JPH03160507A - Device for traveling truck along wall surface with non-contact - Google Patents

Device for traveling truck along wall surface with non-contact

Info

Publication number
JPH03160507A
JPH03160507A JP1300630A JP30063089A JPH03160507A JP H03160507 A JPH03160507 A JP H03160507A JP 1300630 A JP1300630 A JP 1300630A JP 30063089 A JP30063089 A JP 30063089A JP H03160507 A JPH03160507 A JP H03160507A
Authority
JP
Japan
Prior art keywords
wall surface
light source
distance
light
calculation means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1300630A
Other languages
Japanese (ja)
Inventor
Takanari Misumi
隆也 三隅
Akinori Kitajima
北嶋 昭典
Hiroyuki Kawakami
博行 川上
Kosuke Itoga
糸賀 興右
Tetsuzo Harada
原田 鉄造
Katsuji Takami
高見 勝治
Yutaka Otomo
裕 大友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP1300630A priority Critical patent/JPH03160507A/en
Publication of JPH03160507A publication Critical patent/JPH03160507A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To more enlarge a range to be inspected by a measuring instrument by automatically guiding a traveling truck along a target travel line, which can be arbitrarily set, with non-contact even at a position distant from a wall surface. CONSTITUTION:The incident angle of reflected light from a projected image, which is projected from a light source to the wall surface, is detected by optical sensors 20 and 21 and from the detected value of the incident angle, a light source distance arithmetic means 23 calculates a light source distance between the light source and the wall surface. From this light source distance, an inclination angle arithmetic means 24 calculates the inclination angle of a reference line for a traveling truck to the wall surface and a truck distance arithmetic means 25 calculates a truck distance. From the inclination angle and the truck distance, a steering angle arithmetic means 26 calculates the steering angle of the traveling truck so that the traveling truck can be traveled on the target travel line set in advance. By executing control based on these values, the traveling truck can be traveled with non-contact on a panel to be inspected. Thus, the range to be inspected by the measuring instrument is enlarged.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、超音波方式の検査装置等の計測装置を移動
させるための移動台車の非接触壁面倣い走行装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a non-contact wall surface tracing traveling device for a movable cart for moving a measuring device such as an ultrasonic inspection device.

(従来の技術) 例えば石油タンクの底板を検査する場合には、板厚及び
傷を検査するための計測装置を移動台車に載せて、移動
台車を上記底坂上で走行させることにより計測装置で上
記底板を検査をすることが行われている。そして、この
ような底板の検査作業用に用いられる移動台車を走行さ
せる装置の従来例としては、底坂上に設けられた目標や
側板を探触しながら移動台車を案内する接触式を挙げる
ことができる。
(Prior art) For example, when inspecting the bottom plate of an oil tank, a measuring device for inspecting the plate thickness and flaws is mounted on a movable trolley, and the movable trolley is run on the bottom slope. The bottom plate is being inspected. As a conventional example of a device for running a movable trolley used for such bottom plate inspection work, there is a contact type that guides the movable trolley while detecting targets and side plates provided on the bottom slope. can.

(発明が解決しようとする課題) しかしながら、接触式の上記従来例では移動台車を案内
し得る範囲が限られており、上記底坂上を広範囲にわた
って移動台車を走行させ、上記計測装置で底板の検査等
を行うことが困難であるという問題がある。
(Problem to be Solved by the Invention) However, in the contact type conventional example, the range in which the movable cart can be guided is limited, and the movable cart is run over a wide range on the bottom slope, and the bottom plate is inspected using the measuring device. There is a problem in that it is difficult to do the following.

この発明は上記従来の問題を解消するためになされたも
のであって、その目的は、より広範囲にわたって移動台
車を案内し得る移動台車の非接触壁面倣い走行装置を提
供することにある。
The present invention has been made to solve the above-mentioned conventional problems, and its purpose is to provide a non-contact wall surface tracing traveling device for a movable trolley that can guide the movable trolley over a wider range.

