JPH03162100A - Microphone equipment and video integration camera mounted with the microphone equipment - Google Patents

Microphone equipment and video integration camera mounted with the microphone equipment

Info

Publication number
JPH03162100A
JPH03162100A JP1301699A JP30169989A JPH03162100A JP H03162100 A JPH03162100 A JP H03162100A JP 1301699 A JP1301699 A JP 1301699A JP 30169989 A JP30169989 A JP 30169989A JP H03162100 A JPH03162100 A JP H03162100A
Authority
JP
Japan
Prior art keywords
microphone
microphone unit
unidirectional
unit
omnidirectional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1301699A
Other languages
Japanese (ja)
Inventor
Kimiaki Ono
小野 公了
Michio Matsumoto
松本 美治男
Hiroyuki Naono
博之 直野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1301699A priority Critical patent/JPH03162100A/en
Priority to EP19900312516 priority patent/EP0429264A3/en
Priority to KR1019900018825A priority patent/KR910011082A/en
Publication of JPH03162100A publication Critical patent/JPH03162100A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/005Circuits for transducers, loudspeakers or microphones for combining the signals of two or more microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2410/00Microphones
    • H04R2410/01Noise reduction using microphones having different directional characteristics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2410/00Microphones
    • H04R2410/07Mechanical or electrical reduction of wind noise generated by wind passing a microphone

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Telephone Set Structure (AREA)
  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)

