JPH03161097A - Continuous purification treatment process for soil water - Google Patents

Continuous purification treatment process for soil water

Info

Publication number
JPH03161097A
JPH03161097A JP1303505A JP30350589A JPH03161097A JP H03161097 A JPH03161097 A JP H03161097A JP 1303505 A JP1303505 A JP 1303505A JP 30350589 A JP30350589 A JP 30350589A JP H03161097 A JPH03161097 A JP H03161097A
Authority
JP
Japan
Prior art keywords
treated
wastewater
contact
tank
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1303505A
Other languages
Japanese (ja)
Other versions
JPH0647116B2 (en
Inventor
Toshio Yasujima
利夫 安島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
S T ENG KK
Original Assignee
S T ENG KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by S T ENG KK filed Critical S T ENG KK
Priority to JP1303505A priority Critical patent/JPH0647116B2/en
Publication of JPH03161097A publication Critical patent/JPH03161097A/en
Publication of JPH0647116B2 publication Critical patent/JPH0647116B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

PURPOSE:To treat concentration and other conditions of water to be treated, as the pre-stage of contact aeration treatment, to the state optimum to the following aeration treatment by introducing an acid additive containing various kinds of metal salts and non-metal salts as main components into the soil water to be treated, introducing a neutralizer and mixing it therein, and carrying out neutralization. CONSTITUTION:An acid additive containing various kinds of metal salts and non-metal salts prepared by dissolving a mineral containing various kinds of metal oxides and non-metal oxides including SiO2, Al2O3, Fe2O3, K2O and MgO as main components by an oxidation reaction tank 3 is mixed with soil water to be treated from which insoluble matters are removed by a solid-liquid separator 2. Flocculent matters are settled in a settling tank 5 and affected by microbe groups adhered to contact materials 18, 18... trimming the inside of a contact aeration tank 6 to carry out effective purification. The treatment for high concentration organic soil water, which cannot be carried out by the microbe treatment only, and the treatment of organic soil water having large load variation can be carried out with high efficiency in a small equipment by said process.

