JPH03162571A - Formation of thin film by reactive sputtering in opposed target type sputtering method - Google Patents

Formation of thin film by reactive sputtering in opposed target type sputtering method

Info

Publication number
JPH03162571A
JPH03162571A JP30010589A JP30010589A JPH03162571A JP H03162571 A JPH03162571 A JP H03162571A JP 30010589 A JP30010589 A JP 30010589A JP 30010589 A JP30010589 A JP 30010589A JP H03162571 A JPH03162571 A JP H03162571A
Authority
JP
Japan
Prior art keywords
target
reactive gas
thin film
gas
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30010589A
Other languages
Japanese (ja)
Inventor
Hiroshi Fujimoto
博 藤本
Hironobu Muroi
室井 尋伸
Masahiko Naoe
直江 正彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSAKA SHINKU KIKI SEISAKUSHO KK
Original Assignee
OSAKA SHINKU KIKI SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSAKA SHINKU KIKI SEISAKUSHO KK filed Critical OSAKA SHINKU KIKI SEISAKUSHO KK
Priority to JP30010589A priority Critical patent/JPH03162571A/en
Publication of JPH03162571A publication Critical patent/JPH03162571A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently form a thin film having a desired compsn. without receiving damages by introducing gaseous Ar into the space part between targets disposed to face each other to form plasma and bringing the target atoms into reaction with a separately introduced reactive gas. CONSTITUTION:A voltage is impressed between a pair of the targets 3, 3 disposed to face each other in a vacuum vessel 1 and the gaseous Ar is introduced from an introducing port 8 facing the space part 5 between both into this space part. The plasma space is formed in the above-mentioned space part 5 in such a manner and the target atoms are splashed by sputtering the targets 3. The plasma is introduced onto substrates 7 disposed alongside the above-mentioned space part 5. Further, the reactive gas, such as 02, is supplied from the introducing port 9 disposed alongside the substrates 7. This reactive gas is brought into reaction with the target atoms in the plasma on the front surface of the substrate 7. Thus, the thin film having the desired compsn. is adequately and efficiently formed without receiving the damage of the plasma, etc.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は例えば光磁気ディスクの磁性薄膜の保謹膜等と
して利用されるSi02, S!J<, Ah(h, 
AN等の金属酸化物,金属窒化物等の薄膜を作戊するの
に好適な対向ターゲット式スパッタ法に於ける反応性ス
パッタによる1膜形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention is applicable to Si02, S!, which is used as a protection film for a magnetic thin film of a magneto-optical disk, for example. J<, Ah(h,
The present invention relates to a method for forming a single film by reactive sputtering in a facing target sputtering method suitable for forming thin films of metal oxides such as AN, metal nitrides, etc.

(従来の技術) 従来、反応性スパッタ法によって薄膜形成を行う手段と
しては、第3図の様に、対向ターゲット式スパッタ装置
のターゲット3e, 3e及び基板7eを設けた真空槽
1e内に、アルゴンガスと反応性ガスとの混合ガス(例
えばArと0。との混合ガス)又は反応性ガスのみを単
独で導入させた状態で、ターゲット3el 3eをスパ
ッタさせる手段が存在する。
(Prior Art) Conventionally, as a means for forming a thin film by reactive sputtering, as shown in FIG. There is a method for sputtering the targets 3el to 3e while introducing a mixed gas of a gas and a reactive gas (for example, a mixed gas of Ar and O.) or only a reactive gas alone.

また、従来では特開昭63− 76868号公報に前記
とは異なる反応性スパッタ法が提供されている。
Furthermore, a reactive sputtering method different from the above-mentioned method has been proposed in Japanese Patent Application Laid-Open No. 63-76868.

係る手段は、マグネトロンスパッタ装置を用いるもので
、第4図の様にターゲット3f及び基板7fを配置した
真空槽lf内へのアルゴンガスArと反応性ガス02と
の導入を個別の導入口20. 21から行わせるもので
ある。而して、従来では係るアルゴンガスと反応性ガス
とを真空槽1f内に同時に導入した後に、ターゲット3
fのスパッタを行っていた。
Such means uses a magnetron sputtering device, and as shown in FIG. 4, the argon gas Ar and the reactive gas 02 are introduced into the vacuum chamber lf in which the target 3f and the substrate 7f are arranged through separate introduction ports 20. This is to be done from 21 onwards. Conventionally, after the argon gas and the reactive gas are simultaneously introduced into the vacuum chamber 1f, the target 3 is
f sputtering was performed.

