JPH03161030A - Preparation of porous carbon composite membrane - Google Patents

Preparation of porous carbon composite membrane

Info

Publication number
JPH03161030A
JPH03161030A JP1300812A JP30081289A JPH03161030A JP H03161030 A JPH03161030 A JP H03161030A JP 1300812 A JP1300812 A JP 1300812A JP 30081289 A JP30081289 A JP 30081289A JP H03161030 A JPH03161030 A JP H03161030A
Authority
JP
Japan
Prior art keywords
polymer
support
porous carbon
film
coating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1300812A
Other languages
Japanese (ja)
Inventor
Hiroaki Yoneyama
米山 弘明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP1300812A priority Critical patent/JPH03161030A/en
Publication of JPH03161030A publication Critical patent/JPH03161030A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Filtering Materials (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To form a porous carbon composite film excellent in heat resistance and chemical resistance by heating a support wherein a film composed of a specific composition in formed in an oxidizable gas to apply flame-resistant treatment to the support and subsequently heating the support at 600 deg.C or higher in inert gas. CONSTITUTION:A polymer solution having a polyacrylonitrile type polymer and a heat-decomposable volatile polymer dissolved therein is applied to at least one surface of a sheet like support composed of a carbonaceous fiber to form a film. Subsequently, the support is heated in oxidizable gas to apply flame-resistant treatment to the polyacrylonitrile type polymer in the film and heated to 600 deg.C or higher in an inert gas atmosphere not only to carbonize the polyacrylonitrile type polymer but also to decompose and volatilize the heat-decomposable volatile polymer. As a result, a porous carbon film having pores communicating each other is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野1 本発明は、微細濾過、限界濾過および逆浸透用濾過膜と
して用いることのできる、耐熱性および耐薬品性に優れ
た多孔質炭素複合膜の製造法に関する。
Detailed Description of the Invention [Industrial Application Field 1] The present invention provides a porous carbon composite membrane with excellent heat resistance and chemical resistance that can be used as a filtration membrane for microfiltration, ultrafiltration, and reverse osmosis. Regarding manufacturing methods.

[従来の技術1 無機系多孔質膜は、有機系高分子膜に比較して耐熱性、
耐薬品性に優れており、すでに多孔質ガラス膜、アルミ
ナ系、シリカ系等の多孔質セラミック膜および炭素系支
持体の表面を多孔質ジルコニア膜で被覆した濾過膜が提
案されている。
[Conventional technology 1 Inorganic porous membranes have higher heat resistance and better heat resistance than organic polymer membranes.
Filtration membranes that have excellent chemical resistance, such as porous glass membranes, porous ceramic membranes such as alumina-based and silica-based membranes, and carbon-based supports whose surfaces are coated with porous zirconia membranes, have already been proposed.

しかしながら、多孔質支持体の被覆によって濾過層を形
成し得る無機質粒子のゾルの製造は難しく、また細孔径
の制御が困難であった。更に、支持体に付着したゲル層
の乾燥と焼成過程でゲル層は脆化しやすく亀裂の発生を
押さえることが困難であり、膜厚をある程度厚くするこ
とから高価なものとなっていた。
However, it has been difficult to produce a sol of inorganic particles that can form a filtration layer by coating with a porous support, and it has also been difficult to control the pore diameter. Furthermore, during the drying and firing process of the gel layer adhered to the support, the gel layer tends to become brittle and it is difficult to suppress the occurrence of cracks, and the film is expensive because it has to be thickened to a certain extent.

[発明が解決しようとする課題] 大易日日の日的け 名ITl711名O布曲t自六ゴ0
n1〜1nμmの範囲に鋭いピークをもつ貫通した細孔
を有する多孔質炭素膜薄膜が炭素質からなるシート状支
持体上に形威された多孔質炭素複合膜の製法を提供する
ことにある。
[Problem to be solved by the invention] Daiki Nikki Nikkei name ITl711 name Ofukyokutjirokugo0
The object of the present invention is to provide a method for producing a porous carbon composite membrane in which a thin porous carbon membrane having penetrating pores with a sharp peak in the range of n1 to 1 nm is formed on a sheet-like support made of carbonaceous material.

[課題を解決するための手段] すなわち、本発明は、炭素質繊維またはその前駆体繊維
からなるシート状支持体の少なくとも一方の表面上に、
ポリアクリロニトリル系重合体(A)および熱分解揮散
性重合体CB)を溶解したポリマー溶液を塗布して塗膜
を形戊し、該塗膜の形成された支持体を酸化性ガス中で
加熱して塗膜中のポリアクリロニトリル系重合体(A)
を耐炎化処理し、次いで不活性ガス雰囲気下で600℃
以上に加熱してポリアクリロニトリル系重合体(A)を
炭素化するとともに熱分解揮散性重合体(B)を分解揮
散させ、該塗膜を連通した細孔を有する多孔質炭素膜と
することを特徴とする多孔質炭素複合膜の製造方法であ
る。
[Means for Solving the Problems] That is, the present invention provides a carbonaceous fiber or its precursor fiber on at least one surface of a sheet-like support made of carbonaceous fiber or its precursor fiber.
A polymer solution containing a polyacrylonitrile polymer (A) and a thermally decomposable polymer CB) is applied to form a coating film, and the support on which the coating film is formed is heated in an oxidizing gas. Polyacrylonitrile polymer (A) in the coating film
flameproofed and then heated at 600°C under an inert gas atmosphere.
By heating above to carbonize the polyacrylonitrile polymer (A) and decompose and volatilize the pyrolyzable volatile polymer (B), the coating film is made into a porous carbon film having interconnected pores. This is a method for producing a porous carbon composite membrane.

[作用] 本発明の製造方法は、先ずシート状支持体の少なくとも
一方の表面上に、混合ポリマー溶液を塗布して塗膜を形
成する。
[Function] In the production method of the present invention, first, a mixed polymer solution is applied on at least one surface of a sheet-like support to form a coating film.

