判定をすることができる. この場合の問題点は、学習時と実掃除時とで、床面上の
設置物の配置が異なる場合のあることで、例えば椅子の
位置等は毎回変動の可能性があり、小物等を床面上に置
き忘れること等は日常発生する.これは予め掃除前に人
間が設置しなおしたり、点検する等で防止することがで
きる。しかし、万一の見落とし等により、走行中これら
学習時存在しなかった走行障害物に行き当たった時、小
物等は主体につけた排除用バリャーで押し退けるか、押
し退けられない時は走行停止し、アラーム音を発し、人
間の介助を求める等の配慮が必要である.アラームを発
しても特定時間内に原因が排除されない時は、ファンモ
ー夕等の大電力機器または全電力を二次電池から切り離
す等の配慮も必要である。前述の音楽等による人間との
インターフェース改善等も重要な因子の一つである. このようにして第3,第3−Aレベルが実現されること
を説明した.この方式は比較的少ない価格増加で自動化
が可能なことに利点がある.第3レベルでは、主体の走
行のみを自動化し、人間が主体走行に随行し、非床面掃
除を手動で行うものである.第3−Aレベルでは自動化
が困難で頻度も少ない非床面の掃除を切り離し、ハンデ
ィ帰除機等による手動によるものである。
However, if you continuously clean a large room, there is a risk that there will be some residue left behind or that the end of the vacuum cleaner will hit the wall. These are (a) equipped with multiple contact or proximity sensors, run in a straight line until it touches or approaches the front wall, stops, moves sideways to the next scanning line, and detects contact or proximity sensors; This can be corrected by correcting the attitude and further correcting the distance traveled before starting a new scan. Furthermore, (b) ultrasonic echoes are emitted in the front and rear X directions and left and right Y directions, and the arrival time (position information) of the main reflected wave is memorized at the same time as learning, and the echo memory is reproduced from the second time onwards. By controlling the main body's steering in this way, it is possible to drive while almost faithfully reproducing the position at the time of learning. At a higher level, (c) position can be determined using ultrasonic radar, image sensors, etc. The problem in this case is that the placement of items on the floor may be different between learning and actual cleaning. For example, the position of a chair may change each time, and small items may be placed on the floor. Things like leaving something behind on a surface happen every day. This can be prevented by having a person reinstall or inspect the device before cleaning. However, in the unlikely event that due to an oversight, you come across an obstacle while driving that was not present during the learning process, you must either push the small object away with an exclusion barrier attached to the main body, or if the object cannot be pushed away, the driving will stop and an alarm will be set. Considerations such as emitting sounds and requesting human assistance are required. If the cause is not eliminated within a certain time even after an alarm is issued, consideration must be given to disconnecting large power devices such as fan motors or all power from the secondary battery. Improving the interface with humans through music, etc., as mentioned above, is also an important factor. It was explained that the 3rd, 3rd-A level is realized in this way. This method has the advantage of being able to be automated with a relatively small increase in cost. At the third level, only the main movement is automated, and a human accompanies the main movement and performs non-floor cleaning manually. At the 3rd-A level, cleaning of non-floor surfaces, which is difficult to automate and infrequent, is separated and is carried out manually using a hand-held cleaning machine or the like.

第3又は第3−Aレベルにおいて、イメージセンサ(ビ
デオカメラや超音波レーダ等)の如き高度センサを用い
て、位置判定を補完または代替えするとともに走行路上
の走行障害物の認識を行い、バリャーによる排除または
ロボットアームを付加しての除去または迂回等の判断を
行う.これ等の認識・判断は現在の技術で可能であるが
、価格の増大と、機器の大型化に問題がある.しかし、
将来価格は実用可能域に低下すると予測される.床面情
況(平滑面とじゅうたん)の判断はイメージセンサによ
ってもよいが、他の光または超音波の反射率、反射光の
散乱度等によって行うことができ、この場合大した価格
増大を伴わない.これによって吸込口の調整、例えばブ
ラシ面の上下等の設定を自動化できる。以上で価格は高
いが第4レベルまたは第4−Aレベルの掃除機が作られ
る. イメージセンサで非床面の情況を判断し、ロボットアー
ムで非床面吸込口を握り、自動的に非床面の掃除を行う
ことは原理的に三次元物体形状の認識として一部で戒功
している技術の応用であるが、現在の技術では更に多く
の認識論理と改良が必要で実用には一層の進歩を待つ必
要がある.ここまで実現されると、完全な自動化された
第5レベルの掃除機が実現できるが、大型とか、価格等
の面で実用化は更に将来のこととなろう。
At the 3rd or 3rd-A level, altitude sensors such as image sensors (video cameras, ultrasonic radars, etc.) are used to supplement or replace position determination and to recognize obstacles on the road. Decide whether to remove it or add a robot arm to remove it or bypass it. Such recognition and judgment is possible with current technology, but there are problems with increasing costs and increasing the size of the equipment. but,
It is predicted that future prices will fall to a practical level. The floor condition (smooth surface or carpet) can be determined using an image sensor, but it can also be determined based on the reflectance of other light or ultrasonic waves, the degree of scattering of reflected light, etc., and in this case, there is no significant increase in price. .. This makes it possible to automate the adjustment of the suction port, for example, setting the brush surface up and down. With the above, a 4th level or 4th-A level vacuum cleaner is made, although the price is high. Judging the situation on non-floor surfaces using an image sensor, gripping the non-floor suction port with a robot arm, and automatically cleaning non-floor surfaces is in principle considered a practice in some circles as it recognizes the shape of three-dimensional objects. However, the current technology requires more recognition logic and improvements, and it is necessary to wait for further progress before it can be put into practical use. If this is achieved, a fully automated fifth-level vacuum cleaner will be realized, but practical use will likely take place in the future due to its large size and price.