Description

【発明の詳細な説明】 [産業上の利用分野】 本発明は、有機物で汚染されている汚水の連続浄化処理
方法に関するものである. [従来の技術】 近年,微生物の汚水に対する自浄作用を利用したいわゆ
る接触ばっ気法による汚水の浄化処理方法が採用される
に至っている. これは、微生物が付着しやすいように形成した紐状体か
らなる接触材を接触ばっ気槽内に多数配設し、被処理汚
水をこの中に送給して、それらの接触材に付着した主と
して好気性細菌の酸化作用により汚水を浄化処理する方
法である.微生物による汚水の浄化作用は、接触材に付
着した微生物群に於ける好気性細菌と嫌気性細菌の酸化
(硝化)作用と還元(脱窒)作用によりそれぞれ行なわ
れるものであり,それ故、両細菌群の増殖バランスが適
切に保持されることと、これに付随して発生する藻類、
プランクトン,原生動物乃至微小後生動物等が共生して
適切なバランス状態を保持することとが上記浄化作用を
有効に行なわれるために必要である. 本件発明者は、上記微生物群の上記バランスを保持する
のに適した接触材の研究を進め、芯体、例えば、塩化ビ
ニリデン樹脂、ボリアミド樹脂,ポリエステル樹脂、ボ
リプロビレン、ポリ塩化ビニル又はナイロン等からなる
芯体と、同様の材質からなり、上記芯体の周囲から放射
状に延び出した多数の細いリング状の繊維とで構成され
る接触材を開発した.上記接触材は、その形態が上記細
菌群の増殖バランスを安定に保持するのに適しており、
かつその径も上記に適したサイズに作成し得るので、汚
水の濃度の変化に対する順応性が高くなることの知見を
得た.そうして上記接触材を多段の接触ばっ気槽内に各
々適当な間隔で配設し、それらの中を汚水を循環させて
浄化する浄化方法を開発するに至ったものである. ところが、上記浄化方法について,更に繰り返し行なっ
てきた実験の結果、上記のような優れた接触材を用いた
場合であってもなお被処理汚水の濃度が極端に高くなっ
た場合には、やはり好気性細菌の増殖が困難になり、好
気性細菌と嫌気性細菌とのアンバランスが生じる結果と
なり、ばっ気処理がスムーズに行なわれ難くなることが
分かった. またこのような接触ばっ気法は、生化学的酸素要求ff
i(BOD)の低下には非常に効果があるが、化学的酸
素要求fi(COD)の低下には大きな効果は期待でき
ず,かつ、上記のように、BOD及び/又はCOD等の
負荷量の極端な変動には即座に対応し切れない問題もあ
る. [発明が解決しようとする課題] しかしてこのような優れた作用を有する接触ばっ気法を
有効に作用させるためには,予め、被処理汚水を,有効
に作用する条件の範囲に整えた上で、接触ばっ気処理に
入り得るように構成することが適当であることを想定し
た. そこで本発明では、接触ばつ気処理に,その前段階とし
て、被処理汚水の濃度その他の条件を、後のばっ気処理
に最適な状態にまで処理するプロセスを加えた方法を確
立することを目的としてなしたものである. [課題を解決するための手段] 先ず、本発明の前半の化学処理プロセスは、Sing.
 Alarm . Fe*Os . KsO及びMgO
を主成分とする多種の金属酸化物及び非金属酸化物を含
む鉱物を無機酸水溶液に溶解させて得た多種の金属塩及
び非金属塩を主成分として含有する酸性添加剤を、被処
理汚水中に投入し、混合させた後、上記被処理汚水中に
中和剤を投入混合して中和処理を行なうことにより、 上記被処理汚水中に溶解している有機物を分解して析出
させ、かつ上記被処理汚水中の懸濁物質とともに凝集さ
せ、 続いてこうして生成させた上記凝集物を分離するプロセ
スである. 上記プロセスの作用は、理論的に充分解明されている訳
ではないが、上記酸性添加剤の混合及びこれに引続く中
和剤の混合により、水溶性有機物が分解されて不溶解物
と溶解中間産物とになり、前者の不溶解゛物は、適当な
濾過材により濾取し又は沈澱槽等で沈澱させて分離する
ことができる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a continuous purification method for wastewater contaminated with organic matter. [Prior Art] In recent years, a method of purifying wastewater using the so-called contact aeration method, which utilizes the self-purifying action of microorganisms on wastewater, has been adopted. In this method, a large number of contact materials made of string-like bodies formed to allow microorganisms to easily adhere to them is placed in a contact aeration tank, and the wastewater to be treated is fed into these contact materials to prevent microorganisms from adhering to the contact materials. This is a method of purifying wastewater mainly through the oxidizing action of aerobic bacteria. The purification effect of wastewater by microorganisms is carried out by the oxidation (nitrification) and reduction (denitrification) effects of aerobic bacteria and anaerobic bacteria in the microbial group attached to the contact material, respectively. Maintaining an appropriate growth balance of bacterial groups and algae that occur along with this,
It is necessary for plankton, protozoa, micrometazoa, etc. to coexist and maintain an appropriate balance in order for the above purification effect to be carried out effectively. The inventor of the present invention has conducted research on contact materials suitable for maintaining the above-mentioned balance of the above-mentioned microbial groups, and has developed a core body made of vinylidene chloride resin, polyamide resin, polyester resin, polypropylene, polyvinyl chloride, nylon, etc. We have developed a contact material consisting of a core and a number of thin ring-shaped fibers made of the same material and extending radially from the periphery of the core. The contact material has a form suitable for stably maintaining the growth balance of the bacterial group,
Moreover, since the diameter can be made to a size suitable for the above, it has been found that the adaptability to changes in the concentration of wastewater is high. This led to the development of a purification method in which the above-mentioned contact materials are arranged at appropriate intervals in multi-stage contact aeration tanks, and wastewater is circulated through them for purification. However, as a result of repeated experiments with the above purification method, even when using the above-mentioned excellent contact material, if the concentration of the wastewater to be treated becomes extremely high, it is still not suitable. It was found that the growth of aerobic bacteria becomes difficult, resulting in an imbalance between aerobic and anaerobic bacteria, making it difficult to perform aeration smoothly. In addition, such contact aeration method reduces the biochemical oxygen demand ff
Although it is very effective in reducing i (BOD), it cannot be expected to have a large effect in reducing chemical oxygen demand fi (COD), and as mentioned above, the loading amount of BOD and/or COD etc. There are also problems in which it is not possible to respond immediately to extreme fluctuations in . [Problems to be Solved by the Invention] However, in order to make the contact aeration method, which has such an excellent effect, work effectively, the wastewater to be treated must be prepared in advance within the range of conditions that will work effectively. Therefore, we assumed that it would be appropriate to configure it so that it could undergo contact aeration treatment. Therefore, the purpose of the present invention is to establish a method that includes, as a preliminary step to contact aeration treatment, a process in which the concentration and other conditions of the wastewater to be treated are brought to an optimal state for subsequent aeration treatment. This was done as a. [Means for Solving the Problems] First, the chemical treatment process in the first half of the present invention is based on Sing.
Alarm. Fe*Os. KsO and MgO
An acidic additive containing various metal salts and non-metal salts obtained by dissolving minerals containing various metal oxides and non-metal oxides as main components in an inorganic acid aqueous solution is added to the wastewater to be treated. After mixing, a neutralizing agent is added and mixed into the sewage to be treated to perform neutralization treatment, thereby decomposing and precipitating the organic substances dissolved in the sewage to be treated, This is a process in which the wastewater is coagulated together with the suspended solids in the wastewater to be treated, and then the agglomerates thus generated are separated. The action of the above process has not been fully elucidated theoretically, but by mixing the acidic additive and the subsequent neutralizing agent, water-soluble organic matter is decomposed, forming insoluble matter and dissolved intermediates. The former undissolved substances can be separated by filtering through a suitable filter material or by precipitation in a sedimentation tank or the like.