本発明の方法で用いるシート状支持体は、多孔質炭素薄
膜の支持体となるものであるから、多孔質炭素薄膜が形
成された際に均質(内実)なものは適当ではなく、適度
な間隙を有するものであることが望ましい。すなわち、
ここでいうシート状支持体としては、例えば織物、編物
、不織布等の布帛や抄紙体からなるシート状物が好まし
く、均質なフィルム状物のみを指称するものではない。
Since the sheet-like support used in the method of the present invention serves as a support for the porous carbon thin film, it is not appropriate that the sheet-like support be homogeneous (inner substance) when the porous carbon thin film is formed. It is desirable that the That is,
The sheet-like support referred to herein is preferably a sheet-like material made of fabric such as woven fabric, knitted fabric, non-woven fabric, or paper material, and does not refer only to a homogeneous film-like material.

また、シート状物の形態としても、単に平面的に展延す
るフィルム状物だけでなく、円筒状や中空糸状のものを
も包含する。シート状支持体を構成する素材としては、
炭素繊維のような炭素質繊維、または焼成することによ
り炭素質繊維とすることのできる耐炎化繊維等の炭素質
繊維の前駆体繊維が取扱性、柔軟性、更には焼或処理後
の支持体としての補強効果が大きいことの等の理由で好
ましい。
Further, the form of the sheet-like product includes not only a film-like product that is simply spread on a flat surface, but also a cylindrical or hollow fiber-like product. The materials that make up the sheet-like support are:
Carbon fibers such as carbon fibers, or precursor fibers of carbon fibers such as flame-resistant fibers that can be made into carbon fibers by firing, are easy to handle, flexible, and even support after firing treatment. It is preferable because it has a large reinforcing effect.

なお、シート状支持体上に形成する塗膜の膜厚があまり
変動することのないように、後に餘去可能な物質でシー
ト状支持体の表面の平坦化処理を施したものでもよい。
In addition, the surface of the sheet-like support may be flattened with a substance that can be removed later so that the thickness of the coating film formed on the sheet-like support does not vary too much.

この意味からは、出発原料としてのシート状支持体は必
ずしも間隙を有するものである必要はない。
In this sense, the sheet-like support as a starting material does not necessarily have to have gaps.

特に好ましいシート状支持体は、焼成後に水銀ボロシメ
ータで測定される間隙(素材の間隙を円筒状細孔と仮定
した際の円筒換算孔径)の大きさが0.1〜50μmの
範囲にあるものである。
A particularly preferable sheet-like support is one in which the size of the gap (cylindrical equivalent pore diameter when the gap in the material is assumed to be a cylindrical pore) measured with a mercury borosimeter after firing is in the range of 0.1 to 50 μm. be.

この支持体の表面上に塗膜を形成するのに用いる混合ポ
リマー溶液は、アクリ口ニトリル単位を90−100モ
ル%有するアクリロニトリル系重合体(A)と、600
℃以下の温度で熱分解して低分子量化し、揮散する熱分
解揮散性重合体(B)とを、これら両重合体を溶解する
溶剤に溶解させて調製される。
The mixed polymer solution used to form a coating film on the surface of this support contains an acrylonitrile polymer (A) having 90 to 100 mol% of acrylonitrile units, and
It is prepared by dissolving a thermally decomposable polymer (B) which is thermally decomposed at a temperature of 0.degree.

本発明に用いるアクリロニトリル系重合体(A)とは、
アクリロニトリル90〜100モル%と、アクリ口ニト
リルと共重合可能な単量体O〜lOモル%たは共重合体
である。
The acrylonitrile polymer (A) used in the present invention is
It is 90 to 100 mol% of acrylonitrile and 0 to 10 mol% of a monomer copolymerizable with acrylonitrile or a copolymer.

共重合可能な単量体の具体例としては、アクリル酸、メ
タクリル酸、イタコン酸およびそれらの誘導体、例えば
メチルアクリレート、エチルアクリレート、ペンジルア
クリレート、メチルメタクリレート、エチルメタクリレ
ート等;アクリルアミド、メタクリルアミド等のアミド
誘導体;酢酸ビニル;塩化ビニル、塩化ビニリデン等の
ハロゲン化単量体:メタクリルスルホン酸ソーダやスチ
レンスルホン酸ソーダ等のスルホン酸誘導体;等が挙げ
られる。
Specific examples of copolymerizable monomers include acrylic acid, methacrylic acid, itaconic acid and derivatives thereof, such as methyl acrylate, ethyl acrylate, pendyl acrylate, methyl methacrylate, ethyl methacrylate, etc.; acrylamide, methacrylamide, etc. Amide derivatives; vinyl acetate; halogenated monomers such as vinyl chloride and vinylidene chloride; sulfonic acid derivatives such as sodium methacrylsulfonate and sodium styrene sulfonate; and the like.

アクリロニトリル系重合体(A)の重合度としては、比
粘度が0.1〜0.4の範囲のものが好ましい.比粘度
が0.1より低いと塗膜の強靭さが低下し、ひび割れ等
が生じやすくなる。また、0.4より高いと、溶液の粘
度が高く、ゲル化しやすく、均一な薄膜の製造が困難に
なる等のため好ましくない。
The degree of polymerization of the acrylonitrile polymer (A) is preferably one having a specific viscosity in the range of 0.1 to 0.4. When the specific viscosity is lower than 0.1, the toughness of the coating film decreases and cracks are likely to occur. On the other hand, if it is higher than 0.4, the viscosity of the solution is high, it tends to gel, and it becomes difficult to produce a uniform thin film, which is not preferable.

熱分解揮教性重合体(B)は、600℃以下の温度ので
あり、かつアクリロニトリル系重合体(A)の溶剤に溶
解し得るものである。このような熱分解揮散性重合体(
B)の具体例としては、スチレン、α−メチルスチレン
、ビニルトルエン等の芳香族ビニル系単量体;ビニルク
ロライド、ビニルアルコール、ビニルアセテート等の脂
肪族ビニル系単量体;メチルメタクリレート、エチルメ
タクリレート、n−プチルメタクリレート等のメタクリ
レート系単量体;等の単独重合体あるいはこれらの単量
体51モル%以上と、アクリロニトリル以外の他の共重
合可能な単量体49モル%以下とから構成される共重合
体が挙げられる。
The thermally decomposable volatile polymer (B) has a temperature of 600° C. or lower and can be dissolved in the solvent of the acrylonitrile polymer (A). Such pyrolytically volatile polymers (
Specific examples of B) include aromatic vinyl monomers such as styrene, α-methylstyrene, and vinyltoluene; aliphatic vinyl monomers such as vinyl chloride, vinyl alcohol, and vinyl acetate; methyl methacrylate, and ethyl methacrylate. , a methacrylate monomer such as n-butyl methacrylate; or a homopolymer consisting of 51 mol% or more of these monomers and 49 mol% or less of other copolymerizable monomers other than acrylonitrile. Examples include copolymers.

