JPH03161188A - Laser beam machining device - Google Patents

Laser beam machining device

Info

Publication number
JPH03161188A
JPH03161188A JP1299008A JP29900889A JPH03161188A JP H03161188 A JPH03161188 A JP H03161188A JP 1299008 A JP1299008 A JP 1299008A JP 29900889 A JP29900889 A JP 29900889A JP H03161188 A JPH03161188 A JP H03161188A
Authority
JP
Japan
Prior art keywords
laser beam
machining
laser
processing
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1299008A
Other languages
Japanese (ja)
Inventor
Togo Nishioka
西岡 統吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1299008A priority Critical patent/JPH03161188A/en
Publication of JPH03161188A publication Critical patent/JPH03161188A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)
  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To improve stability of laser beam machining by calculating laser beam projecting distance from a laser beam generator to machining point in an optical axis shifting type laser beam machining device and making the laser beam diameter constant. CONSTITUTION:The optical axis shifting type laser beam machining device having the laser beam generator 3 and mirror driving means 20 for plural mirrors 4, 6, 10 and executing machining by projecting the laser beam from the laser beam generator 3 to the prescribed position in a material 1 to be machined, is constituted by providing arithmetic means 25 for calculating the projecting distance of laser beam based on output from the mirror driving means 20 and optical means for making the laser beam diameter at the machining point constant based on the projecting distance of laser beam calculated in the above means. By this method, as the laser beam diameter can be equalized at any machining position, variation of the machining conditions regardless the machining position can be prevented and the laser beam machining can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はレーザ光により被加工物を加工するレーザ加工
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a laser processing device for processing a workpiece with laser light.

〔従来の技術〕[Conventional technology]

従来レーザ光を用いたレーザ加工装置は例えば第5図(
a)に立面図,第5図(b)にその縦断面図を示すよう
に、被加工物1を保持する加工テーブル2の側方にレー
ザ発振器3が設けられる。レーザ発振器3は外部からの
信号に基づいてレーザ光を発振するものであり、レーザ
光はミラーブロック4によって反射されX軸に平行なレ
ーザビームとしてガントリ−5の旦ラーブロック6に与
えられる。
For example, a conventional laser processing device using a laser beam is shown in Fig. 5 (
As shown in an elevational view in a) and a longitudinal sectional view in FIG. 5(b), a laser oscillator 3 is provided on the side of a processing table 2 that holds a workpiece 1. The laser oscillator 3 oscillates a laser beam based on an external signal, and the laser beam is reflected by a mirror block 4 and is applied to a gantry 5 and a laser block 6 as a laser beam parallel to the X axis.