Abstract

PURPOSE:To reduce noise near a microphone unit, vibration and wind noise and to attain sound collection with excellent S/N by using a nondirective microphone and unidirectional microphone. CONSTITUTION:An output signal of a unidirectional microphone unit 13 is given to a high pass filter 15 to correct the sudden increase in the sensitivity at a low frequency band due to proximity effect. Moreover, a high pass filter 14 is used to match the frequency characteristic of the output signal of the nondirective microphone unit 12 at a low frequency band with the frequency characteristic of the signal passing through the high pass filter 15. Then outputs of the high pass filters 14, 15 are subtracted together to obtain an output of the microphone unit. Thus, noise near the microphone unit and wind noise are reduced and the sound collection with excellent S/N is attained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、マイクロホンユニットの近傍の雑音及び振動
、風雑音を低滅するマイクロホン装置とこのマイクロホ
ン装直を本体に内藏したビデオー体型カメラに関するも
のである. 従来の技術 近年、ビデオ一体型カメラは音声と映像を簡単に収録す
ることができる機器として、更にその普及率が伸びてき
ている.それに伴いビデオ一体型カメラも機能が拡充さ
れ、小型軽量化が図られてきた.以下、従来のビデオ一
体型カメラの代表的な例について図面を参照しながら説
明する.第11図は従来のビデオ一体型カメラの外観を
示すものである,111はマイクロホン部、112は本
体部、113はレンズ部、114はビューファインダで
ある.マイクロホン部111は本体部112の発する雑
音及び振動の影響を避けるために、ゴムなどの防振材料
を介してユニットを固定し、本体部112より離れた位
置に設置されている.更に風雑音を低減するため風防を
設けている. 発明が解決しようとする課題 しかしながら、ビデオ一体型カメラを更に小型化する場
合、上述のようなビデオ一体型カメラの構成では実用的
にもデザイン的にも問題がある.これに対し、第l2図
に示すようにビデオ一体型カメラ本体にマイクロホンユ
ニットを埋め込む構威をとる場合には、マイクロホンユ
ニットは本体部112の発する振動及び雑音の影響を直
接受ける結果となる.従って、収音時のS/N比が低下
してしまい、収音品賞が著しく劣化するという問題点を
生しる.このS/N比の低下という問題への有力な対応
策として超指向性を用いる方法、信号処理技術を用いて
雑音を除去する方法が考えられるが、スペースの制約や
コストという点からは困難である. 以上の理由により、性能.デザイン.コストの面におい
て満足し得るマイクロホン装置はまだ開発されていなか
った.本発明は、無指向性マイクロホンと単一指向性マ
イクロホンを用いてマイクロホンユニットの近傍の雑音
及び振動、風雑音を低減し、S/N比の良い収音ができ
るマイクロホン装置を提供することを目的とする. tlBを解決するための手段 上記目的を達威するため、本発明のマイクロホン装置は
、同極性の無指向性マイクロホンユニットと単一指向性
マイクロホンユニットを、その主軸をビデオ一体型カメ
ラ本体に向けて、両マイクロホンユニットを平行または
両ユニットの主軸が一直線上に並ぶように配置し、両マ
イクロホンユニソトの出力信号をハイパスフィルタを通
した後に減算した構戒とする.但し、マイクロホンユニ
ットの極性はユニットの正面より正の音圧が加わったと
きに生しる出力電圧の正負によって決定されるものであ
る. また、互いに異極性の無指向性マイクロホンユニットと
単一指向性マイクロホンユニットを、その主軸をビデオ
一体型カメラ本体に向けて、両マイクロホンユニットを
平行または両ユニットの主軸が一直線上に並ぶように配
置し、両マイクロホンユニットの出力信号をハイパスフ
ィルタを通した後に加纂した構威とする. また、同極性の無指向性マイクロホンユニットと単一指
向性マイクロホンユニ・冫トを、無指向性マイクロホン
はその主軸をビデオ一体型カメラ本体と逆に向け、単一
指向性マイクロホンはその主軸をビデオカメラ本体に向
けて、両マイクロホンユニットを平行または両ユニット
の主軸が一直線上に並ぶように配置し、両マイクロホン
ユニットの出力信号をハイパスフィルタを通した後に減
算した構戒とする, また、互いに異極性の無指向性マイクロホンユニットと
単一指向性マイクロホンユニ・2トを、無指向性マイク
ロホンはその主軸をビデオ一体型カメラ本体と逆に向け
、単一指向性マイクロホンはその主軸をビデオカメラ本
体に向けて、両マイクロホンユニットを平行または両ユ
ニットの生軸が一直線上に並ぶように配置し、両マイク
ロホンユニットの出力信号をハイパスフィルタを通した
後に加算した構成とする. また、上述の各構成で無指向性マイクロホンと単一指向
性マイクロホンに振動が加わったとき、両ユニソトが一
体振動するように固定した構戒とする. 作用 本発明は、上記の構威によってマイクロホンユニットの
近傍の雑音及び振動、風雑音を低減することが可能とな
り、S/N比の良い収音ができる.本発明のマイクロホ
ン装直は、無指向性マイクロポンと単一指向性マイクロ
ホンのユニット各一個を一対として用いるものである.
双方のユニットの極性が同し場合は両ユニットの出力を
減算し、またユニ7トの極性が互いに逆の場合は両ユニ
ットの出力を加算してマイクロホン装置の出力を得る.
点音源に近接してマイクロホンを使用する場合、音波の
波面は球面波となり、音源から遠く波面が平面波となる
場合に比して音圧傾度が大きくなるため、低周波数域を
中心に感度が持ち上げられる.この近接効果によって、
単一指向性マイクロホンの方では双指向性に近い指向特
性を示すようになる.従って、無指向性マイクロホンの
出力に対し、主袖をビデオカメラ本体に向けた単一指向
性マイクロホンの出力を両ユニットの極性が同し場合は
減算、極性が互いに逆の場合は加算することによって、
遠い音源に対しては低域では無指向性、高城では単一指
向性に似た指向特性をもち、近接した音源に対してはユ
ニットの主軸方向の感度の低いマイクロホン装直を実現
することができる. また、前述のように本発明のマイクロホン装置は低域で
は無指向性の指向特性を持つので、風雑音の影響を受け
難いマイクロホン装置を実現することができる. また、無指向性マイクロホンユニットと単一指向性マイ
クロホンユニットの主軸の向きを同じにし、両ユニット
が一体振動するように固定して、両ユニットの極性が同
じ場合は減算、極性が互いに逆の場合は加算することに
よってマイクロホンユニットに加わる振動の影響も除去
することができる. 実施例 以下、本発明の実施例におけるマイクロホン装置につい
て図面を参照しながら説明する.第1図は本発明の第1
の実施例におけるマイクロホン装買の構戒を示したもの
であり、同図において11はビデオ一体型カメラ本体、
12は無指向性マイクロホンユニット、13は単一指向
性マイクロホンユニット、14.15はハイバスフィル
タ、l6は減算器を示す.第2図は単一指向性マイクロ
ホンより1mの距離に音源があるときの指向周波数特性
、第3図は単一指向性マイクロホンの近傍に音源がある
ときの指向周波数特性を示す.第2図,第3図において
実線.破線,一点鎖線は各々マイクロホンユニットの主
軸に対して0度,90度,180度方向の感度を表す.
単一指向性マイクロホンユニット13の出力信号をハイ
パスフィルタl5に通すことにより、第3図に見られる
近接効果による低周波数域における急激な感度の上昇を
補正する.更に、低周波数域において、無指向性マイク
ロホンユニット12の出力信号の周波数特性を、ハイパ
スフィルタ15を通った信号の周波数特性に合わせるた
めにハイバスフィルタ14を用いる.上記ハイバスフィ
ルタ14.15の出力を減算してマイクロホン装直の出
力を得る.第4図は本実施例のマイクロホン装直よりl
mの距離に音源があるときの指向周波数特性、第5図は
本実施例のマイクロホン装置の近傍に音源があるときの
指向周波数特性を示す.第4図.第5図の図中で実線,
破線.一点鎖線は各々ビデオ一体型カメラ正面に対して
0度,90度,180度方向の感度を表す.第5図に見
られるように本実施例のマイクロホン装置によれば、近
接した音源に対しては単一指向性マイクロホンの主軸方
向の感度が大きく下がることになる.従ってビデオ一体
型カメラ本体の発する雑音の影響を低減することができ
る.以上のように、本実施例のマイクロホン装直によれ
ば、マイクロホンユニットの近傍の雑音及び風雑音を低
減することが可能となり、S/N比の良い収音ができる
.第6図は本発明の第2の実施例におけるマイクロホン
装置の構威を示したものであり、同図において61はビ
デオ一体型カメラ本体、64.65はハイパスフィルタ
であり、以上は第1図のIjI戒と同様である.62は
無指向性マイクロホンユニット、63は単一指向性マイ
クロホンユニットであるが第1図と異なるのは、ユニッ
ト62とユニット63の極性が互いに逆で、加算器66
を設けた点である.本実施例のマイクロホン装置によれ
ば、マイクロホンユニットの近傍の雑音及び風雑音を低
減することが可能となり、S/N比の良い収音ができる
. 第7図は本発明の第3の実施例におけるマイクロホン装
置の横戒を示したものであり、同図において71はビデ
オ一体型カメラ本体、73は単一指向性マイクロホンユ
ニット、74.75はハイパスフィルタ、76はSX器
であり以上は第1図の構成と同様である.72は無指向
性マイクロホンユニノトであるが第1図と異なるのは、
ユニット72の主軸をビデオ一体型カメラ本体と逆に向
けた点である.本実施例のマイクロホン装置によれば、
マイクロホンユニットの近傍の雑音及び風雑音を低減す
ることが可能となり、S/N比の良い収音ができる. 第8図は本発明の第4の実施例におけるマイクロホン装
置の横威を示したものであり、同図において81はビデ
オ一体型カメラ本体、84.85はハイパスフィルタで
あり以上は第7図の構成と同様である.82は無指向性
マイクロホンユニット、83は単一指向性マイクロホン
ユニノトであるが第7図と異なるのは、ユニット82と
ユニノト83の極性が互いに逆で、加算器86を設けた
点である.本実施例のマイクロホン装置によれば、マイ
クロホンユニットの近傍の雑音及び風雑音を低減するこ
とが可能となり、S/N比の良い収音ができる. 第9図は第5の実施例におけるマイクロホン装置の構威
を示したものであり、同図において91はビデオ一体型
カメラ本体、94.95はハイパスフィルタ、96は減
算器であり以上は第1図の構戒と同様である.92は無
指向性マイクロホンユニット、93は単一指向性マイク
ロホンユニットであるが第1図と異なるのは、両ユニッ
トの主輪が一直線上に並ぶように配度した点である.本
実施例のマイクロホン装置によれば、マイクロホンユニ
ットの近傍の雑音及び風雑音を低減することが可能とな
り、S/N比の良い収音ができる.第lO図は本発明の
第6の実施例におけるマイクロホン装置の構戒を示した
ものであり、同図において101はビデオ一体型カメラ
本体、104.105はハイバスフィルタ、106は減
算器であり以上は第1図の構戒と同様である.■02は
無指向性マイクロホンユニット、103は単一指向性マ
イクロホンユニットであるが第1図と異なるのは、ユニ
ッ}102とユニッ}103に振動が加わったとき、両
ユニットが一体振動するように固定用金1121によっ
て固定した点である.本実施例のマイクロホン装置によ
れば、マイクロホンユニットの近傍の雑音及び風雑音に
加えて振動も低減することが可能となり、S/N比の良
