JPH03162519A - Manufacture of hot dip galvanized cold rolled steel sheet having low yield ratio for building having superior fire resistance - Google Patents
Manufacture of hot dip galvanized cold rolled steel sheet having low yield ratio for building having superior fire resistanceInfo
- Publication number
- JPH03162519A JPH03162519A JP30198389A JP30198389A JPH03162519A JP H03162519 A JPH03162519 A JP H03162519A JP 30198389 A JP30198389 A JP 30198389A JP 30198389 A JP30198389 A JP 30198389A JP H03162519 A JPH03162519 A JP H03162519A
- Authority
- JP
- Japan
- Prior art keywords
- hot
- cold
- steel sheet
- hot dip
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 239000010960 cold rolled steel Substances 0.000 title claims description 13
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 43
- 239000010959 steel Substances 0.000 claims abstract description 43
- 238000005246 galvanizing Methods 0.000 claims abstract description 25
- 238000010438 heat treatment Methods 0.000 claims abstract description 15
- 238000001816 cooling Methods 0.000 claims abstract description 14
- 238000005097 cold rolling Methods 0.000 claims abstract description 9
- 238000005098 hot rolling Methods 0.000 claims abstract description 8
- 229910052802 copper Inorganic materials 0.000 claims abstract description 6
- 230000009466 transformation Effects 0.000 claims abstract description 6
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 5
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 5
- 229910001335 Galvanized steel Inorganic materials 0.000 claims abstract description 4
- 239000008397 galvanized steel Substances 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 12
- 238000010276 construction Methods 0.000 claims description 10
- 238000007747 plating Methods 0.000 claims description 9
- 230000009467 reduction Effects 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims 1
- 229910052725 zinc Inorganic materials 0.000 claims 1
- 239000011701 zinc Substances 0.000 claims 1
- 230000009970 fire resistant effect Effects 0.000 abstract description 8
- 229910052799 carbon Inorganic materials 0.000 abstract description 3
- 229910052758 niobium Inorganic materials 0.000 abstract description 2
- 229910001209 Low-carbon steel Inorganic materials 0.000 abstract 1
- 238000003303 reheating Methods 0.000 abstract 1
- 239000010949 copper Substances 0.000 description 26
- 239000000463 material Substances 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 8
- 238000005728 strengthening Methods 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 239000006104 solid solution Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 238000000576 coating method Methods 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 5
- 238000005336 cracking Methods 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 206010040844 Skin exfoliation Diseases 0.000 description 3
- 239000004566 building material Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 150000001247 metal acetylides Chemical class 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000009864 tensile test Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 238000007665 sagging Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- -1 iron-based metals Chemical class 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
Landscapes
- Coating With Molten Metal (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明はプレハブ用建材、その他土木および海洋構造物
等の分野における各種建造物に用いる耐火性の優れた低
降伏比溶融亜鉛めっき冷延洞板の製造方法に係る。Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a low yield ratio hot-dip galvanized cold-rolled tunnel with excellent fire resistance used for prefabricated building materials and various other buildings in the fields of civil engineering and marine structures. This relates to the method of manufacturing the board.
(従来の技術)
建築用冷延鋼板には、冷間圧延爛及び爛帯(JISG
3141) 、高耐候性圧延鋼板(JIS G 312
5)、鋼板製折板屋根構或材(以下周知鋼板という)な
どが広く利用されている。(Prior art) Cold-rolled steel sheets for construction use include cold-rolling cracks and stripes (JISG
3141), highly weather resistant rolled steel plate (JIS G 312)
5) Folded steel plate roof structures or materials (hereinafter referred to as well-known steel plates) are widely used.
建築物の耐火性は重要で、大型ビルから一般住宅用まで
種々その対策がなされている。しかし、一般的には特開
昭63 − 47451号公報記載の技術のように耐火
被覆で以て火災対策を行っているのが現状である.その
ため、建築コストが上昇し、建造物の利用空間を狭くし
ている。Fire resistance of buildings is important, and a variety of measures are being taken for everything from large buildings to general residential buildings. However, the current situation is that fire prevention measures are generally taken using fireproof coatings, such as the technique described in Japanese Patent Application Laid-Open No. 63-47451. As a result, construction costs are rising and the usable space of buildings is becoming smaller.
近時、耐火設計について見直しが行われ、昭和62年建
築物の新耐火設計法が法定されるにいたり、従来の火災
時の許容鋼材温度(350’C以下)の規定が外され、
鋼板の高温強度と建物に実際に加わっている荷重により
、耐火被覆の能力を決定できるようになり、素材鋼板の
高温強度が確保される場合等には無被覆で鋼板を使用す
ることも可能となった。Recently, fire-resistant design has been reviewed, and in 1986, the new fire-resistant design law for buildings was enacted, and the previous regulations regarding the allowable temperature of steel materials (350'C or less) in the event of a fire were removed.
The ability of fire-resistant coating can now be determined based on the high-temperature strength of the steel plate and the load actually applied to the building, and if the high-temperature strength of the material steel plate is ensured, it is also possible to use steel plate without coating. became.
特願昭63−143470号の発明は、Mo添加を基本
としており、主として厚板についてのものである。The invention disclosed in Japanese Patent Application No. 63-143470 is based on the addition of Mo and is mainly applied to thick plates.