現在の技術で不可能な技術ではない。It is not impossible with current technology.

「発明の効果」 この発明によれば、従来棄てられていたファン後流エネ
ルギーを再利用して、ジェットを吹きつけたり、叩いた
り、超音波を利用したりしてダストを遊離し、加湿して
静電気を除いたりしてダスト遊離を容易とするとともに
、フィルタ面に集積するダストをフィルタを移動して掻
き落とし、その際ファン後流の一部を逆流してフィルタ
の目を掃除したり等で、系の中で最大吸気抵抗を示すフ
ィルタ上の集積ダストを除くことによって消費電力当た
りの掃除効率を上昇させ、掃除に必要な電力を低減させ
る.このため掃除機が小型化・軽量化され、移動に便に
なるとともに、低騒音化が実現される効果がある.更に
はコードレス化した時の使用電池容量が少なくなり、か
つ電池重量の軽減も相扶けて動力走行とした時の走行電
力も低下するという効果があり寸法・重量・価格面でコ
ードレス化を可能とする. しかし、 更に上記の諸効果を基本としてコードレスとしたり、掃
除の大部分を占める床面掃除時の吸気管レスとしたりす
ることで移動性を高め、移動用把持体を設けて、手動ま
たは動力駆動による移動走行を可とし人間の移動時操作
の容易化・省力化を実現する効果を有する。
"Effects of the Invention" According to this invention, the fan wake energy that was previously wasted is reused, and dust is released and humidified by blowing a jet, hitting, or using ultrasonic waves. In addition to making it easier to release dust by removing static electricity, it also moves the filter to scrape off the dust that accumulates on the filter surface, and at the same time allows part of the fan flow to flow backwards to clean the eyes of the filter. By removing the accumulated dust on the filter, which exhibits the highest intake resistance in the system, the cleaning efficiency per unit of power consumption is increased and the power required for cleaning is reduced. This has the effect of making the vacuum cleaner smaller and lighter, making it easier to move and reducing noise. Furthermore, when going cordless, the battery capacity used is reduced, and the battery weight is also reduced, which also reduces the running power when running on power, making it possible to go cordless in terms of size, weight, and price. Suppose that However, based on the above-mentioned effects, mobility has been improved by making it cordless and eliminating the need for an intake pipe when cleaning the floor, which accounts for the majority of cleaning, and by providing a moving grip, it can be used manually or powered. This has the effect of making it easier for people to operate and save labor when moving.