熱分解揮散性重合体(B)の重合度は、比粘度が0.1
〜0.4の範囲のものが前記アクリロニトリル系重合体
(A)と混合分散液の粘度の調整を容易にするので好ま
しい。
The degree of polymerization of the thermally decomposable volatile polymer (B) is such that the specific viscosity is 0.1.
A value in the range of 0.4 to 0.4 is preferred because it facilitates adjustment of the viscosity of the acrylonitrile polymer (A) and the mixed dispersion.

ポリマー溶液を調製するのに使用する溶刊は、アクリロ
ニトリル系重合体(A)、熱分解揮散性重合体(B)お
よび所望により添加される後辷する相溶化剤(C)に対
して共通の溶剤となり得るものである。このような溶剤
の例としては、ジメチアセトアミド、ジメチルホルムア
ミドおよびジメチルスルホキシ等が挙げられる。
The solvent used to prepare the polymer solution is a common one for the acrylonitrile polymer (A), the pyrolytically volatile polymer (B), and the optionally added compatibilizer (C). It can be a solvent. Examples of such solvents include dimethiacetamide, dimethylformamide, dimethylsulfoxy, and the like.

ポリマー溶液の調整に際して、アクリロニトリル系重合
体(A)の溶解パラメーターδは通常15.4付近であ
り、また熱分解揮散性重合体(B)のそれは9〜12.
2の範囲のものが多い。このためお互いに相溶性に乏し
い場合が多いためアクリロニトリル系重合体(A)と熱
分解揮散性重合体(B)との組合わせによっては、さら
に相溶化剤(C)を混合することによってお互いの相溶
性を向上させることが可能である。
When preparing a polymer solution, the solubility parameter δ of the acrylonitrile polymer (A) is usually around 15.4, and that of the thermally decomposable volatile polymer (B) is 9 to 12.
Many are in the 2 range. For this reason, they often have poor compatibility with each other, so depending on the combination of the acrylonitrile polymer (A) and the pyrolyzable volatile polymer (B), it may be necessary to further mix a compatibilizer (C) to make them compatible with each other. It is possible to improve compatibility.

相溶化剤(C)は、重合体(A)および重合体(B)の
両者に対して相溶効果を示す物質であり、相溶効果を示
すものであればオリゴマーのような低分子のものから高
分子のものまで種々のものが用いられる.具体的には、
アクリロニトリル系重合体(A)と相溶性を有するかま
たは重合体(A) と同一.の単量体から構成されるセ
グメント(a) と、熱分解揮散性重合体CB)と相溶
性を有するかまたは重合体(B)と同一の単量体から構
成されるセグメント(b)とを同一重合体鎖中に含む重
合体、例えばブロック共重合体またはグラフト共重合体
が用いられる。
The compatibilizer (C) is a substance that exhibits a compatibility effect with both the polymer (A) and the polymer (B), and if it exhibits a compatibility effect, it may be a low-molecular substance such as an oligomer. A variety of materials are used, ranging from polymer materials to polymer materials. in particular,
Compatible with the acrylonitrile polymer (A) or identical to the polymer (A). Segment (a) composed of a monomer of Polymers contained in the same polymer chain, such as block copolymers or graft copolymers, are used.

このようなブロックまたはグラフト共重合体は、公知の
方法、例えば特公昭61−39978号公報に記載の方
法により製造することができる。
Such a block or graft copolymer can be produced by a known method, for example, the method described in Japanese Patent Publication No. 61-39978.

相溶化剤(C)は、ポリマー溶液中でのアクリロニトリ
ル系重合体(A)と熱分解揮散性重合体(B)の各溶解
相とを小さい分散粒子とし、得られるポリマー溶液を安
定な状態にする作用を有するものである。
The compatibilizer (C) makes the dissolved phases of the acrylonitrile polymer (A) and the thermally decomposable polymer (B) into small dispersed particles in the polymer solution, and stabilizes the resulting polymer solution. It has the effect of

さらにこの相溶化剤(C)は、ポリマー溶液における相
溶効果を上げるばかりでなく、塗膜において島成分とな
る熱分解揮散性重合体(B)の分散相(凝集粒子)の大
きさを制御する。すなわち、最終的に得られる薄膜の細
孔径の基となる熱分解揮散性重合体(B)の凝集粒子の
大きさが制御される。従って、相溶化剤(C)の使用量
の多少は最終的に得られる薄膜の細孔径の大小に関係し
、その使用量が多くなくと細孔径を小さくし、細孔の大
きさの分布を小さくする。
Furthermore, this compatibilizer (C) not only increases the compatibility effect in the polymer solution, but also controls the size of the dispersed phase (agglomerated particles) of the pyrolytically volatile polymer (B), which becomes the island component in the coating film. do. That is, the size of the aggregated particles of the pyrolytically volatile polymer (B), which is the basis of the pore diameter of the finally obtained thin film, is controlled. Therefore, the amount of compatibilizer (C) used is related to the size of the pores in the final thin film, and if the amount used is not large, the pore size will be reduced and the pore size distribution will be changed. Make it smaller.

支持体上に被膜を形成するためのポリマー溶液の調整に
際しての各成分の好ましい混合割合は、アクリロニトリ
ル系重合体(A) 10〜90重量%、好ましくは20
〜80重量%、熱分解揮散性重合体(B)lO〜90%
、好ましくは20〜80重量%、相溶化剤(C)がO〜
20重量%、好ましくは0〜lO重量%[但し (A)
成分(B)成分および(C)成分の合計量は100重量
%]である。
The preferred mixing ratio of each component when preparing a polymer solution for forming a film on a support is 10 to 90% by weight of the acrylonitrile polymer (A), preferably 20% by weight.
~80% by weight, pyrolyzable volatile polymer (B) lO ~90%
, preferably 20 to 80% by weight, and the compatibilizer (C) is O to
20% by weight, preferably 0 to 10% by weight [however (A)
The total amount of components (B) and (C) is 100% by weight.