また、この厚板の技術をホットストリップミルに応用発
明した技術として特願平1 −3834号明細書記載の
技術があるがこの技術もやはり勅添加を基本としており
、高合金鋼ほどではないが経済性において問題は完全に
解決されたとはいえない。In addition, there is a technology described in Japanese Patent Application No. 1-3834 that was invented by applying this thick plate technology to hot strip mills, but this technology is also based on forced addition, and although it is not as effective as high alloy steel. In terms of economics, the problem cannot be said to have been completely resolved.
最近、本発明者らはこの高温強度確保のためCu添加鋼
の優秀性に着目し、耐火建築用の熱延鋼板ならびに溶融
亜鉛メッキ熱延鋼板の技術として、それぞれ特願平1−
26225号、特願平1 −16446号の技術を発明
した。Recently, the present inventors have focused on the superiority of Cu-added steel in order to ensure high-temperature strength, and have applied patent application No. 1-1999 to the technology for hot-rolled steel sheets and hot-dip galvanized steel sheets for fire-resistant construction.
No. 26225 and patent application No. 1-16446.
しかし、建築物のうち屋根材、ブレハプ用建材等は冷延
鋼板または鋼帯を素材として使用する場合が多い。However, in many cases, cold-rolled steel plates or steel strips are used as materials for roofing materials, building materials for breakouts, etc. of buildings.
そこで、本発明者らは、耐火建築用の冷延鋼板の技術と
して、特願平1−27297号の技術を発明した。Therefore, the present inventors invented the technology of Japanese Patent Application No. 1-27297 as a technology for cold-rolled steel sheets for fire-resistant construction.
建築用鋼としては、さらに耐食性を有することが必要で
ある。そこで生産性、経済性の優れた連続式溶融亜鉛メ
ッキラインにより、冷延鋼板に亜鉛メッキを施す技術が
必要である。As a building steel, it is also necessary to have corrosion resistance. Therefore, there is a need for a technology to galvanize cold-rolled steel sheets using a continuous hot-dip galvanizing line that is highly productive and economical.
冷延鋼帯または鋼板を連続式溶融亜鉛メッキラインにて
、亜鉛メッキを施す場合、この工程では大量生産のため
通板速度を極度に下げることはできない.さらに再結晶
を行わせ、かつ良好なメッキ密着性を有するためには、
還元温度をむやみに下げることはできない。加えて焼鈍
後に急冷工程が存在する。When cold-rolled steel strips or steel plates are galvanized on a continuous hot-dip galvanizing line, the threading speed cannot be reduced to an extremely low level due to mass production in this process. In order to further recrystallize and have good plating adhesion,
The reduction temperature cannot be lowered unnecessarily. In addition, there is a rapid cooling step after annealing.
これらの理由により常温引張特性および高温強度特性を
付与させるのは、厚板、熱延鋼板および溶融亜鉛メッキ
熱延鋼板の製造工程とは大幅に異なってくる。For these reasons, the process for imparting room-temperature tensile properties and high-temperature strength properties is significantly different from the manufacturing process for thick plates, hot-rolled steel sheets, and hot-dip galvanized hot-rolled steel sheets.
本発明は、耐火建築用鋼板としてのCu添加網の技術を
さらに発展させたものである。The present invention further develops the technology of Cu-added mesh as a fire-resistant architectural steel plate.
(発明が解決しようとする課題)
従来鋼では結晶粒或長、析出物の粗大化、炭化物溶解等
で高温強度を確保するのが難しい。また、高合金耐熱金
属は鉄系を含めて存在しているが、建築用に大量に消費
されるものとしては、経済性に難点がある。(Problems to be Solved by the Invention) In conventional steels, it is difficult to ensure high-temperature strength due to elongation of crystal grains, coarsening of precipitates, dissolution of carbides, etc. In addition, high-alloy heat-resistant metals, including iron-based metals, exist, but they are economically disadvantageous as they are consumed in large quantities for construction purposes.
本発明の目的は、高温特性に優れ耐火被覆が低減ないし
省略でき、屋根材、プレハブ用建材等への戒形時に容易
に加工でき、さらに母材耐食性も優れた低降伏比の溶融
亜鉛メッキ冷延鋼板あるいは銅帯を製造する方法を提供
するにある。The purpose of the present invention is to provide a hot-dip galvanized cold coating with a low yield ratio that has excellent high-temperature properties, can reduce or omit the need for fire-resistant coating, can be easily processed when forming into roofing materials, prefabricated building materials, etc., and has excellent base material corrosion resistance. The object of the present invention is to provide a method for manufacturing a rolled steel plate or a copper strip.
(課題を解決するための手段)
本発明者らは、火災時における鋼板強度について研究の
結果、経済的な戒分系で、600℃での降伏点強度が常
温強度の0. 6倍以上となる鋼板の製造方法を発明す
るに至った。さらに、地震時における鋼板強度について
検討の結果、常温における降伏比(降伏点強度/引張強
度)が80%以下の低降伏比鋼板が、耐震性に優れてい
ることも明らかにし、併せて達戒するに至った。(Means for Solving the Problems) As a result of research on the strength of steel plates in the event of a fire, the present inventors found that, in an economical system, the yield point strength at 600°C is 0.00% of the room temperature strength. He has invented a method for manufacturing steel sheets that is more than six times as large. Furthermore, as a result of examining the strength of steel plates during earthquakes, it was revealed that low yield ratio steel plates with a yield ratio (yield point strength/tensile strength) of 80% or less at room temperature have excellent earthquake resistance. I ended up doing it.