上記溶解中間産物は後の接触ばっ気処理で分解して除去
することとなる. 上記プロセスに使用する多種の金属酸化物及び非金属酸
化物を含む鉱物としては、例えば、雲母、雲母を含有す
る岩石(例えば花崗岩)、雲母若しくは花崗岩等の腐食
岩(例えば、バーミキュライト)又はこれらの腐食岩が
更に風化した土壌が挙げられる.安価であることと無機
酸との反応性が高いという理由で、雲母系鉱物が風化し
たバーミキュライト又はこのバーミキュライトが更に風
化した土壌を使用するのが好ましい.またその析出凝集
作用の点では黒色雲母を使用するのが良いので、黒色雲
母の腐食岩及びこの腐食岩が更に風化した土壌を使用す
るのが特に好ましい.このプロセスで使用する上記酸性
添加剤を製造するには、例えば、雲母系鉱物が風化した
バーミキュライトに、硫酸、塩酸等の鉱酸、例えば、2
5%硫酸水溶液を、バーミキュライト:硫酸水溶液が、
4:3〜4となる重量比で加え、時々撹拌しながら数日
間放置するか、あるいはlOO℃に加温・撹拌しながら
数日間放置すれば良い.このように処理すると、原材料
中のSi. Al, Mg.Fe.K.Na等の元素や
酸化物が硫酸水溶液中に溶出して,上記の金属や非金属
の硫酸塩、酸化物、複塩及び錯廖が生成される.更に上
記以外に、微量ではあるが,原材料中に元素又は酸化物
として含まれているLi, 2r.  V . Ti%
Ni. Go.  P . Ba、S . Ge等の硫
酸塩も生成されるが、有害重金属類は皆無である. このようにして得られた水溶液は、このまま又は濃縮若
しくは希釈して上記酸性添加剤として使用することがで
きる. このプロセスでは、前記のように、前記被処理汚水に上
記酸性添加剤を添加して、被処理汚水中に含まれる溶解
有機物を分解、析出、凝集させて除去する.なお、既述
のように、上記被処理汚水中に、上記プロセスで生成し
かつ残存することとなる比較的少量の溶解中間産物につ
いては後の接触ばっ気処理で分解して除去する訳である
.ところでこの発明方法は,上記化学処理のプロセスと
後述する接触ばっ気処理とを結合したものであり、有機
物が溶解した広い範囲の汚水の処理を可能としたもので
ある.被処理汚水としては、例えば、厨房排水、深尿、
畜産、養魚、病院等の排水が対象として挙げられる.被
処理汚水は勿論上記のような排水以外であって6良い.
しかして被処理汚水は、上記のようなものであるが,こ
の化学処理のプロセスは、上記被処理汚水中に溶解する
比較的高濃度の溶解有機物を分解し,後のばっ気処理の
プロセスに適する条件範囲にまで処理することを目的と
するものであるから、前記酸性添加剤の添加量等は,概
ね次のように行なうのが適当である. 即ち、被処理汚水に対する酸性添加剤の添加量は、被処
理汚水の種類、濃度等の諸条件によって若干相違するが
、一般的には、被処理汚水lOOccに対して、濃縮乾
固後の固形物として0.01〜log特に0.1〜Ig
を用いる. 被処理汚水に酸性添加剤を添加すると有機物の分解によ
る証左と考えられる炭酸ガスが発生し、更に、前記した
ようにアルカリによる中和を行うと液面にはフロックが
浮上する.上記フロックは、そのまま放置すると、時間
の経過ととちに沈澱し、被処理汚水は清澄になる.上記
フロックは、例えば、沈澱槽で沈澱させて除去し、ある
いは、砂,焼成バーミキュライト,ゼオライト又は活性
炭等の濾過材を通して濾過することができる. 次に本発明の後半のばっ気処理プロセスは、次の通りで
ある. 即ち、上述した化学処理プロセスで、得られた被処理済
汚水を、芯体と、その外周より放射状に延び出した多数
の細い繊維リングとから構成される接触材の適数本を適
当な間隔で配設した複数段の接触ばっ気槽に順次的に供
給し,各段のばっ気槽の接触材間を緩やかに通過させて
連続浄化処理するものである. 上記接触ばっ気槽は,例えば、四槽を順次的に連結連通
させる. 上記接触材は,例えば,塩化ビニリデンからなる芯体及
び上記芯体の外周から放射方向に延び出した多数の細い
リング状の繊維で構成されるものを用いる.上記接触材
は、例えば、上部及び下部にバイブ体を平行に固設した
支持部材に取り付ける.具体的には,上記上部及び下部
のパイプ体に、各々上端及び下端をそれぞれ結合して相
互を縦横に定間隔で配設する.即ち、各々の接触材は上
下方向に立てて配設し、相互の水平方向の間隔は,縦横
いずれの方向にも概ね定間隔とする.そして接触材は、
このように支持部材に取り付けた状態で各接触ばっ気槽
に配設する. しかして前半の化学処理プロセスで処理され、有機物濃
度を低下させられた被処理汚水が最初の接触ばっ気槽に
供給されると,その内部に配設してある接触材に接触し
、各接触材に付着してぃる細菌群による作用を受け,更
に浄化が進行する. 上記接触材は,芯体と、その外周から放射方向に向かっ
て延び出した多数の細いリング状繊維とからなるもので
あり、上記リングの大きさを種々のちのにしておくこと
により、酸素の摂取が容易な外周付近とそうでない内部
付近とが適切なバランスに構成できるものであり,それ
に付着する好気性細菌と嫌気性細菌の増殖のバランスが
適切に保持される.その結果、被処理汚水の残存BOD
及びCODの除去が有効に行なわれる.また酸化作用と
還元作用(例えば、硝化菌によるアンモニア性窒素の硝
化と脱窒菌による脱窒)が平行して行なわれるために、
現在コスト的に問題となっている汚水の脱窒が上記BO
D及びCODの除去と平行して、コスト増を伴うことな
く達成されるようになる. 更にこのプロセスで用いる接触材は,上述のような構成
であり,芯体の周辺部に形成された細いリング状繊維が
汚水の若干の濃度変化及び微生物群の増殖に対して順応
性を有し、また上記リングの比表面積と空間容積が非常
に大きいため多種類の微生物及び小生物を付着させるの
に適している.例えば、藻類のような微生物以外の生物
まで増殖して懸架し得るので、汚水中のBOD及びCO
Dは勿論のこと窒素分とリン分の除去も可能となって浄
化水の河川等への放流上も支障がなくなる. 以上のように、この後半のプロセスでは、被処理汚水が
、前記化学処理プロセスで、微生物類その他の上記生物
類が活発に活動し得る適切な低濃度にまで処理されてい
るので、多段に配置された接触ばっ気槽で各段毎にその
接触材に付着活動する微生物類にとって最適な濃度での
浄化作用が有効に行なわれ得るものである. [実施例】 以下図面に基づいて本発明の一実施例を説明する. 先ず以下の各実施例で用いる設備について概要を説明す
,る. 第1図に示したように、調整槽1、スクリーンで構成し
た固液分離機2、酸化反応槽3、中和槽4、沈澱槽5、
四段に構成した接触ばっ気槽6、砂式濾過817及び清
水槽8をこの順序で設置する. 上記調整槽lは、最初に浄化対象の雑排水等の被処理汚
水を受け入れ、その流入量の変化を吸収し、次段以降へ
の供給量の調整を図るための設備である.この調整槽l
は上記固液分離機2に計量器9を介して速通する.上記
計量器9は単位時間当たりの被処理汚水の供給量を、次
段以降の能力に合わせて調整するものである.また上記
固液分離機2は,上記のようにスクリーンで構成したも
ので、ここで分離された固形成分は除去して焼却処理す
る. また別にブロワー装置lOを設け,このブロワー装置l
Oかも、酸化反応槽3、中和II4、接触ばっ気槽6の
各段の槽6a,6b、6c、6dの付近までバイブll
aを延長し、更にそれぞれの底部まで上記バイブlla
から補助パイプ1lb.llb・・・を分岐して延長し
、各々その末端に底部に沿って配置したノズルバイプl
ie、11c・・・を接続する.上記ノズルパイブll
cは、多数のノズル孔をその長さ方向に並べて穿設した
ものである.上記ノズルバイプllcは上記酸化反応槽
3及び中和槽4ではそれぞれ酸化剤又は中和剤を被処理
汚水中に均一に混合させるべく上記ノズル孔からエアー
を噴出させて撹拌する趣旨である.また接触ばっ気槽6
では、各段の槽6a、6b、6c、6dの被処理汚水中
に上記上記ノズル孔からエアーを噴出させて充分な酸素
を供給する趣旨である. 上記醋化反応槽3には投入ボンブ12を付設した酸性添
加剤の収納タンク13を接続し、更に上記中和槽4には
投入ボンブl4を付設した中和剤の収納タンク15を接
続する.中和剤の収納タンク15には更に中和剤が沈降
しないようにモータで撹拌羽を回転駆動する撹拌装置1
6を装備しておくものとする. また上記沈澱槽5の底部にはバイプl7を接続し,沈澱
した汚泥をポンプで引き抜くように構成する. 前記砂式濾過機7は砂及び石を充填して構成したもので
ある. また前記接触ばっ気槽6の各段の槽6a、6b、6c,
6dには多数の接触材l8、l 8 ・・・を縦横に定
間隔で取り付けた支持スタンドl9を内装充填する. 上記接触材l8は,第2図に示したように、塩化ビニリ
デンからなる芯体18a及び上記芯体18aの外周から
放射方向に伸びる多数の接触リング18b.18b・・
・で構成されている.上記接触リング18b.18b・
・・は同様に3塩化ビニリデンで構成されたものである
. また上記支持スタンドl9は、第3図に示したように,
四隅に立設した支柱19a.19a・・・とその上端及
び下方の途中に配した支持板19b、19bとで構成さ
れるもので、上記多数の接触材l8、18・・・は、相
互間を縦横に定間隔としつつ、各上下端を上記支持板1
9b.19bにそれぞれ結合して取り付けるものである
The above-mentioned dissolution intermediate products will be decomposed and removed in the subsequent contact aeration process. Minerals containing various metal oxides and non-metal oxides used in the above process include, for example, mica, rocks containing mica (e.g. granite), sacrificial rocks such as mica or granite (e.g. vermiculite), or minerals containing these. This includes soils that have been further weathered from saprophytes. It is preferable to use vermiculite in which mica-based minerals have been weathered, or soil in which this vermiculite has been further weathered, because it is inexpensive and has high reactivity with inorganic acids. Furthermore, since it is better to use black mica in terms of its precipitation and agglomeration effect, it is particularly preferable to use black mica sacrificial rock and soil in which this sacrificial rock has been further weathered. To produce the acidic additive used in this process, for example, vermiculite, which is weathered mica-based mineral, is mixed with a mineral acid such as sulfuric acid or hydrochloric acid, e.g.
5% sulfuric acid aqueous solution, vermiculite: sulfuric acid aqueous solution,