(課題を解決するための手段) そこで第1請求項による移動台車の非接触壁面倣い走行
装置においては、被測定板に形成された壁面を非接触で
倣い、上記壁面に沿って計測装置を移動させる移動台車
の非接触壁面倣い走行装置であって、上記移動台車の前
後方向に所定の距離を離して配置され上記壁面に投光す
る一対の光源と、各光源から間隔を隔てて配置され、壁
面上の投光像を撮像して移動台車の進行方向に沿う直線
状の基準線に対する反射光の入射角を検出する光学セン
サと、この光学センサの入射角検出値から上記光源と壁
面との間の光源距離を算出する光源距離演算手段と、上
記光源距離から移動台車の基準線の上記壁面に対する傾
斜角を算出する傾斜角算出手段と、上記光源距離から壁
面と移動台車上に特定される基準点との間の台車距離を
算出する台車距離演算手段と、上記傾斜角と台車距離と
に基づいて予め設定された目標走行ライン上を移動台車
が走行するように移動台車の操舵角を算出する操舵角演
算手段とを有している。
(Means for Solving the Problem) Therefore, in the non-contact wall surface tracing traveling device for a movable cart according to the first aspect, a wall surface formed on a plate to be measured is traced in a non-contact manner, and a measuring device is moved along the wall surface. A non-contact wall tracing traveling device for a movable trolley, comprising a pair of light sources arranged a predetermined distance apart in the front-rear direction of the movable trolley and projecting light onto the wall surface, and arranged at a distance from each light source, An optical sensor captures the projected image on the wall and detects the angle of incidence of the reflected light with respect to a linear reference line along the moving direction of the moving trolley. a light source distance calculation means for calculating a light source distance between the light source distance, an inclination angle calculation means for calculating an inclination angle of a reference line of the movable cart with respect to the wall surface from the light source distance, and a light source distance calculation means for calculating the inclination angle of the reference line of the movable trolley with respect to the wall surface from the light source distance; A trolley distance calculating means for calculating the distance between the trolley and the reference point, and a steering angle of the moving trolley so that the moving trolley travels on a preset target travel line based on the above-mentioned inclination angle and the trolley distance. and a steering angle calculation means.

また第2請求項においては、上記光源は点滅赤外光を投
光するように構成され、上記光学センサでは反射光を外
来光遮断用のフィルタを介して受光し、点滅周期を中心
周波数とするバンドバスフィルタにより選別するように
構成されている。
Further, in the second claim, the light source is configured to emit blinking infrared light, and the optical sensor receives the reflected light through a filter for blocking external light, and the blinking period is set as the center frequency. It is configured to perform selection using a bandpass filter.

(作用) 上記第1請求項においては、光源から壁面に投光された
投光像の反射光の上記人射角を光学センサで検出し、こ
の入射角検出値から光源距離演算手段によって光源と壁
面との間の光源距離を算出する。この光源距離から傾斜
角演算手段が移動台車の上記基準線の壁面に対する傾斜
角を算出すると共に、台車距離演算手段が台車距離を算
出する。
(Operation) In the first claim, the incident angle of the reflected light of the projected image projected from the light source onto the wall surface is detected by an optical sensor, and the light source distance calculation means is used to detect the incident angle from the incident angle detection value. Calculate the distance between the light source and the wall. From this light source distance, the inclination angle calculation means calculates the inclination angle of the movable cart with respect to the wall surface of the reference line, and the cart distance calculation means calculates the cart distance.

そして操舵角演算手段が上記傾斜角と台車距離とから予
め設定された目標走行ライン上を移動台車が走行するよ
うに移動台車の操舵角を算出する。
Then, the steering angle calculating means calculates the steering angle of the movable trolley from the above-mentioned inclination angle and the trolley distance so that the movable trolley travels on a preset target travel line.

そしてこれらに基づく制御を行うことで、移動台車を非
接触で被検査板上を走行させることが可能になる。この
ため壁面から遠く離れた位置であっても、移動台車が自
動的に案内されることになり、より広範囲にわたって移
動台車が走行し得るので、計測装置で検査可能な範囲が
広くなることになる。
By performing control based on these, it becomes possible to run the movable cart over the board to be inspected without contact. As a result, the movable trolley is automatically guided even when located far from the wall, allowing the movable trolley to travel over a wider range, increasing the range that can be inspected by the measuring device. .

また第2請求項においては、光源が点滅赤外光を投光し
、光学センサでは外来光をフィルタで遮断し、点滅周期
を中心周波数とするバンドパスフィルタにより選別して
光源からの赤外光だけを検知することが可能になるため
、外来光で光学センサが誤動作するのが防止され、装置
の信頼性が向上することになる。
Further, in the second claim, the light source emits blinking infrared light, the optical sensor blocks extraneous light with a filter, and the infrared light from the light source is filtered by a bandpass filter having a center frequency of the blinking period. Since it becomes possible to detect only the external light, the optical sensor is prevented from malfunctioning due to external light, and the reliability of the device is improved.