本発明の骨子とするところは下記のとおりである。The gist of the present invention is as follows.
(1)重量比で、C≦0.0工%、Mn : 0. 1
〜0. 5%、P≦0.1%、Al≦0.06%、C
u : 0. 6 〜2. 0%を含み、残部Feおよ
び不可避的不純物からなる鋼をスラブとした後、直ちに
、あるいは1150℃以下に加熱後、Ar=変態点以上
で熱間圧延し、コイルとし、その後、冷間圧下率5〜9
0%で冷間圧延を行った後、連続溶融亜鉛メッキライン
にて、平均昇温速度1℃/s以上で昇温し、還元性雰囲
気中で750〜9 0 0 ’Cに加熱し、その後平均
冷却速度3℃/s以上で冷却し、続いて溶融亜鉛メッキ
浴に浸漬し溶融亜鉛メッキを施すことを特徴とする60
0℃における降伏点強度が常温における降伏点強度の0
.6倍以上である耐火性に優れた建築用低降伏比溶融亜
鉛メッキ冷延鋼板の製造方法。(1) Weight ratio: C≦0.0%, Mn: 0. 1
~0. 5%, P≦0.1%, Al≦0.06%, C
u: 0. 6-2. 0%, the balance being Fe and unavoidable impurities is made into a slab, immediately or after heating to 1150°C or less, hot rolled at Ar=transformation point or higher to form a coil, and then cold rolled. 5-9
After cold rolling at 0%, the temperature was raised on a continuous hot-dip galvanizing line at an average temperature increase rate of 1°C/s or more, heated to 750-900'C in a reducing atmosphere, and then 60 characterized by cooling at an average cooling rate of 3°C/s or more, followed by immersion in a hot-dip galvanizing bath to apply hot-dip galvanizing.
The yield point strength at 0℃ is 0 of the yield point strength at room temperature.
.. A method for producing a low yield ratio hot-dip galvanized cold-rolled steel sheet for construction, which has an excellent fire resistance of 6 times or more.
法。Law.
(2)重量比で、C≦0.Ol%、Mn : 0. 1
〜0. 5%、P≦0.1%、Al≦0.06%、Cu
: 0. 6 〜2. 0%に加えて、Ti;0.0
08〜0. 2%または/かつNb: o.o 0 8
〜0. 1 0%を含み、残部Feおよび不可避的不
純物からなる鋼をスラブとした後、直ちに、あるいは1
150℃以下に加熱後、Ar3変態点以上で熱間圧延し
、コイルとし、その後、冷間圧下率5〜90%で冷間圧
延を行った後、連続溶融亜鉛メッキラインにて、平均昇
温速度1℃/s以上で昇温し、還元性雰囲気中で750
〜900℃に加熱し、その後平均冷却速度3℃ / s
以上で冷却し、その後溶融亜鉛メッキ浴に浸漬し溶融亜
鉛メッキを施すことを特徴とする600℃における降伏
点強度が常温における降伏点強度の0.6倍以上である
耐火性に優れた建築用低降伏比溶融亜鉛メッキ冷延鋼板
の製造方法。(2) In terms of weight ratio, C≦0. Ol%, Mn: 0. 1
~0. 5%, P≦0.1%, Al≦0.06%, Cu
: 0. 6-2. 0% plus Ti; 0.0
08-0. 2% or/and Nb: o. o 0 8
~0. Immediately or after making a slab of steel containing 10% Fe and the remainder Fe and unavoidable impurities.
After heating to 150°C or lower, hot rolling is performed above the Ar3 transformation point to form a coil. After that, cold rolling is performed at a cold reduction rate of 5 to 90%, and then the average temperature is increased in a continuous hot-dip galvanizing line. The temperature was raised at a rate of 1°C/s or more, and the temperature was increased to 750°C in a reducing atmosphere.
Heating to ~900℃, then average cooling rate 3℃/s
For architectural use with excellent fire resistance, the yield point strength at 600°C is 0.6 times or more than the yield point strength at room temperature, characterized by cooling at the above temperature, followed by immersion in a hot-dip galvanizing bath and hot-dip galvanizing. A method for manufacturing low yield ratio hot-dip galvanized cold-rolled steel sheets.
(3)前項1または2記載の方法において、さらに綱中
にB : 0.0001〜0.003%または/かつN
iをNi/Cuで0.2〜1.0含有することを特徴と
する600℃における降伏点強度が常温における降伏点
強度の0. 6倍以上である耐火性に優れた建築用低降
伏比溶融亜鉛メッキ冷延鋼板の製造方法.以下、本発明
構或要件の数値限定理由を述べる。(3) In the method described in 1 or 2 above, B: 0.0001 to 0.003% or/and N is further added to the wire.
The yield point strength at 600°C is 0.2 to 1.0 i in Ni/Cu. A method for manufacturing a cold-rolled steel sheet with a low yield ratio hot-dip galvanized for construction, which has an excellent fire resistance of more than 6 times. The reasons for limiting the numerical values of the structure and requirements of the present invention will be described below.
Cは、0.01%以下とする。すなわち、常温における
威形性の観点からいわゆる極低C系とする。C shall be 0.01% or less. That is, it is a so-called ultra-low C type from the viewpoint of formability at room temperature.