Add at a weight ratio of 4:3 to 4 and leave for several days with occasional stirring, or heat to 100°C and leave for several days while stirring. When processed in this way, Si. Al, Mg. Fe. K. Elements such as Na and oxides are eluted into the sulfuric acid aqueous solution, producing the above metal and nonmetal sulfates, oxides, double salts, and complexes. Furthermore, in addition to the above, Li, 2r. V. Ti%
Ni. Go. P. Ba, S. Although sulfates such as Ge are also produced, there are no harmful heavy metals. The aqueous solution thus obtained can be used as the above-mentioned acidic additive as it is or after being concentrated or diluted. In this process, as described above, the acidic additive is added to the wastewater to be treated, and the dissolved organic matter contained in the wastewater to be treated is decomposed, precipitated, and coagulated to be removed. As mentioned above, the relatively small amount of dissolved intermediate products that are generated in the above process and remain in the wastewater to be treated are decomposed and removed in the subsequent contact aeration treatment. .. By the way, the method of this invention combines the chemical treatment process described above and the catalytic aeration treatment described below, and makes it possible to treat a wide range of wastewater containing dissolved organic matter. Examples of wastewater to be treated include kitchen wastewater, deep urine,
Targets include wastewater from livestock farming, fish farming, hospitals, etc. Of course, the sewage to be treated must be other than the wastewater mentioned above.
However, the wastewater to be treated is as described above, and this chemical treatment process decomposes the relatively high concentration of dissolved organic matter dissolved in the wastewater to be treated, and is used in the subsequent aeration process. Since the purpose is to achieve a treatment within a suitable range of conditions, it is appropriate to adjust the amount of the acidic additive added as follows. In other words, the amount of acidic additive added to the wastewater to be treated differs slightly depending on conditions such as the type and concentration of the wastewater to be treated, but in general, the amount of solids after concentration and drying per 100cc of the wastewater to be treated is As a substance, 0.01 to log, especially 0.1 to Ig
Use. When acidic additives are added to wastewater to be treated, carbon dioxide gas is generated, which is thought to be evidence of the decomposition of organic matter, and when neutralized with alkali as described above, flocs float to the surface of the liquid. If the flocs are left as they are, they will settle out over time, and the wastewater to be treated will become clear. The flocs can be removed by settling, for example in a settling tank, or filtered through a filter medium such as sand, calcined vermiculite, zeolite or activated carbon. Next, the aeration process in the second half of the present invention is as follows. That is, the treated wastewater obtained in the above-mentioned chemical treatment process is treated with an appropriate number of contact materials consisting of a core and a number of thin fiber rings extending radially from its outer periphery at appropriate intervals. The water is sequentially supplied to multiple stages of contact aeration tanks arranged in the air tank, and is passed gently between the contact materials in each stage of aeration tanks for continuous purification. The above-mentioned contact aeration tank, for example, connects and communicates four tanks in sequence. The contact material used includes, for example, a core made of vinylidene chloride and a large number of thin ring-shaped fibers extending radially from the outer periphery of the core. The above-mentioned contact material is attached, for example, to a support member having vibrator bodies fixed in parallel to the upper and lower parts. Specifically, the upper and lower pipe bodies are connected at their upper and lower ends, respectively, and arranged at regular intervals vertically and horizontally. That is, each contact material is arranged vertically, and the horizontal spacing between them is approximately constant in both the vertical and horizontal directions. And the contact material is
Install it in each contact aeration tank while attached to the support member in this way. When the treated wastewater, which has been treated in the first half of the chemical treatment process and whose organic matter concentration has been reduced, is supplied to the first contact aeration tank, it comes into contact with the contact material installed inside the tank, and each contact Purification progresses further due to the action of bacteria attached to the wood. The above-mentioned contact material consists of a core body and a large number of thin ring-shaped fibers extending radially from the outer periphery of the core body, and by leaving the above-mentioned rings in various sizes, oxygen can be removed. An appropriate balance can be created between the outer area where ingestion is easy and the inner area where ingestion is not possible, and the balance between the growth of aerobic and anaerobic bacteria attached thereto is maintained appropriately. As a result, the remaining BOD of the wastewater to be treated