い収音ができる. 発明の効果 以上のように、本発明は同極性の無指向性マイクロホン
ユニットと単一指向性マイクロホンユニットを、主軸を
ビデオ一体型カメラ本体に向けて、両マイクロホンユニ
ットを平行または両ユニットの主軸が一直線上に並ぶよ
うに配置し、両マイクロホンユニットの出力信号をハイ
バスフィルタを通した後に減算しているので、マイクロ
ホンユニットの近傍の雑音及び風雑音を低減することが
可能となり、S/N比の良い収音を実現することができ
る. また、互いに異極性の無指向性マイクロホンユニットと
単一指向性マイクロホンユニットを、主軸をビデオ一体
型カメラ本体に向けて、両マイクロホンユニットを平行
または両ユニットの主軸が一直線上に並ぶように配置し
、両マイクロホンユニットの出力信号をハイバスフィル
タを通した後に加算したマイクロホン装置により、マイ
クロホンユニットの近傍の雑音及び凪雑音を低減するこ
とが可能となり、S/N比の良い収音を実現することが
できる. また、同極性の無指向性マイクロホンユニットと単一指
向性マイクロホンユニットを、無指向性マイクロホンは
その主軸をビデオ一体型カメラ本体と逆に向け、単一指
向性マイクロホンはその主軸をビデオカメラ本体に向け
て、両マイクロホンユニットを平行または両ユニットの
主軸が一直線上に並ぶように配置し、両マイクロホンユ
ニットの出力信号をハイパスフィルタを通した後に減算
したマイクロホン装置により、マイクロホンユニットの
近傍の雑音及び風雑音を低減することが可能となり、S
/N比の良い収音を実現することができる. また、互いに異極性の無指向性マイクロホンユニノトと
単一指向性マイクロホンユニットを、無指向性マイクロ
ホンはその主軸をビデオ一体型カメラ本体と逆に向け、
単一指向性マイクロホンはその主軸をビデオカメラ本体
に向けて、両マイクロホンユニットを平行または両ユニ
ソトの主軸が一直線上に並ぶように配置し、両マイクロ
ホンユニットの出力信号をハイパスフィルタを通した後
に加算したマイクロホン装置により、マイクロホンユニ
7}の近傍の雑音及び風雑音を低減することが可能とな
り、S/N比の良い収音を実現することができる. また、上述の各マイクロホン装置で無指向性マイクロホ
ンと単一指向性マイクロホンに振動が加わったとき、両
ユニットが一体振動するように固定したマイクロホン装
置により、両ユニットの主軸の向きが同じ場合は、マイ
クロホンユニットの近傍の雑音、風雑音及び振動を低減
することが可能となり、S/N比の良い収音を実現する
ことができる.
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a microphone device that reduces noise, vibration, and wind noise in the vicinity of a microphone unit, and a video camera in which the microphone is housed in the main body. .. Background of the Invention In recent years, integrated video cameras have become increasingly popular as devices that can easily record audio and video. Along with this, the functions of integrated video cameras have been expanded, and efforts have been made to make them smaller and lighter. Typical examples of conventional video integrated cameras will be explained below with reference to the drawings. FIG. 11 shows the external appearance of a conventional video integrated camera. 111 is a microphone section, 112 is a main body section, 113 is a lens section, and 114 is a viewfinder. In order to avoid the effects of noise and vibration generated by the main body part 112, the microphone part 111 is fixed to the unit through a vibration-proofing material such as rubber, and is installed at a position away from the main body part 112. Furthermore, a windshield is installed to reduce wind noise. Problems to be Solved by the Invention However, when the video integrated camera is further miniaturized, the configuration of the video integrated camera as described above poses problems in terms of both practicality and design. On the other hand, if a microphone unit is embedded in the video integrated camera body as shown in FIG. Therefore, the S/N ratio at the time of sound collection decreases, resulting in a problem that the quality of the recorded sound is significantly degraded. Possible solutions to this problem of reduced S/N ratio include using superdirectivity and using signal processing technology to remove noise, but these are difficult due to space constraints and cost. be. For the above reasons, performance. design. A microphone device that was satisfactory in terms of cost had not yet been developed. An object of the present invention is to provide a microphone device that uses an omnidirectional microphone and a unidirectional microphone to reduce noise, vibration, and wind noise in the vicinity of a microphone unit, and can collect sound with a good S/N ratio. Suppose that Means for Solving tlB In order to achieve the above object, the microphone device of the present invention includes an omnidirectional microphone unit and a unidirectional microphone unit of the same polarity, with their main axes facing the video integrated camera body. , both microphone units are arranged in parallel or with the main axes of both units aligned in a straight line, and the output signals of both microphone units are subtracted after passing through a high-pass filter. However, the polarity of the microphone unit is determined by the sign of the output voltage generated when positive sound pressure is applied from the front of the unit. In addition, an omnidirectional microphone unit and a unidirectional microphone unit, which have opposite polarities, are arranged with their main axes facing the video integrated camera body, and both microphone units are parallel or the main axes of both units are aligned in a straight line. The output signals of both microphone units are then processed after passing through a high-pass filter. In addition, the omnidirectional microphone unit and the unidirectional microphone unit have the same polarity.The omnidirectional microphone has its main axis facing away from the video camera body, and the unidirectional microphone has its main axis facing the video camera. Arrange both microphone units in parallel or with their main axes aligned in a straight line facing the camera body, and set the output signals of both microphone units to be subtracted after passing through a high-pass filter. A polar omnidirectional microphone unit and a unidirectional microphone unit are used.The omnidirectional microphone has its main axis facing away from the video camera body, and the unidirectional microphone has its main axis facing the video camera body. The configuration is such that both microphone units are arranged in parallel or so that the raw axes of both units are aligned in a straight line, and the output signals of both microphone units are added after passing through a high-pass filter. In addition, in each of the above configurations, when vibration is applied to the omnidirectional microphone and the unidirectional microphone, the configuration is fixed so that both unidirectional microphones vibrate as one. Effects of the present invention With the above structure, it is possible to reduce noise, vibration, and wind noise in the vicinity of the microphone unit, and it is possible to collect sound with a good S/N ratio. The microphone remounting of the present invention uses one omnidirectional microphone unit and one unidirectional microphone unit as a pair.