さらに場合によっては、IP鋼( In ters t
i t ia IFree Steel) とする
ため、Tiまたは/かつNbを添加する。C量が多いと
I FM(Interstitial FreeSte
el)に必要とするTiまたは/かつNbが多量となり
、経済性を損ねるばかりかこれら炭化物のため加工性や
靭性が劣化する。この意味でCは0.005%以下とす
ることが好ましい。Furthermore, in some cases, IP steel (Interst
Ti and/or Nb are added in order to make it tia IFree Steel). If the amount of C is large, I FM (Interstitial FreeSte
A large amount of Ti and/or Nb is required for el), which not only impairs economic efficiency but also deteriorates workability and toughness due to these carbides. In this sense, it is preferable that C be 0.005% or less.
つぎにMnは0.1〜0.5%の範囲で添加する。下限
値未満ではFeS脆性が生しやすく、上限値を越えると
メッキ密着性が低下する。Next, Mn is added in a range of 0.1 to 0.5%. If it is less than the lower limit, FeS brittleness tends to occur, and if it exceeds the upper limit, the plating adhesion deteriorates.
Pは大きな固溶体強化を有する元素であり、必要強度レ
ベルに応じて添加しても良い。0.1%を越える添加は
脆化を増長させるので上限は0. 1%とする。また、
PはCuとの相互作用により耐食性を向上させるので、
好ましい下限は0.01%とする。P is an element with large solid solution strengthening, and may be added depending on the required strength level. Addition of more than 0.1% increases embrittlement, so the upper limit is 0.1%. 1%. Also,
P improves corrosion resistance through interaction with Cu, so
A preferable lower limit is 0.01%.
Mは脱酸剤として必要であるが0.06%を越えるとメ
ッキ密着性が低下する。M is necessary as a deoxidizing agent, but if it exceeds 0.06%, plating adhesion decreases.
つぎにCuは本発明にあっては極めて重要な元素である
。すなわち本発明の主目的である高温強度を確保し、か
つ常温強度・常温降伏比も担い、さらにPとの相互作用
でもって優れた耐食性をも顕現する。強化のメカニズム
は定かではないが、常温強度はCuの固溶体強化ないし
若干のクラスター強化に、高温強度はCuのクラスター
強化ないし析出強化に負うものと考えられる。0. 6
%未満のCu添加ではCuの過飽和度が不足し強度が付
与されない。とりわけ高温において著しい。また、2.
0%を越える添加は、これらの効果が飽和傾向になる
一方、熱間割れが避けがたくなるので添加値の条件は0
.6〜2. 0%とする。Next, Cu is an extremely important element in the present invention. That is, it ensures high-temperature strength, which is the main objective of the present invention, and also has room-temperature strength and room-temperature yield ratio, and also exhibits excellent corrosion resistance through interaction with P. Although the strengthening mechanism is not clear, it is thought that the room temperature strength is due to solid solution strengthening or some cluster strengthening of Cu, and the high temperature strength is due to cluster strengthening or precipitation strengthening of Cu. 0. 6
If Cu is added in an amount less than %, the degree of supersaturation of Cu will be insufficient and strength will not be imparted. This is especially noticeable at high temperatures. Also, 2.
If the addition exceeds 0%, these effects tend to be saturated, but hot cracking becomes unavoidable, so the condition for the addition value is 0.
.. 6-2. Set to 0%.
Ti:0.008〜0. 2%または/かつNb :
0.008〜0.10%は炭化物を形戒しCを固定する
ために必要である。下限値未満では十分なIF鋼(In
terstitial Free Steel)となら
ず、溶融亜鉛メッキ浴に浸漬後過時効処理がない場合は
戒形後にストレッチャーストレイン等の問題が生じる。Ti: 0.008-0. 2% or/and Nb:
0.008 to 0.10% is necessary to shape carbides and fix C. Below the lower limit, sufficient IF steel (In
terstitial free steel), and if there is no overaging treatment after immersion in a hot-dip galvanizing bath, problems such as stretcher strain will occur after bonding.
また、上限値を超えるとCの原子等量超となり、経済性
を損ねるばかりか固溶Ti, Nbのため威形性が劣化
する。好ましくは、
0.05≧12/48 (Ti(X)) +12/93
(Nb(X)) :li! (C(χ)で示される範
囲内で↑iまたは/かつNbを添加する。Moreover, when the upper limit is exceeded, the atomic equivalent of C is exceeded, which not only impairs economic efficiency but also deteriorates the appearance due to the solid solution of Ti and Nb. Preferably, 0.05≧12/48 (Ti(X)) +12/93
(Nb(X)) :li! (↑i or/and Nb is added within the range shown by C(χ).
本発明ではさらに場合によってBまたは/かつNiを添
加する。Bは粒界強化元素であり、本発明のようなI
F @ (Interstitial Free St
eel)では、同じく粒界強化元素である固溶炭素が少
なく、これを補う意味でBを添加する。0.0001%
未満ではその効果がなく、O. O O 3%を越える
と効果は飽和する.また、Ni添加は熱間割れを完全に
なくするために行う。Ni添加は熱間割れの原因となる
Cu添加量に応じて行う。Ni/Cuが0. 2未満で
はNiによる熱間割れ低減効果が認められず、またNi
/Cuが1. 0超となるとNiが高価な金属であるた
め本発明の大きな目的の一つである経済性を損なう。In the present invention, B and/or Ni are further added depending on the case. B is a grain boundary strengthening element, and I
F @ (Interstitial Free St
el), there is little solid solution carbon, which is also a grain boundary strengthening element, and B is added to compensate for this. 0.0001%
If it is less than O. When O O exceeds 3%, the effect is saturated. Further, Ni is added in order to completely eliminate hot cracking. Ni is added depending on the amount of Cu added, which causes hot cracking. Ni/Cu is 0. If it is less than 2, no effect of reducing hot cracking due to Ni is observed;
/Cu is 1. If it exceeds 0, Ni is an expensive metal, which impairs economic efficiency, which is one of the main objectives of the present invention.