(発明が解決しようとする課題) しかしながら、前記従来の前者の第3図に示す手段では
、真空槽1e内に反応性ガス又は反応性ガスとアルゴン
ガスとの混合ガスを導入させてスパッタを開始するため
に、ターゲット間の空間部5eへのプラズマ空間形成時
に、ターゲット3e+ 3eの表面が反応性ガスと反応
してターゲット表面に絶縁膜や酸化膜が発生付着する現
象を生じる。ところが、この様にターゲット表面に絶縁
膜が付着すれば、直流電源によるターゲットスパッタが
困難となる難点がある。
(Problem to be Solved by the Invention) However, in the former conventional means shown in FIG. 3, sputtering is started by introducing a reactive gas or a mixed gas of a reactive gas and argon gas into the vacuum chamber 1e. Therefore, when a plasma space is formed in the space 5e between the targets, the surface of the targets 3e+3e reacts with the reactive gas, causing a phenomenon in which an insulating film or an oxide film is generated and adhered to the target surface. However, if an insulating film is attached to the target surface in this way, there is a problem in that target sputtering using a DC power source becomes difficult.

尚、これを解消するには印加電源として高周波電源(R
 FQ源)を用いればよいが、該RF電源を用いた場合
には同図二点i!#線に示すA領域までプラズマ空間が
広がる傾向を示す。従って、RF電源の使用によれば基
板表面が空間部5eの外側にはみ出したプラズマによっ
てダメージを受け、良質の薄膜形成に不向きとなり好ま
しくない。
In order to solve this problem, a high frequency power source (R
However, when using the RF power source, the two points i! This shows a tendency for the plasma space to expand to the area A shown by the # line. Therefore, if an RF power source is used, the substrate surface will be damaged by the plasma that protrudes outside the space 5e, making it unsuitable for forming a high-quality thin film.

また、ターゲット表面に絶縁物以外の酸化物等が付着し
た場合であっても、ターゲット表面に付着するこれらの
物質の変化に原因して、基板表面に成膜される薄膜の組
戊も変化する現象を生しる。
Furthermore, even if oxides other than insulators are attached to the target surface, the composition of the thin film deposited on the substrate surface will also change due to changes in these substances attached to the target surface. produce a phenomenon.

よって、従来では基板上に所望の組成の薄膜を形成する
ことが困難となる問題点を有していた。
Therefore, conventional methods have had the problem that it is difficult to form a thin film with a desired composition on a substrate.

一方、前記従来の後者の第4図に示す手段では、アルゴ
ンガスと反応性ガスとの導入位置を個別に設けているも
のの、やはり上記前者の手段と同様にスパッタ作業開始
時にはターゲット3fの近辺にアルゴンガスと反応性ガ
スとの両者が混在するために、スパッタされるターゲッ
ト表面には絶縁膜や酸化膜が生成付着する。また、係る
絶縁膜等の付着現象はスパッタ作業の開始初期の段階で
止まればよいが、実際には該ターゲット表面に付着した
酸化膜等がスパッタされてプラズマ空間中にイオンとし
て存在するために、これが基板If側に導入される反応
性ガスをプラズマ空間側に誘引して、その後も継続して
反応性ガスがプラズマ空間中に入り込む現象を生じてい
た。
On the other hand, in the latter conventional means shown in FIG. 4, although the introduction positions for argon gas and reactive gas are provided separately, they are placed in the vicinity of the target 3f at the start of the sputtering operation, as in the former means. Since both the argon gas and the reactive gas coexist, an insulating film and an oxide film are formed and adhered to the surface of the target to be sputtered. Furthermore, although the phenomenon of adhesion of insulating films, etc. should stop at the initial stage of sputtering work, in reality, the oxide film, etc. adhering to the target surface is sputtered and exists as ions in the plasma space. This attracts the reactive gas introduced into the substrate If side to the plasma space side, resulting in a phenomenon in which the reactive gas continues to enter the plasma space.

従って、後者の手段であっても、上記前者の手段と同様
にスパッタ作業効率が悪い他、基板表内に形成される薄
膜組成がプラズマ空間に対する反応性ガスの影響を受け
て一定せず、所望組成の薄膜形成が難しいものとなって
いた。
Therefore, even with the latter method, the efficiency of the sputtering operation is poor like the former method, and the composition of the thin film formed on the surface of the substrate is not constant due to the influence of the reactive gas in the plasma space. The composition makes it difficult to form a thin film.

また、前記後者のマグネトロンスパッタ装置を用いた手
段では、ターゲットの飛散原子に反応性ガスを適切に反
応させるためには、該反応性ガスをイオン化させるため
の特別な装置を必要としたり、或いは基板7fがプラズ
マに直接晒される等の面から、ダメージの少ない膜質の
良好な薄膜形成作業を行う上では、上記前者の対向ター
ゲット式スパッタに比較して不利なものとなっていた。
Furthermore, in the latter method using a magnetron sputtering device, in order to cause the reactive gas to react appropriately with the scattered atoms of the target, a special device for ionizing the reactive gas is required, or a substrate Since 7f is directly exposed to plasma, it is disadvantageous compared to the former facing target sputtering method in terms of forming a thin film with good film quality and little damage.