If the polarities of both units are the same, the outputs of both units are subtracted, and if the polarities of the units are opposite to each other, the outputs of both units are added to obtain the output of the microphone device.
When a microphone is used close to a point sound source, the wavefront of the sound wave becomes a spherical wave, and the sound pressure gradient becomes larger than when the wavefront becomes a plane wave far from the sound source, which increases sensitivity mainly in the low frequency range. It will be done. Due to this proximity effect,
Unidirectional microphones exhibit directional characteristics close to bidirectional. Therefore, by subtracting the output of a unidirectional microphone with its main sleeve facing the video camera body from the output of an omnidirectional microphone when the polarities of both units are the same, and adding it when the polarities are opposite to each other. ,
For distant sound sources, it has omnidirectional in the low range, and for high frequencies, it has directional characteristics similar to unidirectional, and for close sound sources, it is possible to realize a microphone mounting with low sensitivity in the main axis direction of the unit. can. Further, as described above, the microphone device of the present invention has omnidirectional directivity characteristics in the low frequency range, so it is possible to realize a microphone device that is not easily affected by wind noise. In addition, the main axes of the omnidirectional microphone unit and the unidirectional microphone unit should be oriented in the same direction, and both units should be fixed so that they vibrate as a unit.If the polarities of both units are the same, subtraction is applied, and if the polarities are opposite to each other, subtraction is performed. By adding , the effects of vibrations applied to the microphone unit can also be removed. EXAMPLE Hereinafter, a microphone device according to an example of the present invention will be described with reference to the drawings. FIG. 1 shows the first embodiment of the present invention.
This figure shows the structure of the microphone installation in the embodiment, and in the same figure, 11 is the video integrated camera body,
12 is an omnidirectional microphone unit, 13 is a unidirectional microphone unit, 14.15 is a high-pass filter, and l6 is a subtracter. Figure 2 shows the directional frequency characteristics when the sound source is 1 meter away from the unidirectional microphone, and Figure 3 shows the directional frequency characteristics when the sound source is near the unidirectional microphone. Solid line in Figures 2 and 3. The dashed line and the dashed-dotted line represent the sensitivity in the directions of 0 degrees, 90 degrees, and 180 degrees, respectively, with respect to the main axis of the microphone unit.
By passing the output signal of the unidirectional microphone unit 13 through the high-pass filter l5, the rapid increase in sensitivity in the low frequency range due to the proximity effect shown in FIG. 3 is corrected. Further, in the low frequency range, a high-pass filter 14 is used to match the frequency characteristics of the output signal of the omnidirectional microphone unit 12 to the frequency characteristics of the signal passed through the high-pass filter 15. Subtract the outputs of the high-pass filters 14 and 15 above to obtain the output of the microphone. Figure 4 is from the microphone reinstallation of this example.
Figure 5 shows the directional frequency characteristics when the sound source is located at a distance of m. Fig. 5 shows the directional frequency characteristics when the sound source is located near the microphone device of this embodiment. Figure 4. In the diagram of Figure 5, solid lines,
Broken line. The dash-dotted lines represent the sensitivity at 0 degrees, 90 degrees, and 180 degrees relative to the front of the video integrated camera. As seen in FIG. 5, according to the microphone device of this embodiment, the sensitivity in the principal axis direction of the unidirectional microphone is greatly reduced to a nearby sound source. Therefore, it is possible to reduce the effects of noise emitted by the video camera body. As described above, according to the microphone remounting of this embodiment, it is possible to reduce noise and wind noise in the vicinity of the microphone unit, and it is possible to collect sound with a good S/N ratio. FIG. 6 shows the configuration of a microphone device according to a second embodiment of the present invention. In the figure, 61 is a video integrated camera body, and 64 and 65 are high-pass filters. It is similar to the IjI precept. 62 is an omnidirectional microphone unit, and 63 is a unidirectional microphone unit, but the difference from FIG. 1 is that the polarities of the units 62 and 63 are opposite to each other, and the adder 66