熱延条件は以下のように規定する。Hot rolling conditions are specified as follows.
熱延はスラブ鋳造後直ちに(いわゆるCC一直接圧延)
行うか、もしくは加熱する場合は1l50℃以下とする
。この条件をはずすと熱間割れが避けられない。CC一
直接圧延を行う場合は保温もしくは端部の多少の加熱を
行っても差し支えない。好ましい加熱温度の下限は現状
の連続熱延設備で採れる1000℃とする。この条件で
あればCuの溶体化は十分である。仕上温度はAr+変
態点以上とする。Hot rolling is done immediately after slab casting (so-called CC-direct rolling)
If it is carried out or heated, the temperature should be 1 liter or less at 50°C. If this condition is not met, hot cracking is unavoidable. When CC-direct rolling is performed, there is no problem in keeping it warm or heating the edges to some extent. The lower limit of the preferred heating temperature is 1000°C, which can be achieved with current continuous hot rolling equipment. Under these conditions, solutionization of Cu is sufficient. The finishing temperature is equal to or higher than the Ar+transformation point.
これ未満では加工組織が入り、硬質化する。上限は95
0℃とするのが好ましい。また、本発明では、後述する
ように熔融亜鉛メッキ工程でCuを再固溶させるので、
熱延時のCuの析出状態は特に制限しない。If it is less than this, a processed structure will be formed and it will become hard. The upper limit is 95
The temperature is preferably 0°C. In addition, in the present invention, as described later, Cu is re-dissolved in the molten galvanizing process, so
The precipitation state of Cu during hot rolling is not particularly limited.
上述の鋼板もしくは銅帯を冷間圧延する場合は、冷間圧
下率は5〜90%とする。下限値未満であると冷間圧延
の効果がなく、上限値を越えると製品の平坦度を保つの
が困難となる。When cold rolling the above-mentioned steel plate or copper strip, the cold rolling reduction rate is 5 to 90%. If it is less than the lower limit, cold rolling will not be effective, and if it exceeds the upper limit, it will be difficult to maintain the flatness of the product.
続いて連続式溶融亜鉛メッキラインにて溶融亜鉛メッキ
を行う場合は、平均昇温速度は1℃ / s以上とする
。この値未満であると、Cu析出域を通,遇するときに
Cuが析出し、必要な引張特性を得ることができない.
上限は、直火無酸化還元炉等で採れ得る70℃/s以上
としても効果は持続する。When hot-dip galvanizing is subsequently performed on a continuous hot-dip galvanizing line, the average temperature increase rate shall be 1°C/s or more. If it is less than this value, Cu will precipitate when passing through the Cu precipitation region, making it impossible to obtain the necessary tensile properties.
Even if the upper limit is 70° C./s or more, which can be obtained in a direct-fire non-oxidation-reduction furnace, the effect will continue.
還元温度は750℃以上とする。本発明者らはCuの析
出挙動の調査を行い、本発明鋼ではCuは700″C以
上で再固溶することを知見した。従って、Cuを溶体化
させるには700℃以上の加熱でよいが、さらに再結晶
を行わせるのには750℃以上が必要である。コイル全
長に亙って再結晶を十分に行わせ、Cuをより十分に固
溶させるには800℃以上とするのが好ましい。900
℃を越えると結晶粒が粗大化し、常温強度が低下し、ひ
いては高温強度も低下するので、上限は9 0 0 ’
Cとする。The reduction temperature is 750°C or higher. The present inventors investigated the precipitation behavior of Cu and found that in the steel of the present invention, Cu re-dissolves in solid solution at temperatures above 700"C. Therefore, heating to a temperature above 700"C is sufficient to dissolve Cu. However, in order to further recrystallize, a temperature of 750°C or higher is required.In order to sufficiently perform recrystallization over the entire length of the coil and to dissolve Cu more fully, it is recommended to set the temperature to 800°C or higher. Preferable.900
If it exceeds ℃, the crystal grains will become coarser and the strength at room temperature will decrease, and the strength at high temperature will also decrease, so the upper limit is 900'.
Let it be C.
る。Ru.
平均冷却速度は3 ’C / s以上とする。この冷却
速度より低い値で徐冷すると冷却中にCuが析出し、常
温強度、常温降伏比、高温強度を確保することができな
い。好ましくは5℃/s以上とするのがCuをより固溶
状態に保持できるので好ましい。冷却速度の上限は、板
厚にもよるが、現在の最強の設備でとれる100℃/s
以上としても効果は持続する.
冷却後、溶融亜鉛メッキ浴に浸漬し、溶融亜鉛メッキを
施すが、その後場合によっては、後加熱によりメッキ層
の合金化処理を行っても良い。The average cooling rate shall be 3'C/s or more. If it is slowly cooled at a cooling rate lower than this, Cu will precipitate during cooling, making it impossible to ensure room temperature strength, room temperature yield ratio, and high temperature strength. Preferably, the heating rate is 5° C./s or more because Cu can be maintained in a solid solution state. The upper limit of the cooling rate is 100℃/s, which can be achieved with the current most powerful equipment, although it depends on the plate thickness.