and COD is effectively removed. In addition, since oxidation and reduction actions (for example, nitrification of ammonia nitrogen by nitrifying bacteria and denitrification by denitrifying bacteria) occur in parallel,
Denitrification of wastewater, which is currently a cost problem, is the BO mentioned above.
In parallel with the elimination of D and COD, this will be achieved without increasing costs. Furthermore, the contact material used in this process has the structure described above, and the thin ring-shaped fibers formed around the core are adaptable to slight changes in the concentration of wastewater and the growth of microorganisms. Furthermore, since the specific surface area and spatial volume of the ring are extremely large, it is suitable for attaching many types of microorganisms and small organisms. For example, organisms other than microorganisms such as algae can proliferate and become suspended, so BOD and CO in wastewater are
Not only D, but also nitrogen and phosphorus can be removed, so there is no problem in discharging purified water into rivers, etc. As described above, in the latter half of the process, the wastewater to be treated is treated in the chemical treatment process to an appropriately low concentration in which microorganisms and other living organisms can be actively active, so the wastewater is arranged in multiple stages. In the contact aeration tank, the purification effect can be effectively carried out at the optimum concentration for the microorganisms that adhere to the contact material at each stage. [Example] An example of the present invention will be described below based on the drawings. First, we will provide an overview of the equipment used in each of the following examples. As shown in FIG. 1, a regulating tank 1, a solid-liquid separator 2 composed of a screen, an oxidation reaction tank 3, a neutralization tank 4, a settling tank 5,
A four-stage contact aeration tank 6, sand filter 817, and fresh water tank 8 are installed in this order. The above-mentioned adjustment tank 1 is a facility that first receives wastewater to be purified, such as gray water, and absorbs changes in the amount of inflow, and adjusts the amount supplied to the subsequent stages. This adjustment tank
is quickly passed through the solid-liquid separator 2 via the meter 9. The measuring device 9 is used to adjust the amount of sewage to be treated per unit time according to the capacity of the next stage and subsequent stages. The solid-liquid separator 2 is constructed of a screen as described above, and the solid components separated here are removed and incinerated. In addition, a separate blower device IO is provided, and this blower device IO is installed separately.
It may be possible to move the vibrator to the vicinity of the tanks 6a, 6b, 6c, and 6d in each stage of the oxidation reaction tank 3, neutralization II 4, and contact aeration tank 6.
Extend the above vibrator lla further to the bottom of each
Auxiliary pipe 1lb. llb... is branched and extended, and each nozzle vipe l is arranged along the bottom at its end.
Connect ie, 11c... Above nozzle pipe ll
c has a large number of nozzle holes arranged in the length direction. The purpose of the nozzle vip llc is to blow out air from the nozzle hole to stir the oxidizing agent or neutralizing agent in the oxidation reaction tank 3 and neutralization tank 4, respectively, in order to uniformly mix them in the wastewater to be treated. Also contact aeration tank 6
Here, the purpose is to supply sufficient oxygen to the wastewater to be treated in the tanks 6a, 6b, 6c, and 6d of each stage by blowing air from the nozzle holes. An acidic additive storage tank 13 equipped with a charging bomb 12 is connected to the axification reaction tank 3, and a neutralizing agent storage tank 15 equipped with a charging bomb 14 is connected to the neutralization tank 4. The neutralizing agent storage tank 15 is further equipped with a stirring device 1 that rotates stirring blades using a motor to prevent the neutralizing agent from settling.
6 shall be equipped. In addition, a pipe 17 is connected to the bottom of the settling tank 5, and the settled sludge is drawn out by a pump. The sand filter 7 is filled with sand and stones. In addition, tanks 6a, 6b, 6c in each stage of the contact aeration tank 6,
6d is filled with a support stand 19 having a large number of contact materials 18, 18, . . . attached at regular intervals vertically and horizontally. As shown in FIG. 2, the contact material 18 includes a core body 18a made of vinylidene chloride and a number of contact rings 18b extending radially from the outer periphery of the core body 18a. 18b...
・It is composed of. Said contact ring 18b. 18b・
... is similarly composed of vinylidene trichloride. Further, the support stand l9 is, as shown in FIG.
Posts 19a installed at the four corners. 19a... and supporting plates 19b, 19b disposed at their upper ends and midway down, and the large number of contact members 18, 18... are spaced apart from each other at regular intervals vertically and horizontally. Each upper and lower end is attached to the support plate 1
9b. 19b, respectively.