熱分解揮散性重合体(B)の添加量がlO重量%より少
ないと、最終的に得られる薄膜の連通孔が得られにくい
ので好ましくない。重合体(B)の添加量が多くなるに
従って連通孔が増加し、その添加量が80重量%を超え
ると連通孔の大きさの制御が困難となる。
It is not preferable that the amount of the pyrolytically volatile polymer (B) added is less than 10% by weight, since it is difficult to obtain continuous pores in the final thin film. As the amount of polymer (B) added increases, the number of communicating pores increases, and if the amount added exceeds 80% by weight, it becomes difficult to control the size of the communicating pores.

相溶化剤(C)の添加量が増加するに従って重合体(A
)および重合体(B)の相溶性が増加し、被膜中におけ
る熱分解揮散性重合体(B)の凝集相の大きさが小さく
なる。したがって、相溶化剤(C)の添加量が増加する
と、焼成後の多孔質炭素薄膜中の細孔径が小さくなる。
As the amount of compatibilizer (C) added increases, the amount of polymer (A
) and the polymer (B) increase, and the size of the aggregated phase of the pyrolytically volatile polymer (B) in the coating decreases. Therefore, when the amount of compatibilizer (C) added increases, the pore diameter in the porous carbon thin film after firing becomes smaller.

しかし、その添加量が20重量%を超えると添加効果が
飽和するため、20重量%までの混合量で十分である。
However, if the amount added exceeds 20% by weight, the effect of addition becomes saturated, so a mixing amount up to 20% by weight is sufficient.

ポリマー溶液中の重量体(相溶化剤(C)を含む)の濃
度は0.1〜20重量%であることが好ましく、 1〜
15重量%であることがより好ましい。混合溶液中の重
合体の濃度が0.1重量%より少ないと多孔質支持体中
へのポリマー溶液の浸透量が多くなり、均一な薄膜が形
成されにくい。また20重量%を超えると、粘度が高く
流動性が低下し膜厚が厚くなりやすく、薄膜の形或が困
難となる。
The concentration of the weight substance (including the compatibilizer (C)) in the polymer solution is preferably 0.1 to 20% by weight, and 1 to 20% by weight.
More preferably, it is 15% by weight. When the concentration of the polymer in the mixed solution is less than 0.1% by weight, the amount of the polymer solution permeated into the porous support increases, making it difficult to form a uniform thin film. Moreover, if it exceeds 20% by weight, the viscosity is high and the fluidity is reduced, and the film thickness tends to become thick, making it difficult to form a thin film.

シート状支持体表面上へのポリマー溶液の塗布は、シー
ト状支持体をポリマー溶液中に浸漬することによって実
施してもよい。この場合シート状支持体の両表面に塗膜
が形戊される。ポリマー溶液をシート状支持体の一方の
面に塗布する場合には、ポリマー溶液をはけやドクター
ブレード等を用いて塗布したり、スプレーガンを用いた
吹きつけが採用できる。
Application of the polymer solution onto the surface of the sheet-like support may be carried out by dipping the sheet-like support into the polymer solution. In this case, coating films are formed on both surfaces of the sheet-like support. When applying the polymer solution to one side of the sheet-like support, the polymer solution can be applied using a brush, a doctor blade, or the like, or sprayed using a spray gun.

?ート状支持体表面上へ塗布したポリマー溶液は、凝固
性液体を用いて凝固、洗浄、乾燥させる湿式法によって
塗膜としてもよいし、溶剤を蒸発乾固させることによっ
て塗膜を形戊する乾式法によってもよい。どちらの工程
も一長一短があり、どちらの工程を採用してもさしつか
えない。強いていえば、少量生産の場合には工程が簡単
な乾式法が適しており、多量生産の場合には湿式法が適
している。
? The polymer solution applied onto the surface of the sheet-like support may be formed into a coating film by a wet method in which it is coagulated using a coagulating liquid, washed, and dried, or it can be formed into a coating film by evaporating the solvent to dryness. A dry method may also be used. Both processes have advantages and disadvantages, and either process can be used. To put it bluntly, the dry method, which has a simple process, is suitable for small-volume production, and the wet method is suitable for large-scale production.

塗膜の厚みとしては、 !〜100μm程度が適当であ
る。 lμm未満の膜厚の塗膜をシート状支持体上にビ
ンホール等の欠陥を生じることなく形成することは困難
である。また、塗膜の厚みが100μmを超えると、多
孔質炭素薄膜の透過抵抗が大きくなり使用しにくい。
As for the thickness of the coating film, ! A suitable thickness is about 100 μm. It is difficult to form a coating film with a thickness of less than 1 μm on a sheet-like support without producing defects such as holes. Moreover, if the thickness of the coating film exceeds 100 μm, the permeation resistance of the porous carbon thin film increases, making it difficult to use.

このようにして塗膜の形成された支持体は、次いで酸化
性ガス(02、03、S , NO、SO■等を含むガ
ス)雰囲気中、通常は空気中で加熱処理して塗膜中のア
クリロニトリル系重合体(A)を耐炎化処理する。加熱
温度としては、熱分解揮敗性重合体?B)が実質的に分
解を受けない範囲までの温度で、通常は200〜300
℃の範囲である。処理時間は、処理温度にも依存するが
、通常0.1〜IO時間である。
The support on which the coating film has been formed in this way is then heat-treated in an oxidizing gas atmosphere (gas containing 02, 03, S, NO, SO, etc.), usually in air, to remove the coating film. The acrylonitrile polymer (A) is subjected to flame-retardant treatment. As for the heating temperature, is it a thermally decomposable volatile polymer? B) at a temperature within a range that does not substantially undergo decomposition, usually from 200 to 300
℃ range. Although the processing time depends on the processing temperature, it is usually 0.1 to 10 hours.