更に上記の諸効果により、初回人間の行った掃除の制御
を学習し、次回からはその学習を繰り返すことによって
掃除の自動化を行う時の障害物対策を簡化し、自動化を
、寸法・重量・価格面から実用的に可能とすることがで
き、ほぼ定期的に行う定形的な掃除作業から人間を開放
できるという効果がある. 更に上記の諸効果により、掃除ロボットの実現が可能と
なり、認識技術の進展とともに実用化に近づけ得る効果
がある.
Furthermore, due to the above-mentioned effects, by learning the cleaning control performed by a human for the first time and repeating this learning from the next time, it is possible to simplify measures against obstacles when automating cleaning, and to improve automation by reducing size, weight, and price. This has the effect of freeing people from routine cleaning tasks that are performed almost regularly. Furthermore, the above-mentioned effects make it possible to realize a cleaning robot, and with the advancement of recognition technology, this has the effect of bringing it closer to practical use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はファン後流を利用してジェット気流を作り掃除
効果を高めたこの発明の実施例を示す断面図、第2図は
ファン後流で叩打体を駆動し掃除効率を高めた吸気部の
構造を示す断面図、第3図はファン後流を冷却及び加湿
する手段の例を示す斜視図、第4図AおよびBはそれぞ
れフィルタから集積ダストを連続的に除去するための移
動式フィルタを示す縦断面図およびそのA−AItli
rf4、第5図A,Bはそれぞれ超音波発振源を設け、
掃除効率を高めた吸気口の断面図、第6図は床面用掃除
機に非床面の掃除を可能としたこの発明の実施例を示す
断面図、第7図はその他の例を示す外観図、第8図は主
体と小型コードレス掃除器との充電接続を示す図、第9
図は動力走行駆動時の手動制御部を有する第6図の把手
部45の外観図、第10図はその断面図、第11図は第
lO図のB−B断面図、第12図は第9図の握り部54
の断面図、第13図は動力走行時のリモコン方式の実施
例を示す外観図、第l4図は主体11に充電器を接続す
るとダスト加熱用ヒータが接続される例を示す接続図、
第15図は従来の掃除機の技術を説明する構造図である
Figure 1 is a cross-sectional view showing an embodiment of the present invention that uses the wake of a fan to create a jet stream to improve the cleaning effect, and Figure 2 is an intake section that uses the wake of the fan to drive a striking body to improve cleaning efficiency. 3 is a perspective view showing an example of a means for cooling and humidifying the flow after the fan, and FIGS. 4A and 4B are respectively movable filters for continuously removing accumulated dust from the filters. A vertical cross-sectional view showing the A-AItli
rf4, Fig. 5 A and B are each equipped with an ultrasonic oscillation source,
6 is a sectional view showing an embodiment of the present invention that enables a floor vacuum cleaner to clean non-floor surfaces; FIG. 7 is an external view of another example. Figure 8 is a diagram showing the charging connection between the main body and a small cordless vacuum cleaner, and Figure 9 is a diagram showing the charging connection between the main body and a small cordless vacuum cleaner.
The figure shows an external view of the handle part 45 in Fig. 6 which has a manual control part during power running drive, Fig. 10 is a sectional view thereof, Fig. 11 is a sectional view taken along line BB in Fig. Grip part 54 in Figure 9
, FIG. 13 is an external view showing an embodiment of the remote control method during power running, and FIG. 14 is a connection diagram showing an example in which a dust heating heater is connected when a charger is connected to the main body 11.
Figure 15 is a structural diagram explaining the technology of a conventional vacuum cleaner.

Claims (1)