次に上記設備を用いて行なう浄化処理例を説明する。こ
れは食堂排水の浄化処理の例である.有機物量:2.O
OOppmの被処理汚水を先ず調整槽lに受け入れ,こ
こで受入量の変動を吸収する.上記調整illからは計
量器9でlrr?/hの供給量に調節しつつ固液分離機
2を介して酸化反応槽3に送給する.上記固液分離機2
では、これを構成するスクリーンで濾過し、不溶物を除
去する. 固液分離機2で不溶物が除去された被処理汚水は酸化反
応槽3に送給され、ここで酸性添加剤が投入され混合さ
れる.上記酸性添加剤は、投入ポンブ12で酸性添加剤
の収納タンクl3から供給される.そして酸化反応槽3
ではノズルパイブ11cのノズル孔から噴出されるエア
ーにより上記酸性添加剤が充分に被処理汚水に混合され
る.上記酸性添加剤としては、商品名”サブロ” (シ
マニシ化研株式会社製造販売)を採用し、これを、被処
理汚水中で5 0 0 91)Imの濃度となる量だけ
添加した. 上記のように酸性添加剤が添加されて充分撹拌混合され
た後に,上記被処理汚水は中和槽4に移され、中和剤が
投入される.中和剤は、投入ポンプl4で中和剤の収納
タンク15から供給される.そして中和槽4ではノズル
パイプlieのノズル孔から噴出されるエアーにより上
記中和剤が充分に被処理汚水に混合される.中和剤とし
ては生石灰(CaO )を採用し、pH7.5になるま
で添加した. しかして被処理汚水中に溶解している有機物は析出し、
不溶解物になり、凝集するに至る.上記被処理汚水は沈
澱槽5に移され、ここで30分間滞留させられ,凝集物
は沈降させられることとなる.上記30分の経過後、被
処理汚水の上澄みを次段の接触ばっ気槽6に送り込む.
この時の被処理汚水中の有機物量は4 8 0 ppm
であった. 上記接触ばっ気槽6に送られた被処理汚水は,まず最初
の槽6a内で内装されている接触材l8、18・・・に
付着している種々の微生物類の作用を受け、溶解有機物
及び溶解中間産物が徐々に分解され,順次後段の槽6b
、6c、6dを経過して、各段の有機物濃度に適合して
接触材l8、l8・・・に付着している微生物群により
作用を受けて有効に゛浄化が行なわれる. 上記接触ばっ気槽6では被処理汚水は24時間で通過す
るように調整してある. この接触ばっ気槽6の最終段の槽6dから次段の砂式濾
過機7に送給される被処理汚水は、有機物量3 0 p
pmに処理されている.この処理水に含まれている有機
物は細菌類の死骸等の汚泥である. 次にこの被処理汚水は、砂式濾過機7を通過させられる
.通過後の被処理水の有機物量は20pp+mである. この被処理水は清水槽に供給される. [発明の効果] したがって本発明によれば、微生物処理のみでは成し得
ない高濃度の有機物汚水の処理又は負荷変動の大きい有
機物汚水の処理を小さな設備で高能率に行なうことがで
きる.
Next, an example of purification treatment performed using the above equipment will be explained. This is an example of purification treatment for cafeteria wastewater. Organic matter amount: 2. O
OOppm of wastewater to be treated is first received into the adjustment tank 1, where fluctuations in the amount received are absorbed. From the above adjustment ill, check the scale 9 for lrr? It is fed to the oxidation reaction tank 3 via the solid-liquid separator 2 while adjusting the supply amount to /h. Above solid-liquid separator 2
Now, filter this through the screen that makes up the sample to remove insoluble matter. The wastewater to be treated from which insoluble matter has been removed in the solid-liquid separator 2 is sent to the oxidation reaction tank 3, where an acidic additive is added and mixed. The acidic additive is supplied from an acidic additive storage tank l3 by a charging pump 12. And oxidation reaction tank 3
Then, the acidic additive is sufficiently mixed into the wastewater to be treated by the air jetted from the nozzle hole of the nozzle pipe 11c. As the acidic additive, the trade name "SABRO" (manufactured and sold by Shimanishi Kaken Co., Ltd.) was used, and it was added in an amount to give a concentration of 50091) Im in the wastewater to be treated. After the acidic additive has been added and sufficiently stirred and mixed as described above, the wastewater to be treated is transferred to the neutralization tank 4, and a neutralizing agent is added thereto. The neutralizing agent is supplied from a neutralizing agent storage tank 15 by an input pump l4. In the neutralization tank 4, the neutralizing agent is sufficiently mixed with the wastewater to be treated by air jetted from the nozzle hole of the nozzle pipe lie. Quicklime (CaO) was used as a neutralizing agent and was added until the pH reached 7.5. However, organic substances dissolved in the wastewater to be treated precipitate out,
It becomes an insoluble substance and agglomerates. The wastewater to be treated is transferred to the settling tank 5, where it is allowed to stay for 30 minutes, and the aggregates are allowed to settle. After the above 30 minutes have elapsed, the supernatant of the wastewater to be treated is sent to the contact aeration tank 6 in the next stage.
The amount of organic matter in the wastewater to be treated at this time was 480 ppm.
Met. The sewage to be treated sent to the contact aeration tank 6 is first affected by various microorganisms attached to the contact materials 18, 18, etc. installed in the first tank 6a, and dissolved organic matter is removed. and the dissolved intermediate products are gradually decomposed and sequentially transferred to the subsequent tank 6b.
, 6c, and 6d, the microorganisms adhering to the contact materials 18, 18, etc. adapt to the organic matter concentration at each stage, and are acted upon to effect effective purification. The contact aeration tank 6 is adjusted so that the wastewater to be treated passes through it in 24 hours. The wastewater to be treated, which is sent from the final stage tank 6d of this contact aeration tank 6 to the next stage sand filter 7, has an organic matter content of 30 p.
It is processed to pm. The organic matter contained in this treated water is sludge such as dead bacteria. Next, this wastewater to be treated is passed through a sand filter 7. The amount of organic matter in the water to be treated after passing through is 20pp+m. This treated water is supplied to the fresh water tank. [Effects of the Invention] Therefore, according to the present invention, treatment of highly concentrated organic wastewater that cannot be achieved by microbial treatment alone or treatment of organic wastewater with large load fluctuations can be carried out with high efficiency using small equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例の設備を示しており、第1図は
その概略説明図、第2図は接触材の概略断面図,第3図
は接触材を取り付けた状態のスタンドの概略斜視図であ
る. l・・・調整槽、2・・・固液分iiilI!、3・・
・酸化反応槽、4・・・中和槽、5・・・沈澱槽、6・
・・接触ばっ気槽、6a、6b、6c、6 d ・・・
槽、7・・・砂式濾過機、8・・・清水槽、9・・・計
量器.10・・・ブロワー装置、11a・・・パイプ、
llb・・・補助パイプ、l l c ”−ノズルバイ
ブ、12.14・・・投入ポンプ、13%l5・・・収
納タンク.16・・・撹拌装置、l7・・・パイプ,1
8・・・接触材、18a・・・芯体,18b・・・接触
リング、l9・・・支持スタンド、19a・・・支柱、
19b・・・支持板.
The drawings show a facility according to an embodiment of the present invention; FIG. 1 is a schematic explanatory diagram thereof, FIG. 2 is a schematic sectional view of the contact material, and FIG. 3 is a schematic perspective view of the stand with the contact material attached. This is a diagram. l...adjustment tank, 2...solid-liquid fraction iii! , 3...
・Oxidation reaction tank, 4... Neutralization tank, 5... Sedimentation tank, 6.
...Contact aeration tank, 6a, 6b, 6c, 6d...
Tank, 7... Sand filter, 8... Fresh water tank, 9... Measuring device. 10...Blower device, 11a...Pipe,
llb... Auxiliary pipe, l l c ''-nozzle vibe, 12.14... Injection pump, 13% l5... Storage tank. 16... Stirring device, l7... Pipe, 1
8... Contact material, 18a... Core body, 18b... Contact ring, l9... Support stand, 19a... Support column,
19b...Support plate.