ガントリ−5はボールネジ7によってX軸方向に移動自
在に構威されており、ガントリ−5上に固定されたξラ
ーブロック6はこのレーザ光をY軸方向に反射するもの
である。又ガントリ−5上には2軸支持板8もボールネ
ジ9によってY軸方向に移動自在に保持されている。Z
軸支持板8にはミラーブロックIOが設けられレーザビ
ームを第5図(b)に示′すZ軸方向に反射するもので
ある。又Z軸支持板8には図示のようにZ軸方向に移動
するトーチ部12が設けられ、ボールネジl1によって
上下方向に移動自在に保持される。トーチ部l2はZ軸
に光軸を有する集光レンズ13を有している。第6図は
トーチ部12と集光レンズ13を示す図であり、被加工
物が立体的な形状を有する場合には集光レンズ13を上
下方向に移動させることによって所定位置にレーザ光を
集束している。そしてこれらのボールネジ7.9及び1
1は数値制御装置14によってその回転が制御され、ガ
ントリ−5,Z軸支持板8及びトーチ部12を夫々X軸
方向.Y軸方向及びZ軸方向に移動させることにより、
加工テーブル2上の被加工物lの任意の位置にレーザ光
を集光して加工するようにしている。
The gantry 5 is movable in the X-axis direction by a ball screw 7, and a ξ-ra block 6 fixed on the gantry 5 reflects this laser light in the Y-axis direction. A biaxial support plate 8 is also held on the gantry 5 by a ball screw 9 so as to be movable in the Y-axis direction. Z
A mirror block IO is provided on the shaft support plate 8 to reflect the laser beam in the Z-axis direction as shown in FIG. 5(b). Further, as shown in the figure, the Z-axis support plate 8 is provided with a torch portion 12 that moves in the Z-axis direction, and is held movably in the vertical direction by a ball screw l1. The torch portion l2 has a condenser lens 13 having an optical axis along the Z axis. FIG. 6 is a diagram showing the torch section 12 and the condensing lens 13. When the workpiece has a three-dimensional shape, the condensing lens 13 is moved up and down to focus the laser beam at a predetermined position. are doing. And these ball screws 7.9 and 1
1 has its rotation controlled by a numerical control device 14, and rotates the gantry 5, Z-axis support plate 8, and torch section 12 in the X-axis direction. By moving in the Y-axis direction and Z-axis direction,
A laser beam is focused on an arbitrary position of the workpiece l on the processing table 2 to perform processing.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかるにこのような従来のレーザ加工装置によれば、レ
ーザ光の発散角による影響でレーザ発振器3から加工点
までのレーザ光の照射距離によってレーザ光径が変わり
、集光レンズによるレーザ光の集光密度が変化する。従
って加工位置によって加工状態が変化してしまうという
問題点があった。
However, according to such conventional laser processing equipment, the laser beam diameter changes depending on the irradiation distance of the laser beam from the laser oscillator 3 to the processing point due to the influence of the divergence angle of the laser beam, and the laser beam is focused by the condenser lens. Density changes. Therefore, there is a problem in that the machining state changes depending on the machining position.

本発明はこのような従来のレーザ加工装置の問題点に鑑
みてなされたものであって、加工位置にかかわらず一定
の集光密度でレーザ光を被加工物に照射できるようにす
ることを技術的課題とする。
The present invention has been made in view of the problems of conventional laser processing equipment, and is a technology that enables a workpiece to be irradiated with laser light at a constant concentration density regardless of the processing position. This will be a major issue.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はレーザ発振器と、複数のミラーを駆動するξラ
ー駆動手段とを有し、レーザ発振器より出力されたレー
ザ光を加工テーブル上の被加工物の所定位置に照射して
加工する光軸移動型のレーザ加工装置であって、ξラー
駆動手段からの出力に基づいてレーザ発振器から加工点
までのレーザ光の照射距離を演算する演算手段と、レー
ザ発振器より出力されるレーザの光軸上に設けられ演算
手段より演算されたレーザ光照射距離に基づいて加工点
でのレーザ光径を一定にする光学手段とを有することを
特徴とするものである。
The present invention includes a laser oscillator and a ξ-ra drive means for driving a plurality of mirrors, and the optical axis is moved by irradiating a predetermined position of a workpiece on a processing table with a laser beam output from the laser oscillator. A laser processing device of the type that includes a calculation means for calculating the irradiation distance of the laser beam from the laser oscillator to the processing point based on the output from the ξ-ra drive means, and a The apparatus is characterized by comprising an optical means for making the laser beam diameter at a processing point constant based on the laser beam irradiation distance calculated by the provided calculation means.

〔作用]゛ このような特徴を有する本発明によれば、数値制御装置
から得られるミラーの移動情報に基づいてレーザ発振器
から加工点までのレーザ光の照射距離を演算し、その照
射距離に基づいて光学手段によりレーザ光径が加工点で
一定の光径となるように制御している。
[Operation] According to the present invention having such characteristics, the irradiation distance of the laser beam from the laser oscillator to the processing point is calculated based on the mirror movement information obtained from the numerical control device, and the irradiation distance is calculated based on the irradiation distance. The diameter of the laser beam is controlled by optical means to be constant at the processing point.