【特許請求の範囲】 (1)送風扇(以下ファンと記す)の動作により吸気口
から空気を吸込み、その吸込んだ空気を塵埃(以下ダス
トと記す)フィルタに通してダストを捕捉し、そのフィ
ルタを通過した空気を排気口から排気する掃除機におい
て、下記(a)〜(c)の少くとも一つを具備すること
を特徴とする掃除機。 (a)上記ファンより上記排気口に供給される空気(以
下ファン後流と記す)の一部を上記吸気口付近に導びく
還流気管、及びその還流気管により導びかれたファン後
流を噴気(以下ジェットと記す)として、上記吸気口の
付近に噴出させるノズル。 (b)上記ファン後流の一部を上記吸気口付近に導びく
還流気管、及び上記吸気口付近に設けられ、上記還流気
管により導びかれたファン後流により駆動され、被掃除
体を叩打又は振動させる機構。 (c)上記吸気口付近に設けられ、被掃除物に対し空気
の超音波振動を印加する超音波発振源。 (2)請求項1の(a)又は(b)を具備する掃除機に
おいて、下記(d)、(e)の少くとも1つを具備する
掃除機。 (d)上記吸気口から上記排気口に至る通路、上記還流
気管の少くとも一部にその内部を通過する空気の温度を
下げる冷却手段。 (e)上記還流気管から放出される空気に対し、静電気
除去機能を付与する手段。 (3)請求項1の掃除機において、上記ダストフィルタ
、上記ファン、そのファンの駆動エネルギー源が主体に
収容され、その主体に、これが床面を廻動、滑動できる
ように主体重量支持具が取付けられている。 (4)主体に床と対向した床面用吸気口が設けられ、そ
の床面用吸気口から空気を、上記主体内のファン及びこ
れを駆動するファン駆動器により吸込み、その吸込まれ
た空気を上記主体内のダストフィルタに通過させ、上記
主体が、床面上を回動、滑動可能なように主体重量支持
具が取付けられた床面用掃除機において、下記(a)〜
(c)を少くとも一つ具備することを特徴とする掃除機
。 (a)上記主体に設けられ、上記ファンの上記床面用吸
気口側と連結させることができる非床面掃除用可撓気管
を取付け、取外し可能な結合口。 (b)上記ファンの上記床面用吸気口側と連結された非
床面用可撓気管、及び上記主体に設けられ上記可撓気管
を保持する保持具。 (c)上記主体に取外し自在に取付けられた電池内蔵の
小型掃除器。 (5)請求項4の(b)又は(c)を有する掃除機にお
いて、 上記主体に、これを床面上を移動させる操作体が取付け
られ、その操作体に上記可撓気管の保持具、又は小型掃
除器の保持具が設けられている。 (6)請求項1又は4の掃除機において、 上記ダストフィルタは吸込気流からダストを濾しとる部
分と、フィルタに付着したダストを掻き落すダスト除去
部分と、これらの両部分にフィルタを巡回移動させる手
段とを具備する。 (7)請求項6の掃除機において、 上記ダスト除去部でそのフィルタに吸込時と逆方向に上
記ファン後流の少くとも一部を通過させる手段が設けら
れている。 (8)床面上を走行する駆動機構、及びその走行方向を
制御する操舵機構を有する掃除機において、下記(a)
、(b)の何れかを具備することを特徴とする掃除機。 (a)主体を移動操作するための操作部に、上記駆動機
構、操舵機構を制御する各種電子制御素子が設けられて
いる。 (b)各種駆動、操舵指令を手動で入力すると、これに
応じた信号を無線で送信するリモートコントローラと、
上記主体に設けられ上記リモートコントローラからの信
号を受信して、その信号に応じて上記駆動機構及び操舵
機構を制御する受信部。 (9)請求項3の掃除機において、上記主体内にその主
体を走行させる駆動機構と、その走行方向を制御する操
舵機構と、これら機構及び掃除機能を制御する制御回路
と、掃除領域に対して上記駆動機構、操舵機構、掃除機
能に対する制御を走行時間又は走行距離の関数として記
憶する学習プログラムと、この学習プログラムに従って
掃除を実行させる手段とを具備する。 (10)請求項9の掃除機において、 掃除動作中に上記学習プログラムにない障害物を検出す
ると、走行及び掃除を中断させ、警報を発生させる手段
を備える。 (11)請求項4の(c)を有する掃除機において、上
記主体に上記小型掃除器を取付けた状態で上記主体を通
じて上記小型掃除器内の蓄電池を充電する手段が設けら
れている。(12)請求項4の掃除機において、 上記主体に上記ファン駆動器に電力を供給する蓄電池を
有する掃除機において、上記蓄電池に対し外部から充電
状態にした時に動作する、下記(a)、(b)の少くと
も1つを有することを特徴とする掃除機。 (a)上記主体内のダストを、上記充電用電源電力を利
用して加熱する手段。 (b)上記充電用電源電力を利用して化学薬品を気状、
蒸気状として上記主体内のダストに対し、接触させる手
段。 (13)請求項12の掃除機において、上記蓄電池に対
する充電と、上記加熱又は化学薬品の気状化とが時間的
に重ならないようにされている。
[Claims] (1) Air is sucked in from the intake port by the operation of a blower fan (hereinafter referred to as fan), the sucked air is passed through a dust filter (hereinafter referred to as dust), and the dust is captured; A vacuum cleaner that exhausts air that has passed through the exhaust port from an exhaust port, characterized by comprising at least one of the following (a) to (c). (a) A return trachea that guides a part of the air supplied from the fan to the exhaust port (hereinafter referred to as fan wake) to the vicinity of the intake port, and a fan backflow that is guided by the return trachea to a jet stream. (hereinafter referred to as jet) is a nozzle that ejects water near the air intake port. (b) A return trachea that guides a part of the fan's wake to the vicinity of the intake port, and a fan that is provided near the intake port and is driven by the fan's wake guided by the return trachea to strike the object to be cleaned. Or a mechanism that vibrates. (c) An ultrasonic oscillation source that is provided near the intake port and applies ultrasonic vibrations of air to the object to be cleaned. (2) A vacuum cleaner comprising (a) or (b) of claim 1, which comprises at least one of the following (d) or (e). (d) Cooling means for lowering the temperature of air passing through at least a portion of the passage from the intake port to the exhaust port and the recirculation trachea. (e) means for imparting a static electricity removal function to the air discharged from the reflux trachea; (3) In the vacuum cleaner according to claim 1, the dust filter, the fan, and the driving energy source for the fan are housed in a main body, and the main body has a main body weight support so that the main body can rotate and slide on the floor. installed. (4) The main body is provided with a floor air intake port facing the floor, air is sucked in from the floor air intake port by a fan in the main body and a fan driver that drives it, and the sucked air is In the floor vacuum cleaner, a main body weight support is attached to allow the main body to pass through a dust filter in the main body, and the main body can rotate and slide on the floor surface.