それ故、本発明はターゲット表面に反応性ガスを反応さ
せて基板表面に戊膜される薄膜組戊に不当な変化を生じ
させることなく、所望の組戊の薄膜をプラズマ等のダメ
ージを受けさせることなく適切且つ効率良く形威させる
ことを、その目的とする。
Therefore, the present invention allows a desired thin film structure to be damaged by plasma or the like without causing undue changes in the thin film structure formed on the substrate surface by reacting a reactive gas with the target surface. The purpose of this is to properly and efficiently make a difference without any problems.

(課題を解決するための手段) 本発明は対向ターゲット式スパッタ法を利用した上で、
上記従来の両手段の様にスパッタ開始時に既に反応性ガ
スを真空槽内に導入させておくのではなく、あく迄もタ
ーゲット間空間部にプラズマ空間を形成させた後に反応
性ガスを真空槽内に導入させて、当該反応性ガスがプラ
ズマ空間内及びターゲット表面に不都合な影響を与えな
い様にさせるという従来には存在しない全く新規な手段
を採用することにより、上記従来の課題を解決せんとす
る。
(Means for solving the problem) The present invention utilizes a facing target sputtering method, and
Rather than introducing the reactive gas into the vacuum chamber at the start of sputtering as in the conventional methods described above, the reactive gas is introduced into the vacuum chamber after forming a plasma space in the space between the targets. We have attempted to solve the above conventional problems by adopting a completely new method that does not exist in the past, which is to introduce a reactive gas into the plasma space and prevent it from having any adverse effects on the plasma space and the target surface. do.

すなわち、本発明は、一対のターゲット3,3を相互に
対向させて設けてなる真空槽1内にアルゴンガスを導入
し且つ反応性ガスを未導入の条件下で、ターゲット3,
3に電圧を印加することにより該ターゲット間の空間部
5にターゲット原子が飛散したプラズマ空間を形成させ
た後に、真空槽1内に反応性ガスを別途導入させて、タ
ーゲット間空間部5の側方に配置された基板7に被着す
るターゲット原子に対して反応性ガスをプラズマ空間の
外側の位置で反応させる、対向ターゲット式スパッタ法
に於ける反応性スパッタによる薄膜形成方法である。
That is, in the present invention, under conditions in which argon gas is introduced into a vacuum chamber 1 in which a pair of targets 3, 3 are provided facing each other, and no reactive gas is introduced, the targets 3,
After forming a plasma space in which target atoms are scattered in the space 5 between the targets by applying a voltage to 3, a reactive gas is separately introduced into the vacuum chamber 1, and the side of the space 5 between the targets is This is a method of forming a thin film by reactive sputtering in the facing target sputtering method, in which reactive gas is reacted with target atoms deposited on the substrate 7 placed on the opposite side at a position outside the plasma space.

また、本発明は上記構戊に於いて、アルゴンガスをター
ゲット間の空間部5に対面して設けられたガス導入口8
から導入し、且つ反応性ガスを基板7の配置位置の側方
に設けられたガス導入口9から基板表面に沿わせて導入
させるものである。
Further, in the above structure, the present invention introduces argon gas through a gas inlet 8 provided facing the space 5 between the targets.
In addition, the reactive gas is introduced along the surface of the substrate from a gas introduction port 9 provided on the side of the position where the substrate 7 is disposed.

(作用) 上記横戊を特徴とする薄膜形成方法に於いては、ターゲ
ット間空間部5へのプラズマ空間の形成が反応性ガスが
存在しないアルゴンガスの雰囲気中で行われて、その後
真空槽1内に導入される反応性ガスが基板表面に付着さ
れるターゲット原子に反応することにより所望の材質の
薄膜形成が行えることとなる。
(Function) In the thin film forming method characterized by the above-mentioned horizontal holes, the plasma space is formed in the inter-target space 5 in an argon gas atmosphere in which no reactive gas is present, and then the vacuum chamber 1 is A thin film of a desired material can be formed by reacting the reactive gas introduced into the substrate with target atoms attached to the substrate surface.

而して、前記ターゲット間空間部5に形成されるプラズ
マ空間はアルゴンガスのみの雰囲気中で形成されてなる
ために、該プラズマ空間中にはその後に導入される反応
性ガスを誘引する反応性ガスイオンは混在しない。従っ
て、ターゲット間空間部5にプラズマ空間を形或させた
後に反応性ガスを真空槽1内に導入させても、該反応性
ガスがプラズマ空間内に積極的に誘引される現象は生じ
難いものとなる。
Since the plasma space formed in the inter-target space 5 is formed in an atmosphere of only argon gas, there is a reactive gas that attracts the reactive gas introduced later into the plasma space. Gas ions are not mixed. Therefore, even if a reactive gas is introduced into the vacuum chamber 1 after forming a plasma space in the inter-target space 5, a phenomenon in which the reactive gas is actively attracted into the plasma space is unlikely to occur. becomes.

