JPH03162660A - Potentiometric sensor - Google Patents

Potentiometric sensor

Info

Publication number
JPH03162660A
JPH03162660A JP1302888A JP30288889A JPH03162660A JP H03162660 A JPH03162660 A JP H03162660A JP 1302888 A JP1302888 A JP 1302888A JP 30288889 A JP30288889 A JP 30288889A JP H03162660 A JPH03162660 A JP H03162660A
Authority
JP
Japan
Prior art keywords
titanium nitride
film
nitride film
sensor
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1302888A
Other languages
Japanese (ja)
Other versions
JP2855718B2 (en
Inventor
Satoshi Nakajima
聡 中嶋
Koichi Takizawa
滝澤 耕一
Masato Arai
真人 荒井
Hideki Endo
英樹 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP1302888A priority Critical patent/JP2855718B2/en
Publication of JPH03162660A publication Critical patent/JPH03162660A/en
Application granted granted Critical
Publication of JP2855718B2 publication Critical patent/JP2855718B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/4035Combination of a single ion-sensing electrode and a single reference electrode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

PURPOSE:To obtain the small-sized, inexpensive sensor which is easily handled and has superior characteristics by forming a 1st and a 2nd titanium nitride film on an electrode support base material, using the 1st titanium nitride film as a potential detection electrode, and covering the 2nd titanium nitride film with an organic high polymer film and using it as a reference electrode. CONSTITUTION:On an insulating substrate (electrode support base material) 2, the 1st titanium nitride film 3 and 2nd titanium nitride film 4 are provided successively. On the insulating substrate 2, an insulating film 5 is further formed and the titanium films 3 and 4 are coated except an H<+> selection electrode part 3a, a reference electrode part 4a, and connection parts 3b and 4b. The high polymer film 6 is formed on the reference electrode part 4a. Then this sensor 1 is mounted directly on a connector (c) and connected to a measuring circuit. Consequently, the structure is simplified and the manufacture process is facilitated to facilitate size reduction, cost reduction, and mass-production. Further, variance in characteristics among sensors is reduced because of the simple structure.

Description

【発明の詳細な説明】 (イ)産業Eの利用分野 本発明は、各神イオン濃度や生体機能性物質(酵素、抗
体、レセプタ等)?!4度を電拉変化として検出するポ
テンショメトリックセンサに関する。
[Detailed Description of the Invention] (a) Field of Application of Industry E The present invention is applicable to various ion concentrations and biologically functional substances (enzymes, antibodies, receptors, etc.). ! The present invention relates to a potentiometric sensor that detects 4 degrees as an electric power change.

(ロ)従来の技術 従来のポテンショメトリックセンサとしては、各種のイ
オンセンサが知られている。これらイオンセンサには、
ガラス選択niJを利用した電位検出電極とガラス製の
比較電極とを組み合わせたものがよく用いられている。
(B) Prior Art Various ion sensors are known as conventional potentiometric sensors. These ion sensors include
A combination of a potential detection electrode using glass selection niJ and a comparison electrode made of glass is often used.

また、最近では、電界効果トランジスタ(FET)のゲ
ートにイオン感受性膜を設け、このゲートを感応部とし
て利用するT S F ET (ion select
ive FET )が検討されている。
In addition, recently, TSFET (ion select
ive FET) are being considered.

(ハ)発明が解決しようとする課題 上記従来のガラス製ポテンショメトリックセンサは、構
造的にも材質的にも小型化が困難であり、高価である。
(c) Problems to be Solved by the Invention The conventional glass potentiometric sensor described above is difficult to miniaturize in terms of structure and material, and is expensive.

また、破損しやすく取り扱いに注意が必要で、内部液や
液絡部を有しているため保守、管理の手間もかかる。
In addition, they are easily damaged and must be handled with care, and because they have internal liquid and liquid junctions, maintenance and management are time-consuming.