A vacuum cleaner characterized by comprising at least one of (c). (a) A coupling port provided on the main body and capable of attaching and detaching a flexible air pipe for non-floor cleaning that can be connected to the floor intake port side of the fan. (b) A non-floor flexible trachea connected to the floor air intake side of the fan, and a holder provided on the main body to hold the flexible trachea. (c) A small vacuum cleaner with a built-in battery that is removably attached to the main body. (5) In the vacuum cleaner according to claim 4 (b) or (c), an operating body for moving the main body on the floor is attached, and the operating body includes a holder for the flexible trachea; Alternatively, a holder for a small vacuum cleaner is provided. (6) In the vacuum cleaner according to claim 1 or 4, the dust filter has a part that filters dust from the suction airflow, a dust removal part that scrapes off dust adhering to the filter, and the filter is circulated between both parts. and means. (7) In the vacuum cleaner according to claim 6, the dust removal section is provided with means for passing at least a part of the fan wake stream through the filter in a direction opposite to the suction direction. (8) In a vacuum cleaner having a drive mechanism that runs on the floor and a steering mechanism that controls the direction of travel, the following (a)
, (b). (a) An operating section for moving the main body is provided with various electronic control elements for controlling the drive mechanism and steering mechanism. (b) A remote controller that wirelessly transmits signals in response to manual input of various driving and steering commands;
A receiving unit provided in the main body and configured to receive a signal from the remote controller and control the drive mechanism and steering mechanism in accordance with the signal. (9) In the vacuum cleaner according to claim 3, there is provided a drive mechanism for moving the main body within the main body, a steering mechanism for controlling the running direction of the main body, a control circuit for controlling these mechanisms and the cleaning function, and a control circuit for controlling the cleaning area. The vehicle is equipped with a learning program for storing control over the drive mechanism, steering mechanism, and cleaning function as a function of travel time or distance, and means for executing cleaning according to the learning program. (10) The vacuum cleaner according to claim 9, further comprising means for interrupting running and cleaning and generating an alarm when an obstacle not included in the learning program is detected during cleaning operation. (11) In the vacuum cleaner according to claim 4 (c), means is provided for charging a storage battery in the small vacuum cleaner through the main body while the small vacuum cleaner is attached to the main body. (12) The vacuum cleaner according to claim 4, wherein the main body includes a storage battery for supplying power to the fan driver, and the vacuum cleaner operates when the storage battery is externally charged. A vacuum cleaner characterized by having at least one of b). (a) Means for heating dust within the main body using the charging power source power. (b) Chemicals are vaporized using the above charging power source power.
Means for contacting the dust in the main body in the form of vapor. (13) In the vacuum cleaner according to claim 12, charging of the storage battery and heating or vaporization of the chemical agent do not overlap in time.
JP17930090A 1989-08-09 1990-07-06 Vacuum cleaner Expired - Lifetime JPH0744911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17930090A JPH0744911B2 (en) 1989-08-09 1990-07-06 Vacuum cleaner