その結果、プラズマ空間中に反応性ガスイオンが入り込
んでターゲット表面に反応性ガスの化合物(酸化膜や絶
縁膜等)が生戊付着する虞れがなくなる。従って、これ
ら化合物の変化に原因して基板表面上の薄膜組成が不当
に変化する様な虞れもない。スパッタによって飛散した
ターゲット原子にはプラズマ空間の外側の領域で反応性
ガスが反応するだけであるから、安定した材質,組戊の
薄膜形成が行えるのである。
As a result, there is no possibility that reactive gas ions will enter the plasma space and a reactive gas compound (oxide film, insulating film, etc.) will be deposited on the target surface. Therefore, there is no possibility that the composition of the thin film on the substrate surface will change unduly due to changes in these compounds. Since the target atoms scattered by sputtering only react with the reactive gas in the region outside the plasma space, it is possible to form a thin film of stable material and structure.

また、ターゲット表面に絶縁膜等が生戊付着される虞れ
が解消されることにより、ターゲットのスパッタには高
周波電源を用いる必要性は無くなり、直流電源であって
も適切なスパッタリングを続行できることとなる。
Additionally, by eliminating the risk of an insulating film being deposited on the target surface, there is no need to use a high frequency power source for target sputtering, and appropriate sputtering can be continued even with a DC power source. Become.

更に、ターゲット間空間部5のプラズマ空間中に反応性
ガスが容易に入り込まないから、ターゲットのスパッタ
浸食を7ルゴンイオンによって高速に行わせることがで
き、基板表面への成膜速度を高速化させることができる
Furthermore, since the reactive gas does not easily enter the plasma space of the inter-target space 5, the target can be sputtered and eroded at high speed by the 7Rgon ions, increasing the speed of film formation on the substrate surface. Can be done.

また、前記後者のアルゴンガスをターゲット間の空間部
5に対面して設けられたガス導入口8から導入し、且つ
反応性ガスを基板7の配置位置の側方に設けられたガス
導入口9から基板表面に沿わせて導入させる手段では、
アルゴンガスをターゲットのスパッタ位軍に対して、又
反応性ガスをターゲットの飛散原子に対して効率良く反
応させることができることとなる。
Further, the latter argon gas is introduced through a gas introduction port 8 provided facing the space 5 between the targets, and the reactive gas is introduced through a gas introduction port 9 provided on the side of the placement position of the substrate 7. In the method of introducing along the substrate surface,
This makes it possible to efficiently cause the argon gas to react with the sputtering force of the target and the reactive gas with the scattered atoms of the target.

(実施例) 以下、本発明の実施例について説明する。(Example) Examples of the present invention will be described below.

本実施例を酸化アルミニウム(A1203)の薄膜形成
を行う場合を一例として説明する。
This embodiment will be described by taking as an example a case where a thin film of aluminum oxide (A1203) is formed.

先ず、第1図に示す樺に、真空槽1内のターゲットホル
ダー2,2に7ルミニウム製の一対のターゲット3,3
を相互に対向させて取付けた初期状態に於いて、真空槽
1内を排気口4から真空排気させて所定の低圧条件とす
る。その後、ターゲット3.3間の空間部5に対面して
設けられた導入口8からアルゴンガスのみを導入し、当
該アルゴンガス圧を例えば5mTorrに設定した上で
、前記ターゲット3.3に負の電圧を印加する。基板7
はターゲット間空間部5の側方にホルダー13等に支持
させて予め配置させておけばよい。
First, on the birch shown in FIG.
In the initial state in which the vacuum chambers 1 and 1 are mounted facing each other, the inside of the vacuum chamber 1 is evacuated from the exhaust port 4 to achieve a predetermined low pressure condition. Thereafter, only argon gas is introduced from the inlet 8 provided facing the space 5 between the targets 3.3, the argon gas pressure is set to, for example, 5 mTorr, and a negative pressure is applied to the target 3.3. Apply voltage. Board 7
may be placed in advance on the side of the inter-target space 5 by being supported by a holder 13 or the like.

係るスパッタ条件では、磁石6・・・によって垂直磁界
が形成されたターゲット間空間部5にターゲット原子と
しての7ルミニウムイオン,ガンマー電子,及びアルゴ
ンイオンが混在したプラズマ空間が形成される。当該プ
ラズマ空間の形成初期段階では、真空槽1内に反応性ガ
スが導入されていないから、ターゲット表面に酸化膜が
発生付着する様な虞れは当然ながら皆無である。
Under such sputtering conditions, a plasma space in which 7luminium ions, gamma electrons, and argon ions as target atoms are mixed is formed in the inter-target space 5 where a perpendicular magnetic field is formed by the magnets 6 . Since no reactive gas is introduced into the vacuum chamber 1 at the initial stage of forming the plasma space, there is naturally no risk of an oxide film forming or adhering to the target surface.