The point is that According to the microphone device of this embodiment, it is possible to reduce noise and wind noise in the vicinity of the microphone unit, and it is possible to collect sound with a good S/N ratio. FIG. 7 shows the layout of the microphone device according to the third embodiment of the present invention, in which 71 is a video integrated camera body, 73 is a unidirectional microphone unit, and 74.75 is a high-pass The filter 76 is an SX device, and the above structure is the same as that shown in FIG. 72 is an omnidirectional microphone, but the difference from Fig. 1 is that
The main axis of the unit 72 is oriented opposite to the video integrated camera body. According to the microphone device of this embodiment,
It is possible to reduce noise and wind noise near the microphone unit, allowing sound collection with a good S/N ratio. Fig. 8 shows the power of the microphone device in the fourth embodiment of the present invention. It is the same as the configuration. 82 is an omnidirectional microphone unit, and 83 is a unidirectional microphone unit, but the difference from FIG. 7 is that the polarities of the unit 82 and unit 83 are opposite to each other, and an adder 86 is provided. According to the microphone device of this embodiment, it is possible to reduce noise and wind noise in the vicinity of the microphone unit, and it is possible to collect sound with a good S/N ratio. FIG. 9 shows the structure of the microphone device in the fifth embodiment. In the figure, 91 is a video integrated camera body, 94.95 is a high-pass filter, and 96 is a subtracter. It is similar to the composition shown in the figure. 92 is an omnidirectional microphone unit, and 93 is a unidirectional microphone unit, but the difference from FIG. 1 is that the main wheels of both units are arranged in a straight line. According to the microphone device of this embodiment, it is possible to reduce noise and wind noise in the vicinity of the microphone unit, and it is possible to collect sound with a good S/N ratio. FIG. 10 shows the configuration of a microphone device according to a sixth embodiment of the present invention. In the figure, 101 is a video integrated camera body, 104 and 105 are high-pass filters, and 106 is a subtracter. The above is the same as the configuration shown in Figure 1. ■02 is an omnidirectional microphone unit, and 103 is a unidirectional microphone unit, but the difference from Fig. 1 is that when vibration is applied to unit 102 and unit 103, both units vibrate as one unit. This is a point fixed with a fixing metal 1121. According to the microphone device of this embodiment, it is possible to reduce vibrations in addition to noise and wind noise in the vicinity of the microphone unit, and it is possible to collect sound with a good S/N ratio. Effects of the Invention As described above, the present invention provides an omnidirectional microphone unit and a unidirectional microphone unit of the same polarity, with the main axes facing the video integrated camera body, and both microphone units being parallel or with the main axes of both units facing the camera body. Since they are arranged in a straight line and the output signals of both microphone units are subtracted after passing through a high-pass filter, it is possible to reduce noise and wind noise in the vicinity of the microphone unit, and the S/N ratio It is possible to achieve good sound pickup. In addition, an omnidirectional microphone unit and a unidirectional microphone unit, which have opposite polarities, can be arranged with their main axes facing the video integrated camera body, with both microphone units parallel to each other, or with the main axes of both units aligned in a straight line. By using a microphone device that adds the output signals of both microphone units after passing through a high-pass filter, it is possible to reduce noise and calm noise in the vicinity of the microphone unit, and to achieve sound collection with a good S/N ratio. Can be done. In addition, an omnidirectional microphone unit and a unidirectional microphone unit of the same polarity are used.The omnidirectional microphone has its main axis facing away from the video camera body, and the unidirectional microphone has its main axis facing the video camera body. By arranging both microphone units in parallel or with the main axes of both units aligned in a straight line, the output signals of both microphone units are subtracted after passing through a high-pass filter. It becomes possible to reduce noise, and S
It is possible to achieve sound collection with a good /N ratio. In addition, the omnidirectional microphone UNINOTO and the unidirectional microphone unit have opposite polarities, and the omnidirectional microphone has its main axis facing away from the video integrated camera body.
A unidirectional microphone has its main axis facing the video camera body, and both microphone units are placed in parallel or so that the main axes of both unidirectional microphones are aligned in a straight line.The output signals of both microphone units are added after passing through a high-pass filter. With this microphone device, it is possible to reduce noise and wind noise in the vicinity of the microphone unit 7}, and it is possible to realize sound collection with a good S/N ratio. In addition, when vibration is applied to the omnidirectional microphone and the unidirectional microphone in each of the above microphone devices, if the microphone device is fixed so that both units vibrate as a unit, and the main axes of both units are in the same direction, It is possible to reduce noise, wind noise, and vibration near the microphone unit, making it possible to collect sound with a good S/N ratio.