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP20721189 1989-08-09
JP1-207211 1989-08-09
JP17930090A JPH0744911B2 (en) 1989-08-09 1990-07-06 Vacuum cleaner

Publications (2)

Publication Number Publication Date
JPH03162814A true JPH03162814A (en) 1991-07-12
JPH0744911B2 JPH0744911B2 (en) 1995-05-17

Family

ID=26499203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17930090A Expired - Lifetime JPH0744911B2 (en) 1989-08-09 1990-07-06 Vacuum cleaner

Country Status (1)

Country Link
JP (1) JPH0744911B2 (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06189881A (en) * 1992-10-26 1994-07-12 Tokyo Cosmos Electric Co Ltd Reflux type cleaner and suction type cleaner
JPH0652140U (en) * 1992-12-24 1994-07-15 直江津電子工業株式会社 Core tube dust suction jig
JPH06247734A (en) * 1993-02-25 1994-09-06 Furukawa Electric Co Ltd:The Production of preform for polarizing plane maintaining optical fiber
JPH0727447U (en) * 1993-05-28 1995-05-23 武盛 豊永 Circulation type vacuum cleaner
US6237188B1 (en) 1997-12-26 2001-05-29 Toshiba Tec Kabushiki Kaisha Suction port body for vacuum-cleaner and vacuum-cleaner having the same
US6725500B2 (en) 2001-05-03 2004-04-27 Vortex, L.L.C. Air recirculating surface cleaning device
EP1424032A1 (en) * 2001-09-04 2004-06-02 Sharp Kabushiki Kaisha Vacuum cleaner and device having ion generator
JP2004337632A (en) * 2004-07-29 2004-12-02 Matsushita Electric Ind Co Ltd Self-propelled cleaner
US7059012B2 (en) 2002-04-16 2006-06-13 Samsung Gwangju Electronics Co., Ltd. Robot vacuum cleaner with air agitation
WO2009090807A1 (en) * 2008-01-16 2009-07-23 Nec Corporation Mobile device, method for moving mobile device, and program for controlling movement of mobile device
US7665181B2 (en) 2007-05-04 2010-02-23 Gebhard Albert W Re-circulating vacuum apparatus for cleaning fabric and other non-tensioned surfaces
JP2010088751A (en) * 2008-10-10 2010-04-22 Trinc:Kk Dust remover
US7788765B2 (en) 2001-05-03 2010-09-07 Allen Donavan J Air recirculating surface cleaning device
JP2014057863A (en) * 2005-12-02 2014-04-03 Irobot Corp Robot system
JP2014113488A (en) * 2012-12-05 2014-06-26 Vorwerk & Co Interholding Gmbh Traveling cleaning appliance and method for operating such an appliance
JP2015516253A (en) * 2012-05-17 2015-06-11 ブライアン ジョン イーグルストーンBrian John EAGLESTONE Electric vacuum cleaner
US9144360B2 (en) 2005-12-02 2015-09-29 Irobot Corporation Autonomous coverage robot navigation system
JP2017521755A (en) * 2014-07-10 2017-08-03 アクチエボラゲット エレクトロルックス Method for detecting measurement error in robot-type cleaning device
CN107440619A (en) * 2017-08-31 2017-12-08 宁波富佳实业有限公司 A kind of sweeping robot
JP2018181260A (en) * 2017-04-21 2018-11-15 株式会社東芝 Automatic traveling vehicle system
US10149589B2 (en) 2013-12-19 2018-12-11 Aktiebolaget Electrolux Sensing climb of obstacle of a robotic cleaning device
US10209080B2 (en) 2013-12-19 2019-02-19 Aktiebolaget Electrolux Robotic cleaning device
US10219665B2 (en) 2013-04-15 2019-03-05 Aktiebolaget Electrolux Robotic vacuum cleaner with protruding sidebrush
US10231591B2 (en) 2013-12-20 2019-03-19 Aktiebolaget Electrolux Dust container
US10433697B2 (en) 2013-12-19 2019-10-08 Aktiebolaget Electrolux Adaptive speed control of rotating side brush
US10448794B2 (en) 2013-04-15 2019-10-22 Aktiebolaget Electrolux Robotic vacuum cleaner
US10499778B2 (en) 2014-09-08 2019-12-10 Aktiebolaget Electrolux Robotic vacuum cleaner
US10534367B2 (en) 2014-12-16 2020-01-14 Aktiebolaget Electrolux Experience-based roadmap for a robotic cleaning device
US10617271B2 (en) 2013-12-19 2020-04-14 Aktiebolaget Electrolux Robotic cleaning device and method for landmark recognition
US10678251B2 (en) 2014-12-16 2020-06-09 Aktiebolaget Electrolux Cleaning method for a robotic cleaning device
US10729297B2 (en) 2014-09-08 2020-08-04 Aktiebolaget Electrolux Robotic vacuum cleaner
CN111956122A (en) * 2020-07-27 2020-11-20 韶关学院 Novel dust collector
US10874271B2 (en) 2014-12-12 2020-12-29 Aktiebolaget Electrolux Side brush and robotic cleaner
US10877484B2 (en) 2014-12-10 2020-12-29 Aktiebolaget Electrolux Using laser sensor for floor type detection
US10874274B2 (en) 2015-09-03 2020-12-29 Aktiebolaget Electrolux System of robotic cleaning devices
US11099554B2 (en) 2015-04-17 2021-08-24 Aktiebolaget Electrolux Robotic cleaning device and a method of controlling the robotic cleaning device
US11122953B2 (en) 2016-05-11 2021-09-21 Aktiebolaget Electrolux Robotic cleaning device
US11169533B2 (en) 2016-03-15 2021-11-09 Aktiebolaget Electrolux Robotic cleaning device and a method at the robotic cleaning device of performing cliff detection
US11474533B2 (en) 2017-06-02 2022-10-18 Aktiebolaget Electrolux Method of detecting a difference in level of a surface in front of a robotic cleaning device
CN116330536A (en) * 2023-04-13 2023-06-27 杭州丰正新材料科技有限公司 Non-woven fabrics production of anti-winding card material is with clout recovery machine
US11921517B2 (en) 2017-09-26 2024-03-05 Aktiebolaget Electrolux Controlling movement of a robotic cleaning device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3265120B2 (en) * 1994-06-10 2002-03-11 三菱電機株式会社 Method for eliminating harmful microorganisms in dust collection room of vacuum cleaner and vacuum cleaner
JP3343244B2 (en) * 1995-07-31 2002-11-11 有限会社三輪サイエンス研究所 Reflux type vacuum cleaner
JP3298565B2 (en) * 1999-07-27 2002-07-02 松下電器産業株式会社 Electric vacuum cleaner
KR100869822B1 (en) * 2007-02-15 2008-11-21 주식회사 한울로보틱스 Exhaust air feed back robot cleaner
ES2379401T3 (en) 2007-02-15 2012-04-25 Hanool Robotics Corp. Cleaning robot that has an exhaust air feedback function
JP6685751B2 (en) * 2016-02-15 2020-04-22 東芝ライフスタイル株式会社 Vacuum cleaner