次に、該プラズマ空間が形成されたことを確認した後に
、反応性ガスとしての酸素を初めて真空槽1内に導入す
る。尚、前記アルゴンガスの導入は継続したままにして
おく。酸素の導入は、基板7の側方に設けられた導入口
9から基板7の表面位置に対して行えばよい。
Next, after confirming that the plasma space has been formed, oxygen as a reactive gas is introduced into the vacuum chamber 1 for the first time. Note that the introduction of the argon gas is continued. Oxygen may be introduced to the surface of the substrate 7 through an inlet 9 provided on the side of the substrate 7.

これによって、スパッタによってターゲット間空間部5
から基板7の表面に到達して被着される7ルミニウム原
子(イオン)が酸化されて、酸化アルミニウムとして基
板7の表面上に成膜される。
As a result, the inter-target space 5 is formed by sputtering.
The aluminum atoms (ions) that reach the surface of the substrate 7 and are deposited thereon are oxidized and formed as aluminum oxide on the surface of the substrate 7.

導入口9から吐出される酸素は基板7の表面側に沿って
供給されるために、該酸素供給量が少量であっても的確
に7ルミニウム原子と反応し、酸化アルミニウムの薄膜
が確実に生戊される。
Since the oxygen discharged from the inlet 9 is supplied along the surface side of the substrate 7, even if the amount of oxygen supplied is small, it reacts accurately with the aluminum atoms, and a thin film of aluminum oxide is reliably formed. be decapitated.

而して、ターゲット間空間部5に形成されたプラズマ空
間はアルゴンガスの雰囲気中のみで形成されたものであ
るから、該プラズマ空間内にはプラズマ空間部の領域外
に存在する酸素を誘引する酸素イオンは存在しない。従
って、導入口9から導入される酸素がプラズマ空間内に
積極的に入り込んで、ターゲット表面に酸化膜が生戊さ
れる現象は非常に生じ難いものとなる。
Since the plasma space formed in the inter-target space 5 is formed only in an argon gas atmosphere, oxygen present outside the plasma space is attracted into the plasma space. Oxygen ions are not present. Therefore, the phenomenon in which oxygen introduced from the inlet 9 actively enters the plasma space and an oxide film is formed on the target surface is extremely unlikely to occur.

その結果、ターゲット3,3は酸素を含ます7ルゴンイ
オンを主とするプラズマによって効率良くスパッタ浸食
され、戊膜速度が高速となる。また、7ルミニウムの酸
化はアルミニウムがプラズマ空間の領域から基板7の表
面で成膜される迄の一定の段階で行われるだけであるか
ら、その酸化反応は安定し、成膜される薄膜の膜質組成
を一定化させることができるのでる。
As a result, the targets 3, 3 are efficiently sputtered and eroded by the plasma mainly composed of 7 irgon ions containing oxygen, and the film deposition rate becomes high. In addition, since the oxidation of 7-aluminium is only carried out at a certain stage from the plasma space region to the time when aluminum is formed on the surface of the substrate 7, the oxidation reaction is stable and the quality of the thin film formed is stable. This makes it possible to keep the composition constant.

本件発明者は、上記実施例と同様な酸化7ルミニウムの
薄膜形成作業を実験した処、次の様な結果が得られた。
The inventor of the present invention conducted an experiment to form a thin film of hepta-luminium oxide similar to the above example, and obtained the following results.

ターゲット材質:アルミニウム(純度99. 99%)
ターゲットサイズ: 1 00mmX 1 00mmタ
ーゲット間距離:140mm ターゲット中心から基板までの距離:130mmアルゴ
ンガス圧力: 5 mTorr (流量20secM)
酸素ガス流量: 15secM ?パッタ入力電力:l,5kw(電圧470V,放電電
流3.5A) 上記条件のスパッタ作業では、堆積速度が800A/ 
m i nで酸化7ルミニウム(AI■03)薄膜が得
られた。又、アルゴン流量を4QsccMにした場合も
同一結果が得られた。
Target material: aluminum (purity 99.99%)
Target size: 100 mm x 100 mm Distance between targets: 140 mm Distance from target center to substrate: 130 mm Argon gas pressure: 5 mTorr (flow rate 20 secM)
Oxygen gas flow rate: 15secM? Sputtering input power: l, 5kw (voltage 470V, discharge current 3.5A) In sputtering work under the above conditions, the deposition rate was 800A/
A thin film of 7 aluminum oxide (AI 03) was obtained by min. Furthermore, the same results were obtained when the argon flow rate was set to 4QsccM.

従来の第3図に示す方法では、アルゴンと酸素の流量比
が1:1以上でなければ所望のAI203が得られなか
ったが、本発明では上記の如くそれ以下の比率で所望の
酸化アルミニウムが得られた。
In the conventional method shown in FIG. 3, the desired AI203 could not be obtained unless the flow rate ratio of argon and oxygen was 1:1 or more, but in the present invention, the desired aluminum oxide could be obtained at a lower ratio as described above. Obtained.