(実施例) 次にこの発明の移動台車の非接触壁面倣い走行装置の具
体的な実施例について、図面を参照しつつ詳細に説明す
る。
(Example) Next, a specific example of the non-contact wall surface tracing traveling device for a movable trolley according to the present invention will be described in detail with reference to the drawings.

第2図において、石油タンクlの底板2(被検査#i)
の周縁部には側面3(壁面)が形戒されている。この側
面3に沿って予め目標走行ライン4が設定されており、
移動台車10は矢印八の進行方向に走行可能に構成され
ている。移動台車1oには計測装置11が備えられてお
り、計測装置llで上記底板2の板厚及び傷を検査する
ようになされている。移動台車lOには操向車輪を操舵
するためのステアリング駆動系が備えられている。
In Fig. 2, bottom plate 2 of oil tank 1 (tested #i)
On the periphery of the wall, side surface 3 (wall surface) is marked. A target travel line 4 is set in advance along this side surface 3,
The movable trolley 10 is configured to be able to travel in the traveling direction of arrow 8. The mobile cart 1o is equipped with a measuring device 11, and the measuring device 11 is used to inspect the thickness and flaws of the bottom plate 2. The mobile trolley IO is equipped with a steering drive system for steering the steering wheels.

移動台車10の前後方向両端部には、■対の光源l2、
l3が配置されており、この光源12、13に内蔵され
たLEDから上記側面3に向かって赤外光14、l5を
、IKHzの周波数で点滅させながら投光して側面3に
、投光像l6、17を結ぶように構成されている。そし
て上記移動台車10には、投光像l6、17を斜め方向
から撮影する一次元カメラを利用した光学センサ20、
21が備えられており、光学センサ20、21で投光像
l6、17から反射する反射光の移動台車10の側面に
対する入射角θf、θrを検出するようになされている
。なお移動台車10の側面は第5図に示す中心線CL 
(基準線)と平行に形或されており、したがって上記入
射角θf1θrは上記中心線CLに対する角度というこ
とになる。この光学センサ20、21は外来光を遮断す
るためのフィルタ及び中心周波数IKHzのバンドバス
フィルタ(図示せず)を備えている。なお、光学センサ
20、2lは、第2図のように光源l2、l3の外側に
配置される場合に限らず、第3図に示すように光源l2
、J3の内側に配置してもよい。そして、移動台車IO
には、第1図の非接触倣い装置22が備えられており、
上記光源l2、l3及び光学センサ20、2lを含む非
接触倣い装置22は、光源距離演算手段23、傾斜角演
算手段24、台車距離演算手段25及び操舵角演算手段
26を有している。これらの各演算手段23〜26には
、同図に図示するように、a〜dliのパラメータが入
力されている。
At both ends of the moving cart 10 in the front and back direction, there are a pair of light sources l2,
The LEDs built into the light sources 12 and 13 project infrared light 14 and 15 toward the side surface 3 while blinking at a frequency of IKHz, thereby creating a projected image on the side surface 3. It is configured to connect l6 and 17. The movable cart 10 includes an optical sensor 20 that uses a one-dimensional camera that photographs the projected images 16 and 17 from an oblique direction;
21, and the optical sensors 20 and 21 detect the incident angles θf and θr of the reflected light reflected from the projected images 16 and 17 with respect to the side surface of the movable trolley 10. Note that the side surface of the mobile cart 10 is aligned with the center line CL shown in FIG.
(reference line), and therefore the above-mentioned incident angle θf1θr is an angle with respect to the above-mentioned center line CL. The optical sensors 20 and 21 are equipped with a filter for blocking external light and a bandpass filter (not shown) with a center frequency of IKHz. Note that the optical sensors 20 and 2l are not limited to being disposed outside the light sources l2 and l3 as shown in FIG.
, J3. And mobile trolley IO
is equipped with a non-contact copying device 22 shown in FIG.
The non-contact copying device 22 including the light sources 12 and 13 and the optical sensors 20 and 2l has a light source distance calculation means 23, an inclination angle calculation means 24, a truck distance calculation means 25, and a steering angle calculation means 26. Parameters a to dli are input to each of these calculation means 23 to 26, as shown in the figure.