〔実施例〕〔Example〕

第1図(a), 0))は本発明の一実施例によるレー
ザ加工装置の立面図及び縦断面図、第2図はその概略を
示す斜視図である。本実施例において前述した従来例と
同一部分は同一符号を付して詳細な説明を省略する。本
実施例においてもレーザ発振器3の出力がミラーブロッ
ク4に与えられ、ガントIノ−5のミラーブロック6,
Z軸支持板8のミラーブロック10によりレーザ光がX
軸方向からY軸方向.及びZ軸方向に反射され、所定の
加工位置にレーザ光が与えられる。そして数値制御装置
14によってガントリ−5,Z軸支持板8とトーチ部1
2の位置が制御される。ここでガントリー5 2軸支持
板8.トーチ部12とボールネジ7,9.11とトーチ
制御装置は複数のミラーを所定位置に駆動する藁ラー駆
動手段20を構戒している。
FIG. 1(a), 0)) is an elevational view and longitudinal sectional view of a laser processing apparatus according to an embodiment of the present invention, and FIG. 2 is a perspective view schematically showing the same. In this embodiment, the same parts as those in the conventional example described above are given the same reference numerals, and detailed description thereof will be omitted. In this embodiment as well, the output of the laser oscillator 3 is given to the mirror block 4, and the mirror blocks 6, 5 of the Gantt I-5,
The mirror block 10 of the Z-axis support plate 8 causes the laser beam to
From the axial direction to the Y-axis direction. and is reflected in the Z-axis direction, and the laser beam is applied to a predetermined processing position. Then, the gantry 5, the Z-axis support plate 8 and the torch section 1 are controlled by the numerical control device 14.
2 position is controlled. Here, gantry 5 2-axis support plate 8. The torch portion 12, the ball screws 7, 9, 11, and the torch control device control a roller drive means 20 that drives the plurality of mirrors into predetermined positions.

さて本実施例では第1図に示すようにξラーブロック4
の反射部側に光径を制御する光学手段であるオートコリ
メータレンズ21を設ける。オートコリメータレンズ2
1は第3図(a). (b)に示すように固定レンズ2
2と移動レンズ23、及び外部からの信号によって光軸
上に沿って移動レンズ23を駆動するレンズ駆動部24
によって構威されている。又本実施例では数値制御装置
14からの各ξラーの位置信号は演算手段25に与えら
れる。
Now, in this embodiment, as shown in FIG.
An autocollimator lens 21, which is an optical means for controlling the diameter of light, is provided on the side of the reflecting section. Autocollimator lens 2
1 is shown in Figure 3(a). Fixed lens 2 as shown in (b)
2, a moving lens 23, and a lens driving section 24 that drives the moving lens 23 along the optical axis by an external signal.
It is structured by Further, in this embodiment, the position signal of each ξ error from the numerical control device 14 is given to the calculation means 25.

演算手段25はマイクロプロセッサ.メモリ及び入出力
インターフェースから戒り立っており、数値制御装置1
4から与えられるX軸.Y軸及びZ軸の各ミラーの位置
情報に基づいてレーザ発振器3から加工点、正確には集
光レンズ13までのレーザ光の照射距離を演算するもの
であり、その出力はオートコリメータレンズ21のレン
ズ駆動部24に与えられている。照射距離は第2図に示
すようにミラーブロック4からの反射点を原点としてX
軸.Y軸及びZ軸の位置情報を演算することにより容易
に演算することができる。そして得それたレーザ光の照
射距離に基づいてオートコリメータレンズ21のレンズ
駆動部24を介して第3図(a). (b)に示すよう
に移動レンズ23を移動さ七加工点でのレーザ光径を一
定となるように制御1る。
The calculation means 25 is a microprocessor. The memory and input/output interface are strictly controlled, and the numerical control device 1
The X axis given by 4. The irradiation distance of the laser beam from the laser oscillator 3 to the processing point, more precisely, to the condensing lens 13, is calculated based on the position information of each mirror on the Y-axis and Z-axis, and the output is output from the autocollimator lens 21. The lens driving section 24 is provided with a signal. The irradiation distance is X with the reflection point from the mirror block 4 as the origin, as shown in Figure 2.
shaft. The calculation can be easily performed by calculating the position information of the Y-axis and the Z-axis. Then, based on the obtained irradiation distance of the laser beam, the laser beam is transmitted through the lens driving section 24 of the autocollimator lens 21 as shown in FIG. 3(a). As shown in (b), the moving lens 23 is moved and the laser beam diameter at seven processing points is controlled to be constant.