これは、酸素がターゲット間空間部内のプラズマ空間中
に入り込まず、ターゲットが7ルゴンイオンによって専
らスパッタされているからである。
This is because oxygen does not enter the plasma space in the inter-target space and the target is sputtered exclusively by 7-Rgon ions.

尚、上記実施例では、酸化7ルミニウムの戊膜作業・を
一例として説明したが、本発明で生戊する薄膜の具体的
な材質は決してこれに限定されない。
Incidentally, in the above embodiment, the film-forming operation of hepta-luminium oxide was explained as an example, but the specific material of the thin film formed in the present invention is by no means limited to this.

従って、ターゲットや反応性ガスの種類も7ルミニウム
や酸素に限定されず、その他の様々な種類の薄膜形成作
業に適用できるものである。
Therefore, the types of targets and reactive gases are not limited to 7-luminium or oxygen, and can be applied to various other types of thin film forming operations.

また、請求項第1項に係る本発明では、アルゴンガスと
反応性ガスとの夫々の導入口を必ずしも個別に設けたり
、又反応性ガスを必ずしも基板7の側方に設ける様な必
要はない。
Further, in the present invention according to claim 1, it is not necessary to provide separate introduction ports for argon gas and reactive gas, or to provide reactive gas on the side of the substrate 7. .

例えば、第2図の様に、アルゴンガスArと反応性ガス
02との導入口10を共有させて、バルブI+,11a
の操作によって反応性ガス02の供給開始時期をアルゴ
ンガスArの供給開始時期よりも遅らせる様にしてもよ
い。係る場合には、反応性ガス0。が基板7の表面に直
接供給されていないために、ターゲット飛散原子に対す
る反応性ガスの反応効率が低下するものの、反応性ガス
はターゲット間空間部5の外側の領域でターゲット原子
と反応してやはり所望の材質の薄膜形成作業が適切に行
えるのである。請求項第1項に係る本発明では、ガス導
入口の具体的な位置や個数等は決して特定されるもので
はない。
For example, as shown in FIG. 2, the argon gas Ar and the reactive gas 02 may share the inlet 10, and
The timing of starting supply of reactive gas 02 may be delayed from the timing of starting supply of argon gas Ar by the operation. In such cases, 0 reactive gas. Since the reactive gas is not directly supplied to the surface of the substrate 7, the reaction efficiency of the reactive gas against the target scattered atoms is reduced, but the reactive gas still reacts with the target atoms in the area outside the inter-target space 5. This allows the work of forming a thin film of a desired material to be performed appropriately. In the present invention according to claim 1, the specific position, number, etc. of the gas introduction ports are never specified.

更に、本発明では具体的なスパッタ作業条件や使用する
装置の具体的な構成等も上記実施例の如く限定されず、
本発明の各作業工程は全て本発明の意図する範囲内で変
更自在である。
Furthermore, in the present invention, the specific sputtering work conditions and the specific configuration of the equipment used are not limited as in the above embodiments.
All of the working steps of the present invention may be modified within the intended scope of the present invention.

(発明の効果) 叙上の様に、本発明は反応性ガスが未導入のアルゴンガ
スのみの雰囲気中でターゲット間空間部にプラズマ空間
を予め形成させて、その後に反応性ガスを真空槽内に導
入させる様にしたために、ターゲット原子に反応性ガス
を反応させた所望材質の薄膜が得られることは勿論のこ
と、スパッタ開始初期から反応性ガスを真空槽内に導入
させていた従来の手段の様にターゲット間空間部に形成
されるプラズマ空間中に反応性ガスイオンを混在させる
ことがなく、よってターゲット表面に酸化膜や絶縁膜が
生成付着したり、或いはその後に導入される反応性ガス
がプラズマ空間中に不当に誘引される様な現象を適切に
解消できることとなった。
(Effects of the Invention) As described above, the present invention involves forming a plasma space in advance in the inter-target space in an atmosphere of only argon gas without introducing any reactive gas, and then introducing the reactive gas into a vacuum chamber. By introducing the reactive gas into the vacuum chamber, it is possible to obtain a thin film of the desired material by reacting the reactive gas with the target atoms. In this way, reactive gas ions are not mixed in the plasma space formed in the space between targets, so oxide films and insulating films are not formed or adhered to the target surface, or reactive gases introduced afterwards This makes it possible to appropriately eliminate the phenomenon in which particles are unduly attracted into the plasma space.

その結果、本発明では基板表面に形成される薄膜の材質
,組成を従来の様にターゲット表面に付着生成される酸
化膜や絶縁膜等に原因だせて不当に変化させることがな
く、所望材質,組戊の薄膜形成作業を適切に行うことが
できるという格別な効果がある。
As a result, in the present invention, the material and composition of the thin film formed on the substrate surface are not unduly changed due to the oxide film, insulating film, etc. that adheres to the target surface, unlike conventional methods, and the desired material and composition can be changed. This has the special effect of allowing the thin film formation work of the assembly to be carried out appropriately.