Claims (1)

【特許請求の範囲】  SiO_2、Al_2O_3、Fe_2O_3、K_
2O及びMgOを主成分とする多種の金属酸化物及び非
金属酸化物を含む鉱物を無機酸水溶液に溶解させて得た
多種の金属塩及び非金属塩を主成分として含有する酸性
添加剤を、被処理汚水中に投入し、混合させた後、上記
被処理汚水中に中和剤を投入混合して中和処理を行なう
ことにより、 上記被処理汚水中に溶解している有機物を分解して析出
させ、かつ上記被処理汚水中の懸濁物質とともに凝集さ
せ、 続いてこうして生成させた上記凝集物を分離し、 この後、上記処理を経た被処理汚水を、芯体の周辺部よ
り外周に向かって放射状に形成した細い繊維から構成さ
れる接触材の適数個を適当な間隔で配設した複数段の接
触ばっ気槽に順次的に供給し、各段の接触ばっ気槽の接
触材間を緩やかに通過させ、残存する溶解有機物を分解
し、 引き続いて分解された凝集物を分離することとした汚水
の連続浄化処理方法。
[Claims] SiO_2, Al_2O_3, Fe_2O_3, K_
An acidic additive containing various metal salts and non-metal salts as main components obtained by dissolving minerals containing various metal oxides and non-metal oxides mainly containing 2O and MgO in an inorganic acid aqueous solution. After being poured into the wastewater to be treated and mixed, a neutralizing agent is added and mixed into the wastewater to be treated to perform neutralization treatment, thereby decomposing the organic matter dissolved in the wastewater to be treated. The wastewater to be treated is precipitated and coagulated together with the suspended matter in the sewage to be treated, and then the aggregates thus generated are separated, and the sewage to be treated that has undergone the above treatment is distributed from the periphery of the core body to the outer periphery. An appropriate number of contact materials made of thin fibers formed radially toward each other are sequentially supplied to multiple stages of contact aeration tanks arranged at appropriate intervals, and the contact material in each stage of contact aeration tanks is A method for continuous purification of sewage in which the wastewater is passed slowly through the water to decompose the remaining dissolved organic matter, and then the decomposed aggregates are separated.
JP1303505A 1989-11-21 1989-11-21 Method for continuous purification of sewage Expired - Lifetime JPH0647116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1303505A JPH0647116B2 (en) 1989-11-21 1989-11-21 Method for continuous purification of sewage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1303505A JPH0647116B2 (en) 1989-11-21 1989-11-21 Method for continuous purification of sewage