第4図はレーザ光の発散角の変化を示す図でより、第4
図(a)に示すようにコリメータレンズを駆けなければ
一定の発散角によってレーザ光は発背してしまう。又第
4図(blに示すようにオートコIJメータレンズと異
なり固定レンズ26を用いた勾金にも一定の距離を越え
ればレーザ光は発敗す1傾向にある。そのため本発明で
は第4図(C)に示1ように一対のレンズから或るオー
トコリメータLンズ21を用いることによって加工点で
の光径乏一定にしている。
Figure 4 is a diagram showing changes in the divergence angle of laser light.
As shown in Figure (a), if the laser beam does not pass through the collimator lens, it will be emitted backward due to a certain divergence angle. Also, as shown in FIG. 4 (bl), unlike the autoco IJ meter lens, the laser beam tends to emit and fail if it exceeds a certain distance even with a pin using a fixed lens 26. Therefore, in the present invention, as shown in FIG. As shown in FIG. 1C, by using an autocollimator L lens 21 from a pair of lenses, the optical diameter at the processing point is kept constant.

このように本発明ではレーザ発振器3から加二点までの
距離によってオートコリメータレンズムよりレーザ光径
の加工位置にかかわらずレーザ)径を一定としているた
め、レーザ光の集光密度プ等しくなり加工位置による加
工状態の変化を防ぐことができる。
In this way, in the present invention, the laser beam diameter is kept constant regardless of the processing position of the autocollimator lens depending on the distance from the laser oscillator 3 to the addition point, so the condensed density of the laser beam is equalized and the processing is performed. Changes in processing conditions due to position can be prevented.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように本発明によれば、どの加工位
置でもレーザ光径を等しくすることができるためレーザ
光の集光密度を等しくすることができる。従って加工位
置にかかわらず加工状態の変化を防ぐことができ安定し
たレーザ加工を行うことができるという効果が得られる
As described in detail above, according to the present invention, the diameter of the laser beam can be made equal at any processing position, so that the condensation density of the laser beam can be made equal. Therefore, regardless of the processing position, changes in the processing state can be prevented and stable laser processing can be performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例によるレーザ加工装置の構戒
を示す立面図、第1図(b)はその縦断面図、第2図は
その斜視図、第3図はオートコリメータレンズの構或を
示す図、第4図はレーザ光の発散角の変化を示す図、第
5図(a)は従来のレーザ加工装置の構或を示す立面図
、第5図(ロ)はその縦断面図、第6図はトーチ部と集
光レンズを示す概略図である。 1・・一・・一被加工物  2−・一加エテーブル  
3−・・−・レーザ発振器 ツタ  7,9,1 ;・ミラー駆動手段 レンズ  24−・一・ 算手段。 4,6.10・−・・ミラーブロ 1・−・・一・ボールネジ  20 2l・・・一・・・オートコリメーク レンズ駆動部  25−・・・−・浄
FIG. 1 is an elevational view showing the configuration of a laser processing device according to an embodiment of the present invention, FIG. 1(b) is a longitudinal sectional view thereof, FIG. 2 is a perspective view thereof, and FIG. 3 is an autocollimator lens. 4 is a diagram showing the change in the divergence angle of the laser beam, FIG. 5(a) is an elevational view showing the structure of a conventional laser processing device, and FIG. Its longitudinal sectional view, FIG. 6, is a schematic diagram showing the torch section and the condensing lens. 1..1..1 workpiece 2-.1 addition table
3-... Laser oscillator ivy 7,9,1 ;-Mirror drive means lens 24--1.Calculating means. 4,6.10...Mirror blow 1...1 Ball screw 20 2l...1...Auto collimation lens drive part 25-... Clean

Claims (1)