一方、ISFETは小型化容易で、破田しにくく、保守
、管理も不要であるものの、構造及び製造工程が復雑で
、高価な製造設備が必要であり、量産しない限り安価に
ならない。また、特性のばらつきが大きく、駆動同路も
定重圧・宗電漆のものを必要とし、ガラス製のものより
複雑、高価なものとなってしまう。さらに、ISFET
は素子自体は小さいが、必ずリードを必要とするので大
きくなり、価格も上がる。
On the other hand, although ISFETs are easy to miniaturize, are difficult to break, and require no maintenance or management, they have a complicated structure and manufacturing process, require expensive manufacturing equipment, and cannot be cheap unless they are mass-produced. In addition, the characteristics vary widely, and the driving circuit requires constant pressure and Soden lacquer, making it more complicated and expensive than a glass one. Furthermore, ISFET
Although the element itself is small, it always requires leads, which increases the size and price.

本発明は上記に鑑みなされたもので、小型、低価格、取
り扱いが容易で、特性に優れたポテンショメトリックセ
ンサの提{Jjを目的としている。
The present invention was made in view of the above, and aims to provide a potentiometric sensor {Jj that is small in size, low in price, easy to handle, and has excellent characteristics.

(二)課題を解決するための手段及び作用上記課題を解
決するため、第1請求Inのポテンショメトリックセン
サは、電極支持ス(材−1二に、箇1及び第2の窒化チ
タン膜を形成し、この第1の窒化チタン膜を電拉検出電
極とするとともに、前記第2の窒化チタン膜は有機高分
子膜で被謂し、比較電極とするものである。
(2) Means and operation for solving the problem In order to solve the above problem, the potentiometric sensor of the first claim In has a structure in which the first and second titanium nitride films are formed on the electrode support (material 1). The first titanium nitride film is used as an electrolysis detection electrode, and the second titanium nitride film is an organic polymer film and is used as a comparison electrode.

この第1 gfI求項ポテンショメトリソクセンサは、
窒化チタンの水素イオン(H゛)感応性を利用して、被
検液中のH″濃度を検出するが、簡単な構造であるため
、特性のばhつきが少なく、内部液も有さないため保守
管理も不要である。また、製造も容易で低価格化が可能
である。
This first gfI potentiometry sensor is
The hydrogen ion (H゛) sensitivity of titanium nitride is used to detect the H'' concentration in the sample liquid, but because it has a simple structure, there is little variation in characteristics and there is no internal liquid. Therefore, maintenance management is not required.It is also easy to manufacture and can be manufactured at low cost.

一方、窒化チタンは4体であり、その抵抗値も俄いので
、簡単な電拉斧測定同路が適用できる。
On the other hand, since titanium nitride has four bodies and its resistance value is low, a simple electric ax measurement method can be applied.

また、窒化チタンは機転(的,7Qi ffを有してい
るから、直接コネクタに接続できて、リードが不要とな
り、その簡単な構造とあいまって、センナの小Jul化
を図ることができる。
Furthermore, since titanium nitride has a 7Qi ff, it can be directly connected to a connector, eliminating the need for leads. Combined with its simple structure, it is possible to reduce the size of the senna.

第2請求項、第3請求項のポテンショメトリックセンサ
は、第1の窒化チタン膜を、それぞれイオン選択■タ、
固定化酵素膜で被覆したもので、被栓液中の特定イオン
濃度、醇素の火質となる物質の濃度を検出する。それ以
外の点については、第l請求項の場合と同様である。
In the potentiometric sensors of the second and third claims, the first titanium nitride film is an ion selector, an ion selector, an ion selector,
It is coated with an immobilized enzyme membrane and detects the concentration of specific ions in the plugged liquid and the concentration of substances that cause flammability of the soybean. The other points are the same as the case of the first claim.

(汀))実施例 く実施例1〉 この発明の第1の実施例を第1図及び第2図に基づいて
以下に説明する。
(Embodiment 1) A first embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

この実施例は、本発明を水素イオン濃度すなわちpH測
定に適用したものであり、第1図(a)は、実施例ポテ
ンショメトリックセンサ(以下単にセンサという)1の
平面図、第1図(b)は、同センサlの断面図である。
In this example, the present invention is applied to the measurement of hydrogen ion concentration, that is, pH. FIG. ) is a sectional view of the same sensor l.