なお、耐炎化処理を施す際には、シート状支持体に変形
が生じないよう、コンベアー上に載置する等により固定
しておくことが望ましい。シート状支持体が変形すると
、7I膜にひび割れ等が生じること等があるので好まし
くない. 塗膜の形戊された支持体は、次いで400〜2000℃
の温度、好ましくは600〜1200℃の温度の不活性
ガス(N2、Ar、。He等)雰囲気中でまたは不活性
ガスと酸化性ガス(HCI , H20 、Co、0■
等)の混合ガス中で炭素化処理が施される, この過程で熱分解揮散性重合体(B)が熱分解、解重合
し、単量体等の低分子に分解して逃散するとともに、ア
クリロニトリル系重合体(A)が炭素化することによっ
て、塗膜は運通した細孔を有する多孔質炭素薄膜になる
。またシート状支持体が炭素繊維の前駆体繊維の場合に
は、この過程で炭素質繊維とされる。
In addition, when performing flameproofing treatment, it is desirable to fix the sheet-like support by placing it on a conveyor or the like so that the sheet-like support does not undergo deformation. If the sheet-like support is deformed, cracks may occur in the 7I membrane, which is undesirable. The coated support is then heated at 400-2000°C.
in an inert gas (N2, Ar, He, etc.) atmosphere or in an inert gas and an oxidizing gas (HCI, H20, Co, 0.0
carbonization treatment is performed in a mixed gas of By carbonizing the acrylonitrile polymer (A), the coating film becomes a porous carbon thin film having open pores. Further, when the sheet-like support is a precursor fiber of carbon fiber, it is converted into carbonaceous fiber in this process.

このようにして製造される多孔質炭素複合膜は、炭素繊
維等の炭素質からなるシート状支持体上の少なくとも一
方の表面上に、孔径分布の小さな連通した細孔を有する
多孔質炭素薄膜が形成されて構成される。この複合膜は
、多孔質炭素膜が極めて薄いにもかかわらず、シート状
支持体により、実用上充分な取扱い強度を有している。
The porous carbon composite membrane produced in this way has a porous carbon thin film having continuous pores with a small pore size distribution on at least one surface of a sheet-like support made of carbonaceous material such as carbon fiber. Formed and composed. Although the porous carbon membrane is extremely thin, this composite membrane has practically sufficient handling strength due to the sheet-like support.

〔発明の効果〕〔Effect of the invention〕

本発明の方法により製造される多孔質炭素複合膜は、水
銀圧入法により測定して得られる細孔容積微分曲線から
求めた細孔径の分布が非常にシャープであるため、高い
分離性能を示し、単位膜面積当りの孔数が多く、膜厚が
薄いため、高い透水性を示す。
The porous carbon composite membrane produced by the method of the present invention has a very sharp pore diameter distribution determined from a pore volume differential curve measured by mercury intrusion method, and therefore exhibits high separation performance. It exhibits high water permeability due to the large number of pores per unit membrane area and thin membrane thickness.

また複合膜全体が炭素質であるため耐熱性が大きく、化
学的な安定性も高く、あらゆるpl{領域、ほとんどの
薬液に対して強い抵抗力を示す。
In addition, since the entire composite membrane is carbonaceous, it has high heat resistance and high chemical stability, and exhibits strong resistance to most chemical solutions in all PL regions.

本発明の多孔質炭素複合膜は、上記の優れた性質8−有
するため、種々の用途例えば薬品工業分野におけパイロ
ジエン、高分子物等の分離および精製、化学工業分野に
おけガス分離、特に有機ガスの分離および精製等に用い
ることができる。
Since the porous carbon composite membrane of the present invention has the above-mentioned excellent property 8-, it can be used for various purposes, such as the separation and purification of pyrodiene, polymers, etc. in the pharmaceutical industry, gas separation in the chemical industry, especially organic It can be used for gas separation and purification.

更に食品工業分野における酒類、清涼飲料水、醤油、酢
等の清澄に効果的に用いることができる。
Furthermore, it can be effectively used in the clarification of alcoholic beverages, soft drinks, soy sauce, vinegar, etc. in the food industry.

〔実施例] 以下、実施例により本発明を具体的に説明する。なお、
以下の記載中における「部」は重量部を示す。
[Example] Hereinafter, the present invention will be specifically explained with reference to Examples. In addition,
"Parts" in the following description indicate parts by weight.

1)重合体の比粘度は重合体0.1gを0.INのロダ
ンソーダを含むジメチルホルムアミド 100mlに溶
解し、25℃で常法で測定した。
1) The specific viscosity of the polymer is 0.1g of the polymer. It was dissolved in 100 ml of dimethylformamide containing IN rhodan soda and measured at 25°C in a conventional manner.

2) 多孔質炭素複合膜の細孔の大きさは、CARLO
.ERBA社製ボロシメーター200を用いて測定し、
細孔径は円筒換算径として求めた。
2) The pore size of the porous carbon composite membrane is CARLO
.. Measured using ERBA Borosimeter 200,
The pore diameter was determined as a cylindrical equivalent diameter.

3)耐熱性は多孔質炭素複合膜を動的熱量分析(TGA
 )により空気雰囲気中で昇温速度lO℃/分で測定し
たときの、試料がlO重量%減少するときの温度で示し
た。
3) Heat resistance was determined by dynamic calorimetry analysis (TGA) of the porous carbon composite membrane.
) in an air atmosphere at a heating rate of 10° C./min.

4)透水速度は、有効面積10cmX 10cmの試作
モジュールの一方から圧力1kg/cm2で膜を通過し
た水の単位時間当りの透過量を測定して求めた。
4) The water permeation rate was determined by measuring the permeation amount of water per unit time that passed through the membrane at a pressure of 1 kg/cm 2 from one side of a prototype module with an effective area of 10 cm x 10 cm.

合成例1  相溶化剤(C1)の調製 シクロヘキサノンパーオキシド(パーオキサH、日本油
脂物製)一部を、メチルメタクリレート(以下、MMA
と略記する)100部に溶かし、純水800部と乳化剤
としてベレックスOTP (日本油脂■製)1部を反応
釜に加えて、不活性ガスで十分に置換した後、40℃に
保持し、ロンガリット0.76部と硫酸水溶液でPH3
とした後、重合を開始した。そのまま攪拌を続け、15
0分で第一段目の乳化重合を完結させた。
Synthesis Example 1 Preparation of compatibilizer (C1) A portion of cyclohexanone peroxide (Peroxa H, manufactured by NOF Co., Ltd.) was mixed with methyl methacrylate (hereinafter referred to as MMA).
), 800 parts of pure water and 1 part of Verex OTP (manufactured by NOF ■) as an emulsifier were added to the reaction vessel, and after sufficiently purging with inert gas, the mixture was kept at 40°C and Rongalit 0.76 part and sulfuric acid aqueous solution to pH3
After that, polymerization was started. Continue stirring until 15
The first stage emulsion polymerization was completed in 0 minutes.