【特許請求の範囲】[Claims] (1)レーザ発振器と、複数のミラーを駆動するミラー
駆動手段とを有し、前記レーザ発振器より出力されたレ
ーザ光を加工テーブル上の被加工物の所定位置に照射し
て加工する光軸移動型のレーザ加工装置において、 前記ミラー駆動、手段からの出力に基づいて前記レーザ
発振器から加工点までのレーザ光の照射距離を演算する
演算手段と、 前記レーザ発振器より出力されるレーザの光軸上に設け
られ前記演算手段より演算されたレーザ光照射距離に基
づいて加工点でのレーザ光径を一定にする光学手段とを
有することを特徴とするレーザ加工装置。
(1) Optical axis movement that includes a laser oscillator and a mirror driving means for driving a plurality of mirrors, and processes the workpiece by irradiating the laser light output from the laser oscillator onto a predetermined position of the workpiece on the processing table. type of laser processing apparatus, comprising: calculation means for calculating the irradiation distance of the laser beam from the laser oscillator to the processing point based on the output from the mirror driving means; 1. A laser processing apparatus comprising: an optical means for making a laser beam diameter constant at a processing point based on a laser beam irradiation distance calculated by the calculation means.
JP1299008A 1989-11-16 1989-11-16 Laser beam machining device Pending JPH03161188A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1299008A JPH03161188A (en) 1989-11-16 1989-11-16 Laser beam machining device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1299008A JPH03161188A (en) 1989-11-16 1989-11-16 Laser beam machining device

Publications (1)

Publication Number Publication Date
JPH03161188A true JPH03161188A (en) 1991-07-11

Family

ID=17867039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1299008A Pending JPH03161188A (en) 1989-11-16 1989-11-16 Laser beam machining device

Country Status (1)

Country Link
JP (1) JPH03161188A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0584587A (en) * 1991-09-27 1993-04-06 Fanuc Ltd Laser beam machining method and machine
EP1285718A1 (en) * 2001-08-18 2003-02-26 Trumpf Werkzeugmaschinen GmbH + Co. KG Machine tool for machining workpieces by laser beam

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6037287A (en) * 1983-08-09 1985-02-26 Mitsubishi Electric Corp Beam moving type laser working device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6037287A (en) * 1983-08-09 1985-02-26 Mitsubishi Electric Corp Beam moving type laser working device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0584587A (en) * 1991-09-27 1993-04-06 Fanuc Ltd Laser beam machining method and machine
EP1285718A1 (en) * 2001-08-18 2003-02-26 Trumpf Werkzeugmaschinen GmbH + Co. KG Machine tool for machining workpieces by laser beam

Similar Documents

Publication Publication Date Title
SU673157A3 (en) Apparatus for working articles with laser beams
JP2000202655A (en) Laser marking device
JPH0584587A (en) Laser beam machining method and machine
JP2925835B2 (en) Wrist structure for laser processing equipment
JPH04327394A (en) Light moving type laser beam machine
JP2005254618A (en) Resin welding apparatus
JPH03161188A (en) Laser beam machining device
JP4615238B2 (en) Laser processing equipment
JP2007021550A (en) Laser beam welding apparatus, laser beam welding system, and the laser beam welding method
JPH0339796B2 (en)
RU2283738C1 (en) Device for laser working
JP3285256B2 (en) Automatic alignment adjustment method and apparatus for laser robot
JPH0315273Y2 (en)
JPH0360597B2 (en)
JPH05124115A (en) Optical formation apparatus and formation method
JP2020082149A (en) Laser irradiation system
JPH01130894A (en) Laser beam machine
JP2001334380A (en) Method of laser beam machining and device therefor
JPH07246489A (en) Laser beam machine
JP2001205469A (en) Optical system for laser beam emission
JPS6376784A (en) Rotary head for laser beam machine
JPS6264489A (en) Focus position correcting device for laser beam machine
JPH06679A (en) Laser beam machine
JPH02280987A (en) Method for controlling focus to variation of laser beam scanning length
JP3211206B2 (en) Laser processing apparatus and processing method