2は、絶縁性基板(電極支持基材)であり、この実施例
では、耐水性、窒化チタン膜の接着性、経済性などを考
虜してセラミック基板を用いた。
2 is an insulating substrate (electrode support base material), and in this example, a ceramic substrate was used in consideration of water resistance, adhesion of the titanium nitride film, economical efficiency, etc.

なお、絶縁性基板には、ポリイミドフィルム等も使用可
能である。
Note that a polyimide film or the like can also be used as the insulating substrate.

この絶縁性基板2上には、第1の窒化チタン膜3、第2
の窒化チタン膜4が並設されている。この窒化チタン膜
3、4は、絶縁性基板2全面に亘り窒化チタン膜を形成
した後、ダイシングにより個々の窒化チタン膜3、4に
分離したものである。
On this insulating substrate 2, a first titanium nitride film 3 and a second titanium nitride film 3 are formed.
titanium nitride films 4 are arranged in parallel. The titanium nitride films 3 and 4 are obtained by forming a titanium nitride film over the entire surface of the insulating substrate 2 and then separating it into individual titanium nitride films 3 and 4 by dicing.

最初に窒化チタン膜を形成するには、CVD法、スパッ
タ法などが適用できる。窒化チタン膜の厚さはlμmも
あれば十分なので、短時間で製膜することができ、セン
サの量産性を高めることができる。
To initially form the titanium nitride film, CVD, sputtering, or the like can be applied. Since the titanium nitride film has a sufficient thickness of 1 μm, it can be formed in a short time, and the mass productivity of the sensor can be improved.

絶縁性基板2上には、絶縁III!J5が形成され、穿
化チタン膜3、4は、H″選沢電極部3a、比較電極部
4a、接続部3b、4bを除いて被覆される。絶縁膜5
の形戊には、例えば感光性ポリイミド#.4脂を塗布し
、これをホトマスクを用いて感光し、現像・リンスして
不要な部分を除去している(ホトリソグラフィ)。この
ホトリソグラフィにより精度よく絶縁115を形成する
ことができる。
On the insulating substrate 2, there is an insulation III! J5 is formed, and the perforated titanium films 3 and 4 are covered except for the H'' selective electrode part 3a, the comparison electrode part 4a, and the connecting parts 3b and 4b.Insulating film 5
For example, photosensitive polyimide #. 4 resin is applied, exposed to light using a photomask, developed and rinsed to remove unnecessary parts (photolithography). This photolithography allows the insulation 115 to be formed with high precision.

比較電極部4a−ヒには、有機高分子膜6が形成される
。有機高分子膜6には、例えばポリ塩化ビニル等が使用
される。この有機高分子膜6の形或には、塗布法や重合
法で形成できるが、塗布法がより節便である。
An organic polymer film 6 is formed on the comparison electrode section 4a-hi. For example, polyvinyl chloride or the like is used for the organic polymer film 6. The organic polymer film 6 can be formed in any form by a coating method or a polymerization method, but the coating method is more convenient.

この実施例センサlは、第l図(C)に示すよ、うに、
直接コネクタCに装着して、測定回路に接続することが
できる。第2図は、このセンサ1で標準p H溶液を測
定した結果を示しており、センサ出力(mV)とp H
との間にはよい直線関係が認められ、センサ1が十分に
ρHセンサとして使用できることがGW j.fflで
きる。
This embodiment sensor 1 is as shown in FIG. 1(C).
It can be directly attached to connector C and connected to the measurement circuit. Figure 2 shows the results of measuring a standard pH solution with this sensor 1, and shows the sensor output (mV) and pH
A good linear relationship was observed between GW j. I can ffl.

〈実施例2〉 この発明の第2の実施例を第3因及び第4図に7Sづい
て以下に説明する。
<Embodiment 2> A second embodiment of the present invention will be described below with reference to the third factor and FIG. 4.

この実施例は、本発明をカリウム(K゛)イオン濃度の
測定に適用したものであり、第3[m(a)、第3図(
b)は、それぞれ実施例センサ1lの平面園、断面口を
示しており、図中第I図(a)(t))と同し符号を付
したものは、第1の実施例と同様の構成要素を示してい
る。
In this example, the present invention is applied to the measurement of potassium (K゛) ion concentration.
b) shows the plane view and cross-sectional opening of the embodiment sensor 1l, respectively, and the same reference numerals as in FIGS. Shows the components.