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06189881A (en) * 1992-10-26 1994-07-12 Tokyo Cosmos Electric Co Ltd Reflux type cleaner and suction type cleaner
JPH0724643B2 (en) * 1992-10-26 1995-03-22 東京コスモス電機株式会社 Reflux type vacuum cleaner and suction type vacuum cleaner
JPH0652140U (en) * 1992-12-24 1994-07-15 直江津電子工業株式会社 Core tube dust suction jig
JPH06247734A (en) * 1993-02-25 1994-09-06 Furukawa Electric Co Ltd:The Production of preform for polarizing plane maintaining optical fiber
JPH0727447U (en) * 1993-05-28 1995-05-23 武盛 豊永 Circulation type vacuum cleaner
US6237188B1 (en) 1997-12-26 2001-05-29 Toshiba Tec Kabushiki Kaisha Suction port body for vacuum-cleaner and vacuum-cleaner having the same
US7788765B2 (en) 2001-05-03 2010-09-07 Allen Donavan J Air recirculating surface cleaning device
US6725500B2 (en) 2001-05-03 2004-04-27 Vortex, L.L.C. Air recirculating surface cleaning device
US8627531B2 (en) 2001-09-04 2014-01-14 Sharp Kabushiki Kaisha Vacuum cleaner and device having ion generator
EP1424032A4 (en) * 2001-09-04 2005-09-14 Sharp Kk Vacuum cleaner and device having ion generator
US7591043B2 (en) 2001-09-04 2009-09-22 Sharp Kabushiki Kaisha Vacuum cleaner and device having ion generator
EP1424032A1 (en) * 2001-09-04 2004-06-02 Sharp Kabushiki Kaisha Vacuum cleaner and device having ion generator
US7059012B2 (en) 2002-04-16 2006-06-13 Samsung Gwangju Electronics Co., Ltd. Robot vacuum cleaner with air agitation
JP2004337632A (en) * 2004-07-29 2004-12-02 Matsushita Electric Ind Co Ltd Self-propelled cleaner
US9392920B2 (en) 2005-12-02 2016-07-19 Irobot Corporation Robot system
US9144360B2 (en) 2005-12-02 2015-09-29 Irobot Corporation Autonomous coverage robot navigation system
JP2014057863A (en) * 2005-12-02 2014-04-03 Irobot Corp Robot system
US7665181B2 (en) 2007-05-04 2010-02-23 Gebhard Albert W Re-circulating vacuum apparatus for cleaning fabric and other non-tensioned surfaces
JP5158097B2 (en) * 2008-01-16 2013-03-06 日本電気株式会社 Moving device, moving method for moving device, and moving control program for moving device
US20110144850A1 (en) * 2008-01-16 2011-06-16 Takashi Jikihara Moving apparatus, moving method of moving apparatus, and movement control program of moving apparatus
WO2009090807A1 (en) * 2008-01-16 2009-07-23 Nec Corporation Mobile device, method for moving mobile device, and program for controlling movement of mobile device
JP2010088751A (en) * 2008-10-10 2010-04-22 Trinc:Kk Dust remover
JP2015516253A (en) * 2012-05-17 2015-06-11 ブライアン ジョン イーグルストーンBrian John EAGLESTONE Electric vacuum cleaner
JP2014113488A (en) * 2012-12-05 2014-06-26 Vorwerk & Co Interholding Gmbh Traveling cleaning appliance and method for operating such an appliance
US10448794B2 (en) 2013-04-15 2019-10-22 Aktiebolaget Electrolux Robotic vacuum cleaner
US10219665B2 (en) 2013-04-15 2019-03-05 Aktiebolaget Electrolux Robotic vacuum cleaner with protruding sidebrush
US10433697B2 (en) 2013-12-19 2019-10-08 Aktiebolaget Electrolux Adaptive speed control of rotating side brush
US10617271B2 (en) 2013-12-19 2020-04-14 Aktiebolaget Electrolux Robotic cleaning device and method for landmark recognition
US10149589B2 (en) 2013-12-19 2018-12-11 Aktiebolaget Electrolux Sensing climb of obstacle of a robotic cleaning device
US10209080B2 (en) 2013-12-19 2019-02-19 Aktiebolaget Electrolux Robotic cleaning device
US10231591B2 (en) 2013-12-20 2019-03-19 Aktiebolaget Electrolux Dust container
JP2017521755A (en) * 2014-07-10 2017-08-03 アクチエボラゲット エレクトロルックス Method for detecting measurement error in robot-type cleaning device
US10518416B2 (en) 2014-07-10 2019-12-31 Aktiebolaget Electrolux Method for detecting a measurement error in a robotic cleaning device
US10499778B2 (en) 2014-09-08 2019-12-10 Aktiebolaget Electrolux Robotic vacuum cleaner
US10729297B2 (en) 2014-09-08 2020-08-04 Aktiebolaget Electrolux Robotic vacuum cleaner
US10877484B2 (en) 2014-12-10 2020-12-29 Aktiebolaget Electrolux Using laser sensor for floor type detection
US10874271B2 (en) 2014-12-12 2020-12-29 Aktiebolaget Electrolux Side brush and robotic cleaner
US10534367B2 (en) 2014-12-16 2020-01-14 Aktiebolaget Electrolux Experience-based roadmap for a robotic cleaning device
US10678251B2 (en) 2014-12-16 2020-06-09 Aktiebolaget Electrolux Cleaning method for a robotic cleaning device
US11099554B2 (en) 2015-04-17 2021-08-24 Aktiebolaget Electrolux Robotic cleaning device and a method of controlling the robotic cleaning device
US11712142B2 (en) 2015-09-03 2023-08-01 Aktiebolaget Electrolux System of robotic cleaning devices
US10874274B2 (en) 2015-09-03 2020-12-29 Aktiebolaget Electrolux System of robotic cleaning devices
US11169533B2 (en) 2016-03-15 2021-11-09 Aktiebolaget Electrolux Robotic cleaning device and a method at the robotic cleaning device of performing cliff detection
US11122953B2 (en) 2016-05-11 2021-09-21 Aktiebolaget Electrolux Robotic cleaning device
JP2018181260A (en) * 2017-04-21 2018-11-15 株式会社東芝 Automatic traveling vehicle system
US11474533B2 (en) 2017-06-02 2022-10-18 Aktiebolaget Electrolux Method of detecting a difference in level of a surface in front of a robotic cleaning device
CN107440619A (en) * 2017-08-31 2017-12-08 宁波富佳实业有限公司 A kind of sweeping robot
US11921517B2 (en) 2017-09-26 2024-03-05 Aktiebolaget Electrolux Controlling movement of a robotic cleaning device
CN111956122A (en) * 2020-07-27 2020-11-20 韶关学院 Novel dust collector
CN116330536A (en) * 2023-04-13 2023-06-27 杭州丰正新材料科技有限公司 Non-woven fabrics production of anti-winding card material is with clout recovery machine
CN116330536B (en) * 2023-04-13 2023-09-05 杭州丰正新材料科技有限公司 Non-woven fabrics production of anti-winding card material is with clout recovery machine