次に上記非接触倣い装置22の制御プロセスを説明する
と、上記側面3を直線状に簡略化して図示して示す第4
図のように、上記光源距離演算手段23は入射角θf、
θrから上記光源12、l3と側面3との間の光源距離
df, drを演算する機能を備えている。すなわち上
記光源距離df, drは、光源12、l3と光学セン
サ20、2l間の距離をaとすると、 df=a −tan /lf  ・・11)dr= a
 −tan θr・・l2)という式に基づき、光源距
離演算手段23によって演算されるのである。
Next, the control process of the non-contact copying device 22 will be explained.
As shown in the figure, the light source distance calculating means 23 has an incident angle θf,
It has a function of calculating the light source distances df, dr between the light sources 12, 13 and the side surface 3 from θr. In other words, the light source distances df and dr are as follows, where a is the distance between the light sources 12 and 13 and the optical sensors 20 and 2l, df=a-tan/lf...11) dr=a
-tan θr...l2), the light source distance calculation means 23 calculates the distance.

そして光源距離df, drに基づいて、上記傾斜角演
算手段2.4で移動台車10の側面3に対する相対的な
傾斜角度、つまり移動台車lOの中心線CLの側板3に
対する傾斜角θdirを算出する(第5図)。傾斜角演
算手段24では、光源距離df, drO差をCとして
、光源l2、13間の距離をbとすると、 tan θdir − c / b = (df−dr
) / bであることから、 θdir =tan −’ ( (df−dr) / 
b)  ・・・(3)の濱算を行うことによって傾斜角
θdirが求められることになる。
Then, based on the light source distances df and dr, the inclination angle calculating means 2.4 calculates the relative inclination angle of the movable trolley 10 with respect to the side surface 3, that is, the inclination angle θdir of the center line CL of the movable trolley lO with respect to the side plate 3. (Figure 5). In the inclination angle calculation means 24, if the difference between the light source distances df and drO is C, and the distance between the light sources 12 and 13 is b, then tan θdir − c / b = (df−dr
) / b, so θdir = tan −' ( (df-dr) /
b) By performing the calculation in (3), the inclination angle θdir is obtained.

一方上記台車距離演算手段25では光源距離df,dr
に基づいて、第6図に示すように、台車距離dofを算
出する。まず台車距離演算手段25は、移動台車lOの
中心O(基準点)と移動台車10の側面との距離をeと
すると、 do− ( (df+dr) /2) +e ・・・(
4)の演算を行ってdoを算出する。更に台車距離演算
千段25は第7図に示すように、 dof =do ・cos θdir・・・(5)から
目的の台車距# d o fを得るのである。
On the other hand, in the trolley distance calculation means 25, the light source distances df, dr
Based on this, the truck distance dof is calculated as shown in FIG. First, the trolley distance calculation means 25 calculates the following equation: do-((df+dr)/2)+e...
4) is performed to calculate do. Furthermore, as shown in FIG. 7, the bogie distance calculation stage 25 obtains the target bogie distance #d of from dof=do.cos θdir (5).

そして最後に移動台車10の操舵角θSを演算する上記
操舵角演算手段26では、第8図のように、上記目標走
行ライン4と側面3との距離をdiiとすると、 θs =α(dof −dli )一β・θdir  
H I H (6)(但し、α、βはα〉O、β〉Oの
係数)の演算を行うことによって操舵角θSを得ること
になる。
Finally, in the steering angle calculation means 26 that calculates the steering angle θS of the movable trolley 10, as shown in FIG. dli) -β・θdir
The steering angle θS is obtained by calculating H I H (6) (where α and β are coefficients of α>O and β>O).

以上の制御系は第9図のように構成されており、第9図
中で、30は上記ステアリング系、3lは傾斜角θdi
rの制御ゲイン、32は台車距離dofの制御ゲインで
ある。
The above control system is configured as shown in FIG.
The control gain of r, 32 is the control gain of the truck distance dof.

次に上記実施例装置の作動状態を箇条書きで説明する。Next, the operating state of the above embodiment device will be explained in itemized form.

■まず移動台車IOの前後の光源l2、13から側面3
へ向かって赤外光のスポット光を照射する。
■First, from the front and rear light sources 12 and 13 of the mobile cart IO to the side 3
A spot of infrared light is emitted toward the target.

■投光像16、17を光学センサ20、21で捉え、入
射角θr、θrを検出する。
(2) The projected images 16 and 17 are captured by optical sensors 20 and 21, and the incident angles θr and θr are detected.

■(1)(2)弐より光源距離演算手段23で、光源距
離df, drを求める。
(1) (2) The light source distance calculation means 23 calculates the light source distances df and dr.

■(3)式より傾斜角濱算手段24で傾斜角θdirを
求める。
(2) The inclination angle θdir is determined by the inclination angle calculation means 24 from equation (3).