このセンサl1では、イオン選択電梅部3a上をイオン
選択1917で被覆している。このイオン選択膜17は
、イオノフォアを含有する有椴高分子112である。イ
オノフォアとしてはK゛イオンに対する選択感応性があ
ればよく、例えばハリノマイシンやクラウンエーテル等
が使用できる。このイオンノフォアを含有する有機高分
子I19!.とじては、ポリ塩化ビニルなどが使用でき
る。この五機高分子1模は、比較電横部4aを被謂ずる
有機高分子膜6と同じ材質であってもよいし、異なる材
質であってもよい。
In this sensor l1, the ion selection panel 3a is covered with an ion selection 1917. This ion selective membrane 17 is an ionophore-containing Aritsu polymer 112. The ionophore only needs to be selectively sensitive to K ions; for example, halinomycin, crown ether, etc. can be used. Organic polymer I19 containing this ionophore! .. For the closure, polyvinyl chloride or the like can be used. The five-layer polymer 1 model may be made of the same material as the organic polymer film 6 covering the comparative electrode horizontal portion 4a, or may be made of a different material.

第4図は、このセンサ1lの出力(mV)とK゜イオン
の濃度の関係を示したものである。10〜10−’〔M
)の濃度で、出力と濃度は良好な直線関係を示しており
、K+イオンセンサとして使用できることが確認できる
FIG. 4 shows the relationship between the output (mV) of this sensor 1l and the concentration of K° ions. 10~10-' [M
), the output and concentration show a good linear relationship, confirming that it can be used as a K+ ion sensor.

なお、イオノフォアを他の神?Qに代えることにより、
例えばC a ”イオン等の讃度を検出することができ
る。また、イオノフォアを含有する有機高分子1漠の代
わりに、適切な配合比のNASガラス(Sing、A 
e z O 3、Na20の三元素ガラス)の■9を形
成することで、Na”やK゜の凋度を検出ずることもで
きる。このガラスn9の形成には墜布・乾燥法が利用で
きる。
By the way, is the ionophore another god? By replacing Q with
For example, it is possible to detect the concentration of Ca'' ions, etc.In addition, instead of an organic polymer containing an ionophore, NAS glass (Sing, A
By forming a 3-element glass (e z O 3, Na 20) (■9), it is also possible to detect the intensities of Na'' and K゜.To form this glass n9, a drying method can be used. .

〈実施例3〉 この発明の第3の実施例を第5図及び第6図に基づいて
以下に説明する。
<Embodiment 3> A third embodiment of the present invention will be described below based on FIGS. 5 and 6.

この実施例は、本発明を尿素濃度の測定に適用したもの
であり、第5図(a)、第5図(b)は、それぞれ実施
例センサ21の平面図、断面図を示しており、図中第1
図(a)(b)と同じ符号を付したものは、第1の実施
例と同様の構成要素である。
In this example, the present invention is applied to the measurement of urea concentration, and FIGS. 5(a) and 5(b) show a plan view and a sectional view of the example sensor 21, respectively. 1st in the diagram
Components with the same reference numerals as those in FIGS. (a) and (b) are the same as those in the first embodiment.

このセンザ2lでは、酵素電極部3a゛上を、固定化醇
素11Δ27で被覆している。固定化酵素+1ff27
は、ウレアーゼをグルタルアルデヒドで架橋固定したり
、高分子膜中に包括固定したものである。固定化酵素膜
27は、さらに保護膜28で被覆され、被検液から保護
される。この保護膜28は、被検液中の基質(この場合
は尿素)をjm遇させることができるもので、例えばア
セチルセルロスやポリウレタンが使用できる。固定化酵
素II927、保護膜28は、塗布・乾燥法で形成する
ことができる。
In this sensor 2l, the enzyme electrode portion 3a' is coated with the immobilized fluorine 11Δ27. Immobilized enzyme +1ff27
In this method, urease is cross-linked with glutaraldehyde or encased in a polymer membrane. The immobilized enzyme membrane 27 is further covered with a protective membrane 28 to protect it from the test liquid. This protective film 28 can protect the substrate (urea in this case) in the test liquid, and can be made of, for example, acetyl cellulose or polyurethane. The immobilized enzyme II927 and the protective film 28 can be formed by a coating and drying method.