Publications (2)

Publication Number Publication Date
JPH03161097A true JPH03161097A (en) 1991-07-11
JPH0647116B2 JPH0647116B2 (en) 1994-06-22

Family

ID=17921781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1303505A Expired - Lifetime JPH0647116B2 (en) 1989-11-21 1989-11-21 Method for continuous purification of sewage

Country Status (1)

Country Link
JP (1) JPH0647116B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002102876A (en) * 2000-10-02 2002-04-09 Nippon Kenki:Kk Water cleaning apparatus equipped with active chips

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928113A (en) * 1972-07-15 1974-03-13
JPS4949069A (en) * 1972-05-22 1974-05-13
JPS52100743A (en) * 1976-02-18 1977-08-24 Toa Giken Kk Method of and apparatus for treating waste water
JPS53129451A (en) * 1977-04-16 1978-11-11 Seisan Gijiyutsu Kaihatsu Kenk Method of biologically purifying waste water adapted for breeding microorganism by preventing fault of floated foreign materials and device for biologically purifying waste water utilizing same
JPS62180795A (en) * 1986-02-05 1987-08-08 Oruganitsuku:Kk Method and apparatus for high-degree treatment of sewage
JPS6447413A (en) * 1987-08-13 1989-02-21 Daiei Sangyo Kaisha Ltd Sol type flocculating agent

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4949069A (en) * 1972-05-22 1974-05-13
JPS4928113A (en) * 1972-07-15 1974-03-13
JPS52100743A (en) * 1976-02-18 1977-08-24 Toa Giken Kk Method of and apparatus for treating waste water
JPS53129451A (en) * 1977-04-16 1978-11-11 Seisan Gijiyutsu Kaihatsu Kenk Method of biologically purifying waste water adapted for breeding microorganism by preventing fault of floated foreign materials and device for biologically purifying waste water utilizing same
JPS62180795A (en) * 1986-02-05 1987-08-08 Oruganitsuku:Kk Method and apparatus for high-degree treatment of sewage
JPS6447413A (en) * 1987-08-13 1989-02-21 Daiei Sangyo Kaisha Ltd Sol type flocculating agent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002102876A (en) * 2000-10-02 2002-04-09 Nippon Kenki:Kk Water cleaning apparatus equipped with active chips
JP4502492B2 (en) * 2000-10-02 2010-07-14 株式会社日本建機 Water purification device with active chip

Also Published As

Publication number Publication date
JPH0647116B2 (en) 1994-06-22

Similar Documents

Publication Publication Date Title
US3356609A (en) Aerobic treatment of sewage
EP0323970B1 (en) Sewage treatment
JP2812640B2 (en) Wastewater treatment device and wastewater treatment method
JP4508694B2 (en) Water treatment method and apparatus
US4178239A (en) Biological intermediate sewage treatment with ozone pretreatment
US4029575A (en) Phosphorus removal from waste water
CN105293833B (en) Comprehensive wastewater treatment device and process for iron and steel integrated enterprise
JP2007313508A (en) Installation for biological water treatment for production of drinking water
JP2004237144A (en) Waste water disposal system
US4612124A (en) Method of sewage treatment
CN103086574A (en) Waste water treatment equipment for processing aquatic product
JP3122654B2 (en) Method and apparatus for treating highly concentrated wastewater
CN115893750A (en) Zero emission approaching system and method for treating high-concentration organic industrial wastewater
KR100527172B1 (en) A method and apparatus for nitrogenous waste water of nitrogen and sewage
CN107973488B (en) Method for denitrification treatment of ammonia nitrogen wastewater
CN105016467B (en) A kind of device for landfill leachate treatment
KR101135011B1 (en) A sewage and wastewater treatment and an apparatus for thereof
JPH03161097A (en) Continuous purification treatment process for soil water
JPS6317513B2 (en)
CN1309096A (en) Method and device for treating high concentration waste water
JPH027718B2 (en)
JP2004041981A (en) Organic waste water treatment method and its system
KR100360561B1 (en) A treatment methods for organic sewage
KR100935022B1 (en) Apparatus for purifying waste water
JP2000024687A (en) Treatment of waste nitric acid