次いで第二段目として、この乳化液に、アクリロニトリ
ル(以下、ANと略記する)72部を加えた後、温度を
70℃に昇温しで、再び150分攪拌を続け、さらに硫
酸ナトリウム4部を加え30分攪拌して重合を完了させ
た。
Next, in the second stage, 72 parts of acrylonitrile (hereinafter abbreviated as AN) was added to this emulsion, the temperature was raised to 70°C, stirring was continued for 150 minutes, and 4 parts of sodium sulfate was added. was added and stirred for 30 minutes to complete the polymerization.

重合体を取出し、濾過、水洗および乾燥してブロック共
重合体(相溶化剤(C1)’)を得た。この相溶化剤の
重合率は65.7%で、比粘度は0.19であった。
The polymer was taken out, filtered, washed with water and dried to obtain a block copolymer (compatibilizer (C1)'). The polymerization rate of this compatibilizer was 65.7%, and the specific viscosity was 0.19.

合成例2  相溶化剤(C2)の調製 シクロヘキサノンパーオキシド(パーオキサH、日本油
脂社製)1部をMMA 100部に溶かし、純水800
部と乳化剤としてペレックスOTP (日本油脂社製)
1部を反応釜に加えて不活性ガスで十分に置換した後、
40℃に保持しロンガリット0.76部と硫酸水溶液で
pH3とした後、重合を開始した。
Synthesis Example 2 Preparation of compatibilizer (C2) 1 part of cyclohexanone peroxide (Peroxa H, manufactured by NOF Corporation) was dissolved in 100 parts of MMA, and 800 parts of pure water was dissolved.
and Pellex OTP as an emulsifier (manufactured by NOF Corporation)
After adding 1 part to the reaction vessel and thoroughly replacing with inert gas,
After maintaining the temperature at 40° C. and adjusting the pH to 3 with 0.76 parts of Rongalit and an aqueous sulfuric acid solution, polymerization was started.

そのまま攪拌を続け120分で第一段目の乳化重合を完
結させた。
Stirring was continued to complete the first stage emulsion polymerization in 120 minutes.

次いで第二段目としてこの乳化液にAN6 0部酢酸ビ
ニル(以下VAcと略記する)10部を加えた後、温度
を70℃に昇温して、再び150分攪拌を続け、さらに
芒硝4部を加え30分攪拌して重合を完了させた。重合
体を取出し、濾過、水洗および乾燥して重合率65%の
比粘度0.l8組成AN30モル%/MMA65モル%
/vAc5モル%のブロック重合体(相溶化剤(C2)
)を得た。
Next, in the second stage, 0 parts of AN6 and 10 parts of vinyl acetate (hereinafter abbreviated as VAc) were added to this emulsion, the temperature was raised to 70°C, stirring was continued for 150 minutes, and 4 parts of Glauber's salt was added. was added and stirred for 30 minutes to complete the polymerization. The polymer was taken out, filtered, washed with water, and dried until the polymerization rate was 65% and the specific viscosity was 0. l8 composition AN30 mol%/MMA65 mol%
/vAc5 mol% block polymer (compatibilizer (C2)
) was obtained.

実施例1〜4 支持体として炭素繊維目付200g/m2で、厚み30
0μmの平織物を準備した。この支持体の水銀ポロジメ
ーターで測定される間隙の大きさは0.5〜1.0μm
であった。
Examples 1 to 4 Carbon fiber as a support with a basis weight of 200 g/m2 and a thickness of 30
A 0 μm plain woven fabric was prepared. The gap size of this support measured with a mercury porosimeter is 0.5 to 1.0 μm.
Met.

アクリロニトリル(以下、ANと略記する)98モル%
およびメタクリル酸(以下、MAAと略記する)2モル
%から構成される比粘度0.24の7クリロニトリル系
共重合体(AI)60部と、メチルメタクリレート(以
下、MMAと略記する)99モル%およびアクリル酸メ
チル(以下、MAと略記する)1モル%から構成される
比粘度0.21の熱分解揮散性重合体(81)40部と
に対して、相溶化剤(C1)の添加量を0〜10部の範
囲で変化させて第1表に示した4種類のポリマー溶液を
調整した。なお、溶剤はジメチルホルムアミド(以下、
DMFと略記する)を用い、ポリマー溶液の重合体濃度
((A1)〜(CI)成分の合計量)をlO重量%とし
た。
Acrylonitrile (hereinafter abbreviated as AN) 98 mol%
and 60 parts of a 7-acrylonitrile copolymer (AI) with a specific viscosity of 0.24, which is composed of 2 mol% of methacrylic acid (hereinafter abbreviated as MAA), and 99 mol of methyl methacrylate (hereinafter abbreviated as MMA). % and 40 parts of a pyrolytically volatile polymer (81) with a specific viscosity of 0.21 composed of 1 mol % of methyl acrylate (hereinafter abbreviated as MA), addition of a compatibilizer (C1). The four polymer solutions shown in Table 1 were prepared with varying amounts ranging from 0 to 10 parts. The solvent used is dimethylformamide (hereinafter referred to as
The polymer concentration (total amount of components (A1) to (CI)) of the polymer solution was set to 10% by weight using DMF (abbreviated as DMF).

このポリマー溶液を、穴径0. 5mmφのスプレーノ
ズルを用いて上記炭素繊維平織物の支持体の片面に噴射
させた。スプレー量は300cc/m”とした。
This polymer solution was poured into a hole with a hole diameter of 0. A spray nozzle with a diameter of 5 mm was used to spray onto one side of the carbon fiber plain weave support. The spray amount was 300 cc/m''.