第6図は、センサ2lの出力(mV)と尿素濃度(mM
)との関係を説明する図である。このセンサ21では、
固定化酵素1f’J27中で以下の反応が住し、その際
に律じる電位変化が、センサ出力として検出される。
Figure 6 shows the output (mV) of the sensor 2l and the urea concentration (mM
) is a diagram illustrating the relationship between In this sensor 21,
The following reaction takes place in the immobilized enzyme 1f'J27, and the potential change that governs this reaction is detected as a sensor output.

ウレy−f 尿素十H z O    C 0 2 + 2 N H
 3第6同より、尿素濃度0.5〜5 (mM)におい
て、尿素濃度と重極出力はよい直線関係を示しており、
このセンサ21が尿素センサとして十分に使用できるこ
とが確認できる。
Urea y-f Urea 10Hz O C 0 2 + 2 N H
3. From No. 6, at a urea concentration of 0.5 to 5 (mM), the urea concentration and the polar output show a good linear relationship,
It can be confirmed that this sensor 21 can be satisfactorily used as a urea sensor.

なお、ここでは酵素としてウレアーゼを用いているが、
反応に伴い電位変化を住しる酵素ならば、他のものも使
用でき、その酊素の基質濃度を測定することが可能であ
る。
Although urease is used as the enzyme here,
Other enzymes can be used as long as they exhibit potential changes as a result of the reaction, and the substrate concentration of the laxative can be measured.

(へ)発明の効果 以上説明したように、本発明のポテンショメトリックセ
ンサは、以下に列挙する利点を有している。
(F) Effects of the Invention As explained above, the potentiometric sensor of the present invention has the following advantages.

i:構造及び製造工程が簡単で、小型化、低価格化、量
産化が容易である。
i: The structure and manufacturing process are simple, and it is easy to downsize, reduce costs, and mass-produce.

ii:構造が簡単なため、センサ間の特性のばらつきが
少ない。
ii: Since the structure is simple, there is little variation in characteristics between sensors.

iii :任意の形状に製作することができる。iii: Can be manufactured into any shape.

1v:窒化チタンは導体であり、その電気祇抗を気にす
ることなく、簡単で安価な電位差測定回路を適用するこ
とができる。
1v: Titanium nitride is a conductor, and a simple and inexpensive potential difference measurement circuit can be applied without worrying about its electrical resistance.

V:窒化チタンは、さらに機械的強度も有しているので
、リード部を設けなくても、ii’j接コネクタに挿入
して使用できる。
V: Since titanium nitride also has mechanical strength, it can be used by being inserted into the ii'j connector without providing a lead part.

vi:窒化チタンは化学的に安定な物質であり、被検液
中に溶出することが少なく、長間に亘って安定して使用
することができる、 vii :内部液や液銘部がないため、センサの保守・
管理の必要がなくなる。
vi: Titanium nitride is a chemically stable substance that rarely elutes into the test liquid and can be used stably for a long time. vii: There is no internal liquid or liquid marking part. , sensor maintenance/
There is no need for management.