また、ターゲット表面への絶縁膜等の生成付着を解消で
きることにより、ターゲットへの印加電源としてターゲ
ット間空間部の外側にプラズマ空間が拡がる傾向を示し
て基板表面の薄膜の膜質低下を招来させ易い高周波電源
を無理に用いる必要性も無くなって、直流電源の選択使
用により良質の薄膜形成作業が行える利点もある。
In addition, by eliminating the formation and adhesion of insulating films, etc. on the target surface, high-frequency power is applied to the target, and the plasma space tends to expand outside the inter-target space, which tends to deteriorate the film quality of the thin film on the substrate surface. There is also the advantage that there is no need to forcefully use a power source, and high-quality thin film formation can be performed by selectively using a DC power source.

更に、プラズマ空間中に反応性ガスが入り込まないこと
により、ターゲットのスパッタをアルゴンイオンによっ
て効率良く行えることとなって、絶縁薄膜の成膜作業を
行う様な場合であってもターゲットのスパッタ速度及び
基板表面への成膜速度を高速にできるという予期せぬ効
果をも有するに至った。
Furthermore, since reactive gases do not enter the plasma space, target sputtering can be efficiently performed using argon ions, and even when depositing an insulating thin film, target sputtering speed and This method also has the unexpected effect of increasing the rate of film formation on the substrate surface.

更に、本発明に係る対向ターゲット式スパッタ法によれ
ば、反応性ガスを特殊な装置を用いて積極的にイオン化
させることなくターゲット原子に対して簡易に反応させ
ることができ、又プラズマ空間を基板表面に晒させるこ
とが回避できて、.良質の薄膜形成に最適である。
Furthermore, according to the facing target sputtering method according to the present invention, it is possible to easily cause a reactive gas to react with target atoms without actively ionizing the reactive gas using a special device, and the plasma space can be directly connected to the substrate. You can avoid exposing it to the surface. Ideal for forming high-quality thin films.

また、本発明のアルゴンガスをターゲット間の空間部に
対面して設けられたガス導入口から導入し、且つ反応性
ガスを他のガス導入口から基板表面に沿わせて導入させ
る手段よれば、各ガスをスパッタリング及びターゲット
原子との反応に効率良く作用すべく供給できて、これら
ガスの消費量の削減並びに各反応作用の確実化が図れて
薄膜の膜質を一層向上させ得る利点がある。
Further, according to the method of the present invention, the argon gas is introduced from a gas introduction port provided facing the space between the targets, and the reactive gas is introduced from another gas introduction port along the substrate surface. Each gas can be supplied to efficiently effect sputtering and reaction with target atoms, which has the advantage of reducing the consumption of these gases, ensuring each reaction action, and further improving the film quality of the thin film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る薄膜形成方法の実施に使用される
対向ターゲット式スパッタ装置の一実施例を示す説明図
。 第2図は本発明の他の実施例を示す説明図。 第3図及び第4図は従来例を示す説明図。 1・・・真空槽     3,3・・・ターゲット5・
・・空間部       7・・・基板8.9・・・導
入口
FIG. 1 is an explanatory diagram showing one embodiment of a facing target type sputtering apparatus used for carrying out the thin film forming method according to the present invention. FIG. 2 is an explanatory diagram showing another embodiment of the present invention. FIG. 3 and FIG. 4 are explanatory diagrams showing a conventional example. 1... Vacuum chamber 3, 3... Target 5.
...Space part 7... Board 8.9... Inlet

Claims (1)