Even if this is done, the effect will continue. After cooling, it is immersed in a hot-dip galvanizing bath to perform hot-dip galvanizing, but depending on the case, the plated layer may be alloyed by post-heating.
Znメッキ浴中には、u@o.ot〜20%添加しても
良い。In the Zn plating bath, u@o. It may be added in an amount of ot to 20%.
また、Znメッキ浴中に、Pb, Cd, Sn, S
b等の低融点合金またはMgをそれぞれl%以下添加し
ても本発明の効果をなんら損なうことはない。In addition, in the Zn plating bath, Pb, Cd, Sn, S
Even if a low melting point alloy such as b or Mg is added in an amount of 1% or less, the effects of the present invention will not be impaired in any way.
つぎに本発明の実施例について説明する。Next, embodiments of the present invention will be described.
(実施例)
表1に示す戒分を有する鋼を転炉にて出鯛後、連続鋳造
にてスラブとした後、直ちにあるいは加熱後熱延し、冷
間圧延を行い、その後、連続式溶融亜鉛メッキラインに
て熔融亜鉛メッキを行った。(Example) After steel having the precepts shown in Table 1 is taken out in a converter and made into a slab by continuous casting, it is hot-rolled immediately or after heating, cold-rolled, and then continuously melted. Melt galvanizing was performed on a galvanizing line.
表2に熱延条件、冷延条件、連続式溶融亜鉛メッキ条件
を示す。常温における引張試験はJIS Z2201
S号試験片を用い、JIS Z 2241に則って行っ
,た。高温引張試験は、高温伸び計を試験片に取り付け
、600℃まで10℃/分の速度を昇温し、その温度に
て15分間保持の後、引張試験を行い、降伏点を測定し
た。Table 2 shows hot rolling conditions, cold rolling conditions, and continuous hot-dip galvanizing conditions. Tensile test at room temperature is JIS Z2201
It was conducted in accordance with JIS Z 2241 using a No. S test piece. In the high-temperature tensile test, a high-temperature extensometer was attached to the test piece, the temperature was raised to 600°C at a rate of 10°C/min, and after holding at that temperature for 15 minutes, a tensile test was conducted to measure the yield point.
また、製造した熱延コイルを酸洗後スキンパスラインで
巻き戻し試験用のサンプルを採取した。In addition, after pickling the produced hot-rolled coil, samples for unwinding tests were taken on a skin pass line.
仮のいわゆるCuヘゲに起因する表面状況をスキンバス
ラインで巻き戻す際に、コイル全長にわたり観察し、つ
ぎのように評点付けを行った。◎:良好、(一般材と同
じ)、○:軽微(出荷合格品)、△:やや認められる(
向け先により出荷不可)×:発生大(不良品)。When unwinding the surface condition caused by so-called Cu sagging, the entire length of the coil was observed and rated as follows. ◎: Good, (same as general materials), ○: Slight (product passed for shipment), △: Slightly observed (
(Cannot be shipped due to destination) ×: Large occurrence (defective product).
材料の加工性は、曲げ性で評価した。試験片は、JIS
Z 2204の3号試験片を用い、試験方法は、JI
S Z 2248に従った。曲げ角度は180゜である
。The workability of the material was evaluated by bendability. The test piece is JIS
Using Z 2204 No. 3 test piece, the test method was JI
In accordance with S Z 2248. The bending angle is 180°.
評点としては、曲げ試験により割れを生じないものは○
、割れを生じたものは×とした。As for the rating, those that do not cause cracks in the bending test are ○.
, Those with cracks were rated as ×.
材料のメッキ密着性は、インパクト試験で評価した、。The plating adhesion of the material was evaluated using an impact test.
その方法は鋼板に半球上のポンチ(径l2.7燗φ)を
落下させ、形成された円状のくぼみにテープを貼付して
、鋼板からテープを剥離し、テーブに付着したメッキの
量を目視で判定した。評価は以下のとおりである。◎:
点状剥離数個(良好)、O:点状剥離やや多い(出荷合
格品)、Δ:一部剥離やや認められる(手入れ必要)、
×:発生大(不良品)
表2に本発明鋼と比較鋼の特性値を示す。本発明に従っ
た鋼はCuヘゲの程度も実用レベルで問題なく、常温引
張特性では、40■f/一級の引張強度に対し、降伏点
強度は規格値の25kgf/一以上を十分に満たし、な
おかつ降伏比(降伏点強度/引張強度)が80%以下と
いう優れたものである。また、曲げ性も良好である。さ
らに、600℃における高温の降伏点強度も十分に高く
、常温の降伏点強度との比で0. 6以上という値を十
分に満たし、概ね0.7以上の高い値である。また、本
発明に従った鋼はメッキ密着性も良好である。The method is to drop a hemispherical punch (diameter 12.7 φ) onto a steel plate, apply tape to the circular depression formed, peel the tape from the steel plate, and measure the amount of plating that has adhered to the tape. Judgment was made visually. The evaluation is as follows. ◎:
Several point-like peelings (good), O: Slightly many point-like peelings (product passed for shipment), Δ: Some peeling is observed in some areas (care required),
×: Large occurrence (defective product) Table 2 shows the characteristic values of the invention steel and comparative steel. The steel according to the present invention has no problem with the degree of Cu sagging at a practical level, and in terms of room temperature tensile strength, the yield point strength fully satisfies the standard value of 25 kgf/1 or more with respect to the tensile strength of 40 f/1 class. , and has an excellent yield ratio (yield point strength/tensile strength) of 80% or less. Moreover, the bendability is also good. Furthermore, the high temperature yield point strength at 600°C is sufficiently high, and the ratio to the yield point strength at room temperature is 0. It fully satisfies the value of 6 or more, and is generally a high value of 0.7 or more. Further, the steel according to the present invention also has good plating adhesion.