【図面の簡単な説明】[Brief explanation of the drawing]

第l図は本発明の第1の実施例におけるマイクロホン装
置の構戒図、第2図は単一指向性マイクロホンよりlm
の距離に音源があるときの指向周波数特性図、第3図は
単一指向性マイクロホンの近傍に音源があるときの指向
周波数特性図、第4図は本発明の第1の実施例における
マイクロホン装置よりlmの距離に音源があるときの指
向周波数特性図、第5図は本発明の第1の実施例におけ
るマイクロホン装置の近傍に音源があるときの指向周波
数特性図、第6図は本発明の第2の実施例におけるマイ
クロホン装買の構威図、第7図は本発明の第3の実施例
におけるマイクロホン装置の構成図、第8図は本発明の
第4図の実施例におけるマイクロホン装置の構戒図、第
9図は本発明の第5の実施例におけるマイクロホン装置
の構或図、第lO図は本発明の第6の実施例におけるマ
イクロホン装置の構戒図、第l1図は従来のビデオ一体
型カメラの外観図、第12図は従来のマイクロホンを本
体部に内蔵したビデオ一体型カメラの外観を示した図で
ある. 11,61,71,81,91,101・・・・・・ビ
デオ一体型カメラ本体、12,62,72,82,92
,102・・・・・・無指向性マイクロホンユニット、
13,63,73,83,93,103・・・・・・単
一指向性マイクロホンユニット、14,15,64,6
5,74,75,84.85,94,95,104,1
05・・・・・・ハイパスフィルタ、16,76,96
,106・・・・・・減算器、66.86・・・・・・
加算器.
Fig. 1 is a configuration diagram of the microphone device in the first embodiment of the present invention, and Fig. 2 is a unidirectional microphone.
3 is a directional frequency characteristic diagram when the sound source is located at a distance of 5 is a directional frequency characteristic diagram when the sound source is located at a distance of 1 m, FIG. 5 is a directional frequency characteristic diagram when the sound source is near the microphone device according to the first embodiment of the present invention, and FIG. A configuration diagram of the microphone equipment in the second embodiment, FIG. 7 is a configuration diagram of the microphone device in the third embodiment of the present invention, and FIG. 8 is a configuration diagram of the microphone device in the embodiment of FIG. 4 of the present invention. 9 is a composition diagram of a microphone device according to a fifth embodiment of the present invention, FIG. 10 is a composition diagram of a microphone device according to a sixth embodiment of the present invention, and FIG. External view of video integrated camera. Figure 12 is a diagram showing the external appearance of a conventional video integrated camera with a built-in microphone in the main body. 11, 61, 71, 81, 91, 101... Video integrated camera body, 12, 62, 72, 82, 92
, 102... Omnidirectional microphone unit,
13, 63, 73, 83, 93, 103... Unidirectional microphone unit, 14, 15, 64, 6
5,74,75,84.85,94,95,104,1
05...High pass filter, 16, 76, 96
, 106... Subtractor, 66.86...
Adder.