viii :従来のポテンショメトリソクセンサに比べ
応答速度がはやい。
viii: Faster response speed than conventional potentiometric sensors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は、第1の実施例に係るポテンシ9メトリ
ックセンサの外観平面図、第1rl(b)は、同ポテン
ショメトリックセンサの第1図(a)中1b−1b線に
おける断面図、第1図(C)は、同ボテンショメトリソ
クセンサのコネクタとの接続を説明する斜視図、第2図
は、同ポテンショメトリックセンサの特性を説明する図
、第3図(a)は、第2の実施例に係るポテンショメト
リックセンサの外観平面図、第3図(b)は、同ポテン
ショメトリンクセンサの第3図(a)中mb−mb線に
おける断面閃、第4図は、同ボテンショメトリックセン
ザの特性を説明する同、第5[EZHa)は、第3の実
施例に係るポテンショメ1・リソクセンザの外観平面図
、第5図(b)は、同ボテンショメ1・リソクセンサの
第5図(a)中vb−vb線における断面閃、第6図は
、同ボテンショメトリンクセンサの特P}を説明する図
である。 2:絶縁性茫板、 3:第1の穿化チタン膜、 4:第2の穿化チタン膜、6:有機高分子11Q、l7
:イオン選択■タ、   27:固定化酔素IX。
FIG. 1(a) is an external plan view of the potentiometric sensor according to the first embodiment, and 1rl(b) is a cross-sectional view of the potentiometric sensor taken along line 1b-1b in FIG. 1(a). , FIG. 1(C) is a perspective view illustrating the connection of the potentiometric sensor with the connector, FIG. 2 is a diagram illustrating the characteristics of the potentiometric sensor, and FIG. 3(a) is FIG. 3(b) is a plan view of the external appearance of the potentiometric sensor according to the second embodiment, and FIG. 5 [EZHa], which explains the characteristics of the potentiometric sensor, is an external plan view of the potentiometric sensor 1 and the sensor according to the third embodiment, and FIG. A cross-sectional view taken along the line vb-vb in FIG. 5(a) is shown, and FIG. 6 is a diagram illustrating the characteristic P of the potentiometer link sensor. 2: Insulating tin plate, 3: First perforated titanium film, 4: Second perforated titanium film, 6: Organic polymer 11Q, 17
: Ion selection ■ta, 27: Immobilized intoxicant IX.

Claims (3)

【特許請求の範囲】[Claims] (1)電極支持基材上に、第1及び第2の窒化チタン膜
を形成し、この第1の窒化チタン膜を電位検出電極とす
るとともに、前記第2の窒化チタン膜は有機高分子膜で
被覆し、比較電極とするポテンショメトリックセンサ。
(1) First and second titanium nitride films are formed on an electrode support base material, the first titanium nitride film is used as a potential detection electrode, and the second titanium nitride film is an organic polymer film. A potentiometric sensor coated with and used as a reference electrode.
(2)電極支持基材上に、第1及び第2の窒化チタン膜
を形成し、この第1の窒化チタン膜をイオン選択膜で被
覆し、電位検出電極とすると共に、前記第2の窒化チタ
ン膜は有機高分子膜で被覆し、比較電極とするポテンシ
ョメトリックセンサ。
(2) Forming first and second titanium nitride films on the electrode supporting base material, covering the first titanium nitride film with an ion-selective film to serve as a potential detection electrode, and A potentiometric sensor in which the titanium film is covered with an organic polymer film and used as a reference electrode.
(3)電極支持基材上に、第1及び第2の窒化チタン膜
を形成し、この第1の窒化チタン膜を固定化酵素膜で被
覆し、電位検出電極とすると共に、前記第2の窒化チタ
ン膜は有機高分子膜で被覆し、比較電極とするポテンシ
ョメトリックセンサ。
(3) Form first and second titanium nitride films on the electrode support base material, cover the first titanium nitride film with an immobilized enzyme film, and use it as a potential detection electrode. The titanium nitride film is covered with an organic polymer film and is used as a reference electrode in a potentiometric sensor.
JP1302888A 1989-11-21 1989-11-21 Potentiometric sensor Expired - Lifetime JP2855718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1302888A JP2855718B2 (en) 1989-11-21 1989-11-21 Potentiometric sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1302888A JP2855718B2 (en) 1989-11-21 1989-11-21 Potentiometric sensor

Publications (2)

Publication Number Publication Date
JPH03162660A true JPH03162660A (en) 1991-07-12
JP2855718B2 JP2855718B2 (en) 1999-02-10

Family

ID=17914311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1302888A Expired - Lifetime JP2855718B2 (en) 1989-11-21 1989-11-21 Potentiometric sensor

Country Status (1)