これに対し本発明に従っていない鋼ではこれら特性値の
少なくともいずれかが、本発明鋼より劣る。On the other hand, steel not according to the present invention has at least one of these characteristic values inferior to the steel according to the present invention.
(発明の効果)
ビルの高層化や住宅の密集化により、火災対策は社会的
に大きな課題となってきている。本発明はこのような状
況の中で鉄系で優れた高温特性ならびに耐食性を有する
溶融亜鉛メッキ冷延鋼板を大量生産の可能な連続式溶融
亜鉛メッキラインで製造することを可能としたものであ
る。(Effects of the invention) Fire countermeasures have become a major social issue as buildings become taller and housing becomes denser. Under these circumstances, the present invention has made it possible to manufacture hot-dip galvanized cold-rolled steel sheets, which are iron-based and have excellent high-temperature properties and corrosion resistance, on a continuous hot-dip galvanizing line capable of mass production. .
本発明は上記、社会的課題の解決に大きく貢献するもの
である。The present invention greatly contributes to solving the above social problems.
1八Q−18 Q-
Claims (3)
5%、P≦0.1%、Al≦0.06%、Cu:0.6
〜2.0%を含み、残部Feおよび不可避的不純物から
なる鋼をスラブとした後、直ちに、あるいは1150℃
以下に加熱後、Ar_3変態点以上で熱間圧延し、コイ
ルとし、その後、冷間圧下率5〜90%で冷間圧延を行
った後、連続溶融亜鉛メッキラインにて、平均昇温速度
1℃/s以上で昇温し、還元性雰囲気中で750〜90
0℃に加熱し、その後平均冷却速度3℃/s以上で冷却
し、続いて溶融亜鉛メッキ浴に浸漬し溶融亜鉛メッキを
施すことを特徴とする600℃における降伏点強度が常
温における降伏点強度の0.6倍以上である耐火性に優
れた建築用低降伏比溶融亜鉛メッキ冷延鋼板の製造方法
。(1) Weight ratio: C≦0.01%, Mn: 0.1-0.
5%, P≦0.1%, Al≦0.06%, Cu:0.6
~2.0%, with the remainder being Fe and unavoidable impurities, immediately or at 1150°C.
After heating as follows, hot rolling is performed above Ar_3 transformation point to form a coil. After that, cold rolling is performed at a cold reduction rate of 5 to 90%, and then on a continuous hot-dip galvanizing line at an average heating rate of 1. The temperature is raised at a rate of ℃/s or more, and the temperature rises to 750 to 90℃ in a reducing atmosphere.
The yield point strength at 600°C is the yield point strength at room temperature, which is characterized by heating to 0°C, then cooling at an average cooling rate of 3°C/s or more, and then immersing in a hot-dip galvanizing bath to apply hot-dip galvanizing. A method for producing a cold-rolled cold-rolled steel sheet with a low yield ratio hot-dip galvanized steel sheet for construction, which has excellent fire resistance of 0.6 times or more.
5%、P≦0.1%、Al≦0.06%、Cu:0.6
〜2.0%に加えて、Ti:0.008〜0.2%また
は/かつNb:0.008〜0.10%を含み、残部F
eおよび不可避的不純物からなる鋼をスラブとした後、
直ちに、あるいは1150℃以下に加熱後、Ar_3変
態点以上で熱間圧延し、コイルとし、その後、冷間圧下
率5〜90%で冷間圧延を行った後、連続溶融亜鉛メッ
キラインにて、平均昇温速度1℃/s以上で昇温し、還
元性雰囲気中で750〜900℃に加熱し、その後平均
冷却速度3℃/s以上で冷却し、その後溶融亜鉛メッキ
浴に浸漬し溶融亜鉛メッキを施すことを特徴とする60
0℃における降伏点強度が常温における降伏点強度の0
.6倍以上である耐火性に優れた建築用低降伏比溶融亜
鉛メッキ冷延鋼板の製造方法。(2) Weight ratio: C≦0.01%, Mn: 0.1-0.
5%, P≦0.1%, Al≦0.06%, Cu:0.6
~2.0%, Ti: 0.008~0.2% or/and Nb: 0.008~0.10%, the balance F
After making the steel consisting of e and unavoidable impurities into a slab,
Immediately or after heating to 1150°C or lower, hot-rolled above the Ar_3 transformation point to form a coil, then cold-rolled at a cold reduction rate of 5 to 90%, and then on a continuous hot-dip galvanizing line. The temperature is raised at an average temperature increase rate of 1°C/s or more, heated to 750 to 900°C in a reducing atmosphere, then cooled at an average cooling rate of 3°C/s or more, and then immersed in a hot-dip galvanizing bath to remove molten zinc. 60 characterized by plating
The yield point strength at 0℃ is 0 of the yield point strength at room temperature.