Claims (7)

【特許請求の範囲】[Claims] (1)同極性の無指向性マイクロホンユニットと単一指
向性マイクロホンユニットをその主軸をビデオ一体型カ
メラ本体に向けて平行に配置し、前記無指向性マイクロ
ホンユニットと前記単一指向性マイクロホンユニットの
出力信号をハイパスフィルタを通した後に減算したこと
を特徴とするマイクロホン装置。
(1) An omnidirectional microphone unit and a unidirectional microphone unit of the same polarity are arranged in parallel with their main axes facing the video integrated camera body, and the omnidirectional microphone unit and the unidirectional microphone unit are A microphone device characterized in that an output signal is subtracted after passing through a high-pass filter.
(2)互いに異極性の無指向性マイクロホンユニットと
単一指向性マイクロホンユニットをその主軸をビデオ一
体型カメラ本体に向けて平行に配置し、前記無指向性マ
イクロホンユニットと前記単一指向性マイクロホンユニ
ットの出力信号をハイパスフィルタを通した後に加算し
たことを特徴とするマイクロホン装置。
(2) An omnidirectional microphone unit and a unidirectional microphone unit having different polarities are arranged in parallel with their main axes facing the video integrated camera body, and the omnidirectional microphone unit and the unidirectional microphone unit are arranged in parallel. A microphone device characterized in that the output signals of are added after passing through a high-pass filter.
(3)同極性の無指向性マイクロホンユニットと単一指
向性マイクロホンユニットを具備し、前記無指向性マイ
クロホンはその主軸をビデオ一体型カメラ本体と逆に向
け、前記単一指向性マイクロホンはその主軸を前記ビデ
オ一体型カメラ本体に向けて平行に配置し、前記無指向
性マイクロホンユニットと前記単一指向性マイクロホン
ユニットの出力信号をハイパスフィルタを通した後に減
算したことを特徴とするマイクロホン装置。
(3) An omnidirectional microphone unit and a unidirectional microphone unit of the same polarity are provided, the omnidirectional microphone has its main axis facing opposite to the video integrated camera body, and the unidirectional microphone has its main axis are arranged in parallel toward the video integrated camera body, and the output signals of the omnidirectional microphone unit and the unidirectional microphone unit are subtracted after passing through a high-pass filter.
(4)互いに異極性の無指向性マイクロホンユニットと
単一指向性マイクロホンユニットを具備し、前記無指向
性マイクロホンはその主軸をビデオ一体型カメラ本体と
逆に向け、前記単一指向性マイクロホンはその主軸を前
記ビデオ一体型カメラ本体に向けて平行に配置し、前記
無指向性マイクロホンユニットと前記単一指向性マイク
ロホンユニットの出力信号をハイパスフィルタを通した
後に加算したことを特徴とするマイクロホン装置。
(4) An omnidirectional microphone unit and a unidirectional microphone unit are provided with mutually different polarities, the omnidirectional microphone has its main axis facing opposite to the video integrated camera body, and the unidirectional microphone has its main axis opposite to the video integrated camera body. A microphone device characterized in that the main axis is arranged parallel to the video integrated camera body, and the output signals of the omnidirectional microphone unit and the unidirectional microphone unit are added after being passed through a high-pass filter.
(5)無指向性マイクロホンと単一指向性マイクロホン
の両ユニットの主軸が一直線上に並ぶように配置したこ
とを特徴とする請求項(1)乃至請求項(4)のいずれ
かに記載のマイクロホン装置。
(5) The microphone according to any one of claims (1) to (4), characterized in that the main axes of both the omnidirectional microphone and the unidirectional microphone are arranged in a straight line. Device.
(6)無指向性マイクロホンと単一指向性マイクロホン
に振動が加わったとき、両ユニットが一体振動するよう
に固定したことを特徴とする請求項(1)乃至請求項(
5)のいずれかに記載のマイクロホン装置。
(6) Claims (1) to (1) are characterized in that when vibration is applied to the omnidirectional microphone and the unidirectional microphone, both units are fixed so that they vibrate together.
The microphone device according to any one of 5).
(7)請求項(1)乃至請求項(5)のいずれかに記載
のマイクロホン装置を搭載したビデオ一体型カメラ。
(7) A video integrated camera equipped with the microphone device according to any one of claims (1) to (5).
JP1301699A 1989-11-20 1989-11-20 Microphone equipment and video integration camera mounted with the microphone equipment Pending JPH03162100A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP1301699A JPH03162100A (en) 1989-11-20 1989-11-20 Microphone equipment and video integration camera mounted with the microphone equipment
EP19900312516 EP0429264A3 (en) 1989-11-20 1990-11-16 Microphone apparatus
KR1019900018825A KR910011082A (en) 1989-11-20 1990-11-20 microphone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1301699A JPH03162100A (en) 1989-11-20 1989-11-20 Microphone equipment and video integration camera mounted with the microphone equipment