四種類のポリマー溶液をそれぞれスプレーした炭素繊維
平織物をステンレス製の多孔板に四方を固定し、140
℃温度の真空乾燥器中で約2時間乾燥して固化させ、各
炭素繊維平織物の表面に厚さ約30μmの薄膜を形成さ
せた. この炭素繊維平織物を多孔板に四方をセットしたままの
状態で230℃の温度、空気雰囲気中で3時間処理し、
ポリアクリロニトリル系共重合体部分を耐炎化構造とし
た. 次いで窒素ガス雰囲気中で、常温から1000℃迄50
分で昇温し、次いで1000℃で20分間炭素化処理し
、熱分解揮散性重合体を熱分解してすることにより薄膜
部を多孔化して多孔質炭素複合膜を製造した。
Carbon fiber plain fabrics sprayed with four types of polymer solutions were fixed on all sides to a stainless steel perforated plate, and
It was dried and solidified for about 2 hours in a vacuum dryer at a temperature of .degree. C. to form a thin film about 30 .mu.m thick on the surface of each carbon fiber plain weave. This carbon fiber plain woven fabric was treated in an air atmosphere at a temperature of 230°C for 3 hours with all four sides set on a perforated plate.
The polyacrylonitrile copolymer part has a flame-resistant structure. Then, in a nitrogen gas atmosphere, it was heated from room temperature to 1000℃ for 50 minutes.
The mixture was heated to 1000° C. for 20 minutes, and then carbonized at 1000° C. for 20 minutes to thermally decompose the pyrolyzable volatile polymer to make the thin film portion porous to produce a porous carbon composite membrane.

これらの複合膜における多孔質炭素薄膜部の厚さは約2
0μmであった.また、薄膜部の細孔径および得られた
多孔質炭素複合膜の透水速度、耐熱性の評価結果を第1
表に示した。
The thickness of the porous carbon thin film part in these composite membranes is approximately 2
It was 0 μm. In addition, the evaluation results of the pore diameter of the thin film part, water permeation rate, and heat resistance of the obtained porous carbon composite membrane were evaluated in the first
Shown in the table.

第1表より、相溶化剤(C1)の添加量が増加するに従
って細孔半径極大値が小さくなることがわかる。
From Table 1, it can be seen that as the amount of compatibilizer (C1) added increases, the maximum value of the pore radius becomes smaller.

また、 第1図にこれら4種類の多孔質炭素複 合膜の細孔容積微分曲線を示した。Also, Figure 1 shows these four types of porous carbon composites. The pore volume differential curve of the composite film is shown.

第1表 実施例5〜7 AN96モル%、MA3モル%およびインタコ酸(以下
、ZAと略記する)1モル%から構成される比粘度0。
Table 1 Examples 5-7 Specific viscosity 0, composed of 96 mol% AN, 3 mol% MA and 1 mol% intacoic acid (hereinafter abbreviated as ZA).

23のAN/MA/ZA共重合体(A2)と、MMA 
87モ%およびMAI3モル%から構成される比粘度0
.20のMMAlMA共重合体である熱分解揮散性重合
体(B2)および相溶化剤(C2)を、第2表に示した
量添加して3種類のポリマー溶液を調製した。溶剤には
ジメチルアセトアミド(以下DMAcと略記する)を用
い、重合体濃度((A1)〜(C1)成分の合計量)が
8%となるよう溶解した。
23 AN/MA/ZA copolymer (A2) and MMA
Specific viscosity 0 composed of 87 mo% and MAI 3 mole%
.. Three types of polymer solutions were prepared by adding a thermally decomposable polymer (B2), which is a MMAAlMA copolymer of No. 20, and a compatibilizer (C2) in the amounts shown in Table 2. Dimethylacetamide (hereinafter abbreviated as DMAc) was used as a solvent and dissolved so that the polymer concentration (total amount of components (A1) to (C1)) was 8%.

支持体として、炭素繊維目付180g/m” 、厚み5
00μmの水銀ボロシメータで測定される間隙が0.5
〜1.0LLmの不織布を用い、その片面に第2表に示
したポリマー溶液をスプレーガンを用いて400cc/
m”スプレーし、不織布の片面に厚さ400μmの溶液
層を形成した。200℃の温度の不活性雰囲気中で溶剤
を蒸発させ、厚さ約30μmの塗膜とした。この不織布
の四方を固定し、240℃の温度の空気雰囲気中で3時
間耐炎化処理した。次いで窒素雰囲気中 900℃の温度でIO分間炭素化処理 した。
As a support, carbon fiber has a basis weight of 180 g/m" and a thickness of 5.
The gap measured with a 00 μm mercury borosimeter is 0.5
Using a nonwoven fabric of ~1.0 LLm, 400 cc/g of the polymer solution shown in Table 2 was applied to one side using a spray gun.
m" to form a solution layer with a thickness of 400 μm on one side of the nonwoven fabric. The solvent was evaporated in an inert atmosphere at a temperature of 200°C to form a coating film with a thickness of about 30 μm. The four sides of this nonwoven fabric were fixed. Then, it was subjected to flameproofing treatment for 3 hours in an air atmosphere at a temperature of 240°C.Then, it was subjected to a carbonization treatment for IO minutes at a temperature of 900°C in a nitrogen atmosphere.

得られた多孔質炭素複合膜の各種性能を第2表に示した
Table 2 shows various performances of the obtained porous carbon composite membrane.

第2表 4.Table 2 4.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、 実施例1〜4で製造した多孔質炭素 複合膜を水銀圧入法で測定して得られた細孔容積微分曲
線であり、第2図は、実施例5〜7で製造した多孔質炭
素複合膜を水銀圧入法で測定して得られた細孔容積累積
分布曲線であり、第3図は、本発明の多孔質炭素複合膜
の模式断面図である。
Figure 1 shows pore volume differential curves obtained by measuring the porous carbon composite membranes produced in Examples 1 to 4 by mercury intrusion method, and Figure 2 shows the pore volume differential curves obtained by measuring the porous carbon composite membranes produced in Examples 1 to 4. This is a pore volume cumulative distribution curve obtained by measuring a porous carbon composite membrane by mercury porosimetry, and FIG. 3 is a schematic cross-sectional view of the porous carbon composite membrane of the present invention.