.. A method for producing a low yield ratio hot-dip galvanized cold-rolled steel sheet for construction, which has an excellent fire resistance of 6 times or more.
中にB:0.0001〜0.003%または/かつNi
をNi/Cuで0.2〜1.0含有することを特徴とす
る600℃における降伏点強度が常温における降伏点強
度の0.6倍以上である耐火性に優れた建築用低降伏比
溶融亜鉛メッキ冷延鋼板の製造方法。(3) In the method according to claim 1 or 2, the steel further includes B: 0.0001 to 0.003% and/or Ni.
0.2 to 1.0 of Ni/Cu, the yield point strength at 600°C is 0.6 times or more the yield point strength at room temperature, and has excellent fire resistance for construction use. Method for manufacturing galvanized cold rolled steel sheet.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30198389A JPH06104859B2 (en) | 1989-11-22 | 1989-11-22 | Method of manufacturing low yield ratio hot-dip galvanized cold-rolled steel sheet with excellent fire resistance for construction |
US07/616,654 US5156690A (en) | 1989-11-22 | 1990-11-21 | Building low yield ratio hot-dip galvanized cold rolled steel sheet having improved refractory property |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30198389A JPH06104859B2 (en) | 1989-11-22 | 1989-11-22 | Method of manufacturing low yield ratio hot-dip galvanized cold-rolled steel sheet with excellent fire resistance for construction |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03162519A true JPH03162519A (en) | 1991-07-12 |
JPH06104859B2 JPH06104859B2 (en) | 1994-12-21 |
Family
ID=17903476
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30198389A Expired - Lifetime JPH06104859B2 (en) | 1989-11-22 | 1989-11-22 | Method of manufacturing low yield ratio hot-dip galvanized cold-rolled steel sheet with excellent fire resistance for construction |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06104859B2 (en) |
-
1989
- 1989-11-22 JP JP30198389A patent/JPH06104859B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH06104859B2 (en) | 1994-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2005068676A1 (en) | Hot dip zinc plated high strength steel sheet excellent in plating adhesiveness and hole expanding characteristics | |
JP4837464B2 (en) | High-strength hot-dip galvanized steel sheet with excellent plating adhesion and method for producing the same | |
KR100264258B1 (en) | Cold rolled steel strip and hot dip coated cold rolled steel strip for use as building material and manufacturing method thereof | |
WO2004061137A1 (en) | Alloyed-molten-zinc-plated steel sheet with excellent processability and high strength and process for producing the same | |
JP4436275B2 (en) | High yield ratio high strength cold rolled steel sheet, high yield ratio high strength hot dip galvanized steel sheet, high yield ratio high strength alloyed hot dip galvanized steel sheet, and methods for producing them | |
JP2759517B2 (en) | Method for producing high tension bath galvanized steel sheet with excellent bending workability | |
US5156690A (en) | Building low yield ratio hot-dip galvanized cold rolled steel sheet having improved refractory property | |
JP3267324B2 (en) | Manufacturing method of high tensile galvanized steel sheet for fire resistance | |
JP4846550B2 (en) | Steel plate for galvannealed alloy and galvannealed steel plate | |
JPH0559489A (en) | Cold rolled steel sheet for deep drawing as well as galvanized product thereof and there manufacturing method | |
JPH03162519A (en) | Manufacture of hot dip galvanized cold rolled steel sheet having low yield ratio for building having superior fire resistance | |
JP4299451B2 (en) | High-strength hot-dip galvanized steel sheet with excellent formability and method for producing the same | |
JP3347152B2 (en) | Method for producing cold-rolled high-strength hot-dip galvanized steel sheet with excellent resistance to pitting corrosion | |
JP3392154B2 (en) | Method for producing high-strength hot-dip Zn-A1 alloy coated steel sheet for fire resistance | |
JP3267325B2 (en) | Method for producing high-strength hot-dip aluminized steel sheet for fire resistance | |
JP3598086B2 (en) | Method for producing high-strength galvannealed steel sheet with excellent workability | |
JPH02294429A (en) | Production of cold rolled steel sheet with low yield ratio for construction use excellent in fire resistance | |
JPH10140237A (en) | Production of cold rolled steel sheet and hot-dip metal coated cold rolled steel sheet for building material, excellent in fire resistance | |
JPH079031B2 (en) | Manufacturing method of cold-rolled steel sheet with low yield ratio and high strength hot-dip galvanized steel with excellent fire resistance | |
JPH0747810B2 (en) | Method of manufacturing low yield ratio hot-dip galvanized hot-rolled steel sheet with excellent fire resistance for construction and steel material for construction using the steel sheet | |
JPH079032B2 (en) | Manufacturing method of high yield cold rolled steel sheet with low yield ratio and excellent fire resistance | |
JPH02197520A (en) | Manufacture of hot dip galvanized steel sheet for construction use having low yield ratio and excellent in fire resistance | |
JP2969382B2 (en) | Automotive galvannealed steel sheet with low corrosion rate and high formability | |
JPH0756056B2 (en) | Method for producing high strength galvanized steel sheet having high r value | |
KR20240119104A (en) | Hot-dip Al-Zn-based plated steel sheet and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081221 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081221 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091221 Year of fee payment: 15 |
|
EXPY | Cancellation because of completion of term |