【特許請求の範囲】 1 一対のターゲット3,3を相互に対向させて設けて
なる真空槽1内にアルゴンガスを導入し且つ反応性ガス
を未導入の条件下で、ターゲット3,3に電圧を印加さ
せて該ターゲット間の空間部5にターゲット原子が飛散
したプラズマ空間を形成せしめ、その後該プラズマ空間
の形成後に反応性ガスを真空槽1内に別途導入させるこ
とにより、ターゲット間空間部5の側方に配置された基
板7に被着するターゲット原子に対して反応性ガスをプ
ラズマ空間の外側の位置で反応させることを特徴とする
対向ターゲット式スパッタ法に於ける反応性スパッタに
よる薄膜形成方法。 2 請求項第1項に於いて、アルゴンガスをターゲット
間の空間部5に対面して設けられたガス導入口8から導
入し、且つ反応性ガスを基板7の配置位置の側方に設け
られたガス導入口9から基板表面に沿わせて導入させる
ことを特徴とする対向ターゲット式スパッタ法に於ける
反応性スパッタによる薄膜形成方法。
[Claims] 1. A voltage is applied to the targets 3, 3 under conditions in which argon gas is introduced into a vacuum chamber 1 in which a pair of targets 3, 3 are provided facing each other, and no reactive gas is introduced. is applied to form a plasma space in which target atoms are scattered in the space 5 between the targets, and then, after the formation of the plasma space, a reactive gas is separately introduced into the vacuum chamber 1. Formation of a thin film by reactive sputtering in a facing target sputtering method characterized by reacting a reactive gas with target atoms deposited on a substrate 7 placed on the side of the substrate 7 at a position outside the plasma space. Method. 2. In claim 1, argon gas is introduced from the gas inlet 8 provided facing the space 5 between the targets, and the reactive gas is introduced to the side of the placement position of the substrate 7. A method for forming a thin film by reactive sputtering in a facing target sputtering method, characterized in that the gas is introduced from a gas inlet 9 along the substrate surface.
JP30010589A 1989-11-17 1989-11-17 Formation of thin film by reactive sputtering in opposed target type sputtering method Pending JPH03162571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30010589A JPH03162571A (en) 1989-11-17 1989-11-17 Formation of thin film by reactive sputtering in opposed target type sputtering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30010589A JPH03162571A (en) 1989-11-17 1989-11-17 Formation of thin film by reactive sputtering in opposed target type sputtering method

Publications (1)

Publication Number Publication Date
JPH03162571A true JPH03162571A (en) 1991-07-12

Family

ID=17880777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30010589A Pending JPH03162571A (en) 1989-11-17 1989-11-17 Formation of thin film by reactive sputtering in opposed target type sputtering method

Country Status (1)

Country Link
JP (1) JPH03162571A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6017396A (en) * 1995-08-04 2000-01-25 Sharp Kabushiki Kaisha Plasma film forming apparatus that prevents substantial irradiation damage to the substrate
JP2001335926A (en) * 2000-05-24 2001-12-07 Nippon Synthetic Chem Ind Co Ltd:The Method for producing gas barriable film
JP2006005115A (en) * 2004-06-17 2006-01-05 Casio Comput Co Ltd Thin-film transistor and manufacturing method thereof
WO2007074563A1 (en) * 2005-12-27 2007-07-05 Tokyo Electron Limited Film forming apparatus and process for producing light emitting element
WO2007145255A1 (en) * 2006-06-14 2007-12-21 Tokyo Electron Limited Light-emitting device and method for manufacturing light-emitting device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6017396A (en) * 1995-08-04 2000-01-25 Sharp Kabushiki Kaisha Plasma film forming apparatus that prevents substantial irradiation damage to the substrate
JP2001335926A (en) * 2000-05-24 2001-12-07 Nippon Synthetic Chem Ind Co Ltd:The Method for producing gas barriable film
JP2006005115A (en) * 2004-06-17 2006-01-05 Casio Comput Co Ltd Thin-film transistor and manufacturing method thereof
WO2007074563A1 (en) * 2005-12-27 2007-07-05 Tokyo Electron Limited Film forming apparatus and process for producing light emitting element
WO2007145255A1 (en) * 2006-06-14 2007-12-21 Tokyo Electron Limited Light-emitting device and method for manufacturing light-emitting device
JP2007335203A (en) * 2006-06-14 2007-12-27 Tokyo Electron Ltd Light-emitting element and manufacturing method of light-emitting element
US8263174B2 (en) 2006-06-14 2012-09-11 Tokyo Electron Limited Light emitting device and method for manufacturing light emitting device

Similar Documents

Publication Publication Date Title
KR950013591B1 (en) Continuous thin film formation method
EP0860514B1 (en) Reactive sputtering apparatus and process for forming thin film using same
EP0908531B1 (en) Apparatus and method for forming a thin film of a compound
JPS6341013A (en) Forming device for thin-film
JPS59185775A (en) Metal compound quick reactive sputtering
JPH03162571A (en) Formation of thin film by reactive sputtering in opposed target type sputtering method
JPH0641733A (en) Reactive sputtering device
JPH10298749A (en) Thin film forming device
JP3038287B2 (en) Thin film production equipment
JPH01205085A (en) Method for cleaning metal
JPS619570A (en) Manufacture of thin film
JP4918191B2 (en) Deposition method
JPH0734245A (en) Sputtering device
JPH02115361A (en) Sputtering film formation
JPH0397855A (en) Sputtering device
JPH0250959A (en) Method and apparatus for forming thin film of rare earth metal
JPS6333561A (en) Thin film forming method
JPS63210006A (en) Formation of thin amorphous carbon film
JPH05247634A (en) Sputtering device
JPH06212413A (en) Reactive sputtering system
Madocks Novel magnetic plasma confinement method for plasma treatment and PECVD processes
JPH1136069A (en) Method for exhausting film forming device
JPH0375365A (en) Sputtering target
JPH11350127A (en) Device for sputtering
JPH02310367A (en) Magnetron sputtering device