Claims (1)

【特許請求の範囲】 1)炭素質繊維またはその前駆体繊維からなるシート状
支持体の少なくとも一方の表面上に、ポリアクリロニト
リル系重合体(A)および熱分解揮散性重合体(B)を
溶解したポリマー溶液を塗布して塗膜を形成し、該塗膜
の形成された支持体を酸化性ガス中で加熱して塗膜中の
ポリアクリロニトリル系重合体(A)を耐炎化処理し、
次いで不活性ガス雰囲気下で600℃以上に加熱してポ
リアクリロニトリル系重合体(A)を炭素化するととも
に熱分解揮散性重合体(B)を分解揮散させ、該塗膜を
連通した細孔を有する多孔質炭素膜とすることを特徴と
する多孔質炭素複合膜の製造方法。 2)ポリマー溶液中に、前記重合体(A)および重合体
(B)の相溶化剤(C)が更に溶解されている請求項1
記載の製造方法。
[Claims] 1) A polyacrylonitrile polymer (A) and a pyrolytically volatile polymer (B) are dissolved on at least one surface of a sheet-like support made of carbonaceous fibers or their precursor fibers. A coating film is formed by coating the polymer solution, and the support on which the coating film is formed is heated in an oxidizing gas to flameproof the polyacrylonitrile polymer (A) in the coating film,
Next, the polyacrylonitrile polymer (A) is carbonized by heating to 600°C or higher in an inert gas atmosphere, and the thermally decomposable polymer (B) is decomposed and volatilized to open the pores communicating with the coating film. A method for producing a porous carbon composite membrane, characterized in that the porous carbon membrane has a porous carbon membrane comprising: 2) Claim 1, wherein a compatibilizer (C) for the polymer (A) and the polymer (B) is further dissolved in the polymer solution.
Manufacturing method described.
JP1300812A 1989-11-21 1989-11-21 Preparation of porous carbon composite membrane Pending JPH03161030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1300812A JPH03161030A (en) 1989-11-21 1989-11-21 Preparation of porous carbon composite membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1300812A JPH03161030A (en) 1989-11-21 1989-11-21 Preparation of porous carbon composite membrane

Publications (1)

Publication Number Publication Date
JPH03161030A true JPH03161030A (en) 1991-07-11

Family

ID=17889401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1300812A Pending JPH03161030A (en) 1989-11-21 1989-11-21 Preparation of porous carbon composite membrane

Country Status (1)

Country Link
JP (1) JPH03161030A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0575945A2 (en) * 1992-06-24 1993-12-29 Air Products And Chemicals, Inc. Composite porous carbonaceous membranes
US5431864A (en) * 1989-11-14 1995-07-11 Air Products And Chemicals, Inc. Method of making composite porous carbonaceous membranes
US5810912A (en) * 1995-05-10 1998-09-22 Akiyama; Shigeo Composite hollow filamentary film of porous ceramics and process for producing the same
US6387163B1 (en) * 1998-12-30 2002-05-14 Mg Generon Ozone treatment of surface of membrane to improve permselectivity
JP2011527231A (en) * 2008-07-08 2011-10-27 ダーリェン ユニバーシティ オブ テクノロジー Spiral carbon film and method for manufacturing the same
WO2019021964A1 (en) * 2017-07-25 2019-01-31 東レ株式会社 Carbon membrane for fluid separation and method for manufacturing same
CN111111466A (en) * 2019-12-24 2020-05-08 中国科学院山西煤炭化学研究所 Preparation method of flexible self-supporting polyacrylonitrile-based carbon film

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5431864A (en) * 1989-11-14 1995-07-11 Air Products And Chemicals, Inc. Method of making composite porous carbonaceous membranes
US5507860A (en) * 1989-11-14 1996-04-16 Air Products And Chemicals, Inc. Composite porous carbonaceous membranes
EP0575945A2 (en) * 1992-06-24 1993-12-29 Air Products And Chemicals, Inc. Composite porous carbonaceous membranes
US5810912A (en) * 1995-05-10 1998-09-22 Akiyama; Shigeo Composite hollow filamentary film of porous ceramics and process for producing the same
US6387163B1 (en) * 1998-12-30 2002-05-14 Mg Generon Ozone treatment of surface of membrane to improve permselectivity
JP2011527231A (en) * 2008-07-08 2011-10-27 ダーリェン ユニバーシティ オブ テクノロジー Spiral carbon film and method for manufacturing the same
WO2019021964A1 (en) * 2017-07-25 2019-01-31 東レ株式会社 Carbon membrane for fluid separation and method for manufacturing same
KR20200033844A (en) * 2017-07-25 2020-03-30 도레이 카부시키가이샤 Carbon membrane for fluid separation and method for manufacturing same
US11000812B2 (en) 2017-07-25 2021-05-11 Toray Industries, Inc. Carbon membrane for fluid separation and method for manufacturing the same
CN111111466A (en) * 2019-12-24 2020-05-08 中国科学院山西煤炭化学研究所 Preparation method of flexible self-supporting polyacrylonitrile-based carbon film

Similar Documents

Publication Publication Date Title
EP2665767B1 (en) Porous polymer membranes
US5089135A (en) Carbon based porous hollow fiber membrane and method for producing same
EP0639106B1 (en) Method for the preparation of a polyvinylidene fluoride microporous membrane
JPH02302449A (en) Preparation of microporous film
JPH03161030A (en) Preparation of porous carbon composite membrane
JPH0525529B2 (en)
KR900002095B1 (en) Production of porous membrane
JPH07275676A (en) Multiple membrane,its preparation and method of application
JPH0312224A (en) Permselective membrane
CN113648853A (en) Composite forward osmosis membrane with electrospun nanofiber membrane as supporting layer and preparation method and application thereof
JPH0274615A (en) Carbon fiber-based porous hollow fiber membrane and production thereof
JPS6138208B2 (en)
WO2005023403A1 (en) Titania composite membrane for water/alcohol separation, and preparation thereof
JPH03258330A (en) Porous hollow fiber membrane
JP2867043B2 (en) Carbon fiber-based porous hollow fiber membrane and method for producing the same
US5320754A (en) Pan composite membranes
JPH03284326A (en) Porous hollow fiber membrane
JPH02261837A (en) Preparation of porous film
JPH04277023A (en) Production of heat-resistant porous hollow fiber membrane
JP2003326143A (en) Innovative filtration membrane
GB2037222A (en) Process for producing semipermeable membranes
JPS5857963B2 (en) Manufacturing method of composite permeable membrane
KR100406362B1 (en) A method for producing asymmetric supporting membranes for composite membranes and asymmetric supporting membranes having improved permeation and mechanical strength produced therefrom
JP2918137B2 (en) Porous membrane surface-treated with modified nylon and method for producing the same
JP2000262873A (en) Polyacrylonitrile porous membrane