Publications (1)

Publication Number Publication Date
JPH03162100A true JPH03162100A (en) 1991-07-12

Family

ID=17900089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1301699A Pending JPH03162100A (en) 1989-11-20 1989-11-20 Microphone equipment and video integration camera mounted with the microphone equipment

Country Status (3)

Country Link
EP (1) EP0429264A3 (en)
JP (1) JPH03162100A (en)
KR (1) KR910011082A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29902393U1 (en) * 1999-02-10 2000-07-20 Peiker Andreas Device for detecting sound waves in a vehicle
JP2003249003A (en) * 2002-02-25 2003-09-05 Canon Inc Recorder

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4412097A (en) * 1980-01-28 1983-10-25 Victor Company Of Japan, Ltd. Variable-directivity microphone device
JPS5852780Y2 (en) * 1980-07-19 1983-12-01 パイオニア株式会社 microphone
GB2113952B (en) * 1982-01-27 1985-07-24 Racal Acoustics Ltd Improvements in and relating to communications systems

Also Published As

Publication number Publication date
EP0429264A3 (en) 1992-03-04
KR910011082A (en) 1991-06-29
EP0429264A2 (en) 1991-05-29

Similar Documents

Publication Publication Date Title
US5226087A (en) Microphone apparatus
US5193117A (en) Microphone apparatus
JPS5852780Y2 (en) microphone
KR100240552B1 (en) Stereo microphone unit
JP3127656B2 (en) Microphone for video camera
JPH0458699A (en) Microphone unit
JPH03162100A (en) Microphone equipment and video integration camera mounted with the microphone equipment
JP2770594B2 (en) Microphone device
JP2893756B2 (en) Microphone device
JPH0562515B2 (en)
JP2770593B2 (en) Microphone device
JP2760447B2 (en) Microphone device
JP3153912B2 (en) Microphone device
JPH03219798A (en) Microphone equipment
JP2003078987A (en) Microphone system
JP3018597B2 (en) Microphone device
JP4853382B2 (en) Telephone device
US11509984B2 (en) Microphone module
JPH10126876A (en) Ultradirectional microphone
JP2000287295A (en) Signal processor
JP3326063B2 (en) Omnidirectional microphone
JPH05168085A (en) Microphone system
JPH05191882A (en) Sound collector for adaptive noise canceller
JPH04144399A (en) Microphone device
JP2900652B2 (en) Microphone device