■(4)(5)式より台車距離演算手段25で、台車距
離dofを求める。
(4) The truck distance calculation means 25 calculates the truck distance dof from equations (4) and (5).

■(6)式より操舵角演算手段26で操舵角θSを決定
し、第9図のステアリング駆動系30で、移動台車10
を目標走行ライン4上に案内する。
- The steering angle θS is determined by the steering angle calculation means 26 from the formula (6), and the steering angle θS is determined by the steering drive system 30 shown in FIG.
is guided onto the target travel line 4.

以上のような実施例装置では、任意に設定し得る目標走
行ライン4上を、非接触で移動台車10が案内されるこ
とによって、移動台車lOは側面3から遠く離れた位置
であっても走行することが可能になり、移動台車10の
計測装置l1は、底仮2上を従来より広範囲6こわたっ
て検査し得ることになる。また光源I2、l3は点滅赤
外光14、15を投光し、光学センサ20、2lは外来
光を遮断するフィルタを介して受光し、点滅周期を中心
周波数とするバンドバスフィルタにより選別するので、
外来光で光学センサ20、2lが誤動作することがなく
、装置の信頼性が向上する。
In the above-described embodiment device, the movable trolley 10 is guided non-contact on the target travel line 4 which can be set arbitrarily, so that the movable trolley 10 can travel even at a position far away from the side surface 3. As a result, the measuring device l1 of the movable trolley 10 can inspect the bottom 2 over a wider range of 6 times than before. Furthermore, the light sources I2 and I3 emit blinking infrared light 14 and 15, and the optical sensors 20 and 2l receive the light through a filter that blocks extraneous light, and the light is sorted by a bandpass filter whose center frequency is the blinking period. ,
The optical sensors 20, 2l do not malfunction due to external light, and the reliability of the device is improved.

以上にこの発明による移動台車の非接触壁面倣い走行装
置の具体的な実施例について説明したが、この発明は上
記実施例に限定されるものではなく、この発明の範囲内
で種々変更して実施することが可能である。例えば上記
実施例においては、石油タンクの底板検査用に本発明を
適用した場合を説明したが、他の被測定板にも応用する
ことが可能である。
Although specific embodiments of the non-contact wall surface tracing traveling device for a movable trolley according to the present invention have been described above, this invention is not limited to the above embodiments, and can be implemented with various modifications within the scope of the present invention. It is possible to do so. For example, in the above embodiment, the present invention is applied to inspecting the bottom plate of an oil tank, but it can also be applied to other plates to be measured.

(発明の効果) 上記したように、この発明の第1請求項による移動台車
の非接触壁面倣い走行装置においては、壁面から遠く離
れた位置でも任意に設定可能な目標走行ラインに沿って
移動台車を非接触で自動的に案内することができ、より
広範囲にわたって移動台車が走行し得るので、計測装置
で検査可能な範囲をより広くすることができる。
(Effects of the Invention) As described above, in the non-contact wall surface tracing travel device for a movable trolley according to the first aspect of the present invention, the movable trolley can be moved along a target travel line that can be arbitrarily set even at a position far from the wall surface. Since the movable trolley can be automatically guided in a non-contact manner and can travel over a wider range, the range that can be inspected by the measuring device can be expanded.