Also Published As

Publication number Publication date
JPH0744911B2 (en) 1995-05-17

Similar Documents

Publication Publication Date Title
JPH03162814A (en) Cleaner
US11737622B2 (en) Surface cleaning apparatus with drying cycle
US11219347B2 (en) Robotic cleaner
EP3750464A1 (en) Robotic cleaner
US6457206B1 (en) Remote-controlled vacuum cleaner
US5560077A (en) Vacuum dustpan apparatus
US9510715B2 (en) Robotic vacuum cleaning
KR100922506B1 (en) Autonomous canister vacuum cleaner, system thereof and method of vacuum cleaning using the same
US7320149B1 (en) Robotic extraction cleaner with dusting pad
JP3230196U (en) Autonomous floor washer with carry handle
CN114947646B (en) Floor brush mechanism, cleaning machine and drying method
US11617487B2 (en) Autonomous floor cleaner with moisture warning
US11903541B2 (en) Autonomous floor cleaner with drive wheel assembly
CN211674025U (en) Autonomous cleaner
CN111714027A (en) Autonomous cleaner
US20130146090A1 (en) Method for controlling automatic cleaning devices
CN111657790A (en) Autonomous cleaner
CN210520902U (en) Autonomous cleaner
CN210169968U (en) Autonomous cleaner
WO2023019975A1 (en) Base station and cleaning robot system
JP2004160164A (en) Robotic vacuum cleaner with detachable portable vacuum for performing semi-automated environment mapping
JP3073397U (en) Remote control vacuum cleaner
ปราโมทย์ ศรี น้อย et al. Recent patents on floor cleaning robot applications and new development prospects in future
JP2001327448A (en) Remote-controlled cleaner