Country Link
JP (1) JP2855718B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005088319A2 (en) * 2004-03-10 2005-09-22 Roche Diagnostics Gmbh Test element analysis system with contact surfaces coated with hard material
EP3225978A4 (en) * 2014-11-26 2018-05-30 Universitat Autònoma de Barcelona Probe for the continuous monitoring in real time of chemical parameters of interest directly in the ground, and system for the continuous monitoring in real time of said chemical parameters of interest

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005088319A2 (en) * 2004-03-10 2005-09-22 Roche Diagnostics Gmbh Test element analysis system with contact surfaces coated with hard material
WO2005088319A3 (en) * 2004-03-10 2007-08-16 Roche Diagnostics Gmbh Test element analysis system with contact surfaces coated with hard material
JP2007535660A (en) * 2004-03-10 2007-12-06 エフ.ホフマン−ラ ロシュ アーゲー Test element analysis system having a contact surface coated with a hard material
KR100842697B1 (en) * 2004-03-10 2008-07-01 에프. 호프만-라 로슈 아게 Test element analysis system with contact surfaces coated with hard material
AU2005220306B2 (en) * 2004-03-10 2009-04-09 F. Hoffmann-La Roche Ag Test element analysis system with contact surfaces coated with hard material
JP4823211B2 (en) * 2004-03-10 2011-11-24 エフ.ホフマン−ラ ロシュ アーゲー Test element analysis system having a contact surface coated with a hard material
US8673213B2 (en) 2004-03-10 2014-03-18 Roche Diagnostics Operations, Inc. Test element analysis system with contact surfaces coated with hard material
US9638655B2 (en) 2004-03-10 2017-05-02 Roche Diagnostics Operations, Inc. Test element analysis system with contact surfaces coated with hard material
EP3225978A4 (en) * 2014-11-26 2018-05-30 Universitat Autònoma de Barcelona Probe for the continuous monitoring in real time of chemical parameters of interest directly in the ground, and system for the continuous monitoring in real time of said chemical parameters of interest
US10578579B2 (en) 2014-11-26 2020-03-03 Universitat Autonoma De Barcelona Probe for the continuous monitoring in real time of chemical parameters of interest directly in the ground and system for the continuous monitoring in real time of said chemical parameters of interest
AU2015352385B2 (en) * 2014-11-26 2021-06-24 Universitat Autonoma De Barcelona Probe for the continuous monitoring in real time of chemical parameters of interest directly in the ground, and system for the continuous monitoring in real time of said chemical parameters of interest

Also Published As

Publication number Publication date
JP2855718B2 (en) 1999-02-10

Similar Documents

Publication Publication Date Title
US4874499A (en) Electrochemical microsensors and method of making such sensors
US4776944A (en) Chemical selective sensors utilizing admittance modulated membranes
US4739380A (en) Integrated ambient sensing devices and methods of manufacture
CA2105510C (en) Amperometric measuring device having an electrochemical sensor
CA1223039A (en) Chemical selective sensors utilizing admittance modulated membranes
EP0299778A2 (en) Microelectrochemical sensor and sensor array
Suzuki et al. An integrated three-electrode system with a micromachined liquid-junction Ag/AgCl reference electrode
US5078855A (en) Chemical sensors and their divided parts
US20040035699A1 (en) Method and fabrication of the potentiometric chemical sensor and biosensor based on an uninsulated solid material
US7638157B2 (en) Method of fabricating electrode assembly of sensor
JPH03502135A (en) chemical sensitive transducer
Hintsche et al. Microbiosensors using electrodes made in Si-technology
JPS59171846A (en) Chemical analysis system and method
JPH03162660A (en) Potentiometric sensor
JPH07311175A (en) Current detection ion selective electrode
JPS59176662A (en) Semiconductor sensor
JPH05504630A (en) Method for manufacturing ion-sensitive working electrode of heavy metal ion sensor
JPH0469338B2 (en)
JP2861149B2 (en) Reference electrode
JPS62132160A (en) Biosensor using separation gate type isfet
JPH0329742Y2 (en)
JPS61212750A (en) Biothermo-chip sensor
JPH0593704A (en) Chemical composition analyzing sensor
JPH0422293Y2 (en)
JPH0422291Y2 (en)