また第2請求項による移動台車の非接触壁面倣い走行装
置においては、外来光で光学センサが誤動作することを
防止でき、装置の信頼性が向上することになる。
Further, in the non-contact wall surface tracing traveling device for a movable trolley according to the second aspect, it is possible to prevent the optical sensor from malfunctioning due to external light, and the reliability of the device is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の構成を示す機能ブロック図、第2図
は移動台車の平面図、第3図は移動台車の変形例を示す
平面部分図、第4図、第5図、第6図、第7図、第8図
はそれぞれ制御プロセスを示す構造略図、第9図は制御
系を示す構造略図である。 2・・・底板、3・・・側面、4・・・目標走行ライン
、10・・・移動台車、l1・・・計測装置、l2、l
3・・・光源、2o、2l・・・光学センサ、23・・
・光源距離演算手段、24・・・傾斜角演算手段、25
・・・台車距離演算手段、26・・・操舵角演算手段。 特許出廟人 川崎重工業株式会社 第 1 図 第4図 第2図 第3図 3 第5図 10 第6図 第7図 10 第8図 第9図 第l頁の続き @発明者 @発明者 @発明者 @発明者 糸賀 原田 高見 太  友 興右 鉄造 勝治 裕 兵庫県神戸市中央区東川崎町3丁目1番1号株式会社神
戸工場内 兵庫県神戸市中央区東川崎町3丁目1番1号−ビス株式
会社内 兵庫県神戸市中央区東川崎町3丁目1番1号−ビス株式
会社内 兵庫県神戸市中央区東川崎町3丁目1番1号−ビス株式
会社内 川崎重工業 川重検査サ 川重検査サ 川重検査サ
Fig. 1 is a functional block diagram showing the configuration of the present invention, Fig. 2 is a plan view of a moving cart, Fig. 3 is a partial plan view showing a modification of the moving cart, Figs. 4, 5, and 6. , FIG. 7, and FIG. 8 are structural diagrams showing the control process, and FIG. 9 is a structural diagram showing the control system. 2...Bottom plate, 3...Side surface, 4...Target travel line, 10...Moving trolley, l1...Measuring device, l2, l
3... Light source, 2o, 2l... Optical sensor, 23...
-Light source distance calculation means, 24...Inclination angle calculation means, 25
. . . Bogie distance calculation means, 26 . . . Steering angle calculation means. Patent source Kawasaki Heavy Industries, Ltd. 1 Figure 4 Figure 2 Figure 3 Figure 3 Figure 5 10 Figure 6 7 Figure 10 Figure 8 Figure 9 Continued from page 1 @ Inventor @ Inventor @ Inventor @ Inventor Takamita Itoga Harada Yutaka Tomoko Utetsuzo Katsuji Yutaka Kobe Factory Co., Ltd. 3-1-1 Higashikawasaki-cho, Chuo-ku, Kobe, Hyogo Prefecture 3-1-1 Higashikawasaki-cho, Chuo-ku, Kobe, Hyogo Prefecture - Bis 3-1-1 Higashikawasaki-cho, Chuo-ku, Kobe, Hyogo Prefecture, Uchi-bis Co., Ltd. - 3-1-1 Higashi-Kawasaki-cho, Chuo-ku, Kobe, Hyogo Prefecture - Bis Co., Ltd. Uchikawasaki Heavy Industries River Heavy Inspection Sakawa Heavy Inspection Inspection service

Claims (1)

【特許請求の範囲】 1、被測定板に形成された壁面を非接触で倣い、上記壁
面に沿って計測装置を移動させる移動台車の非接触壁面
倣い走行装置であって、上記移動台車の前後方向に所定
の距離を離して配置され上記壁面に投光する一対の光源
と、各光源から間隔を隔てて配置され、壁面上の投光像
を撮像して移動台車の進行方向に沿う直線状の基準線に
対する反射光の入射角を検出する光学センサと、この光
学センサの入射角検出値から上記光源と壁面との間の光
源距離を算出する光源距離演算手段と、上記光源距離か
ら移動台車の基準線の上記壁面に対する傾斜角を算出す
る傾斜角演算手段と、上記光源距離から壁面と移動台車
上に特定される基準点との間の台車距離を算出する台車
距離演算手段と、上記傾斜角と台車距離とに基づいて予
め設定された目標走行ライン上を移動台車が走行するよ
うに移動台車の操舵角を算出する操舵角演算手段とを有
することを特徴とする移動台車の非接触壁面倣い走行装
置。 2、上記光源は点滅赤外光を投光するように構成され、
上記光学センサでは反射光を外来光遮断用のフィルタを
介して受光し、点滅周期を中心周波数とするバンドパス
フィルタにより選別するように構成されていることを特
徴とする第1請求項記載の移動台車の非接触壁面倣い走
行装置。
[Scope of Claims] 1. A non-contact wall surface tracing traveling device for a movable trolley that traces a wall surface formed on a plate to be measured in a non-contact manner and moves a measuring device along the wall surface, which includes: a pair of light sources that are placed a predetermined distance apart in the direction and project light onto the wall surface; and a pair of light sources that are placed apart from each light source and capture the projected image on the wall surface in a straight line along the traveling direction of the mobile cart. an optical sensor that detects the incident angle of the reflected light with respect to a reference line; a light source distance calculation means that calculates the light source distance between the light source and the wall surface from the incident angle detection value of the optical sensor; and a mobile trolley from the light source distance. an inclination angle calculation means for calculating the inclination angle of the reference line of the reference line with respect to the wall surface; a cart distance calculation means for calculating the cart distance between the wall surface and a reference point specified on the movable cart from the light source distance; A non-contact wall surface of a movable trolley, comprising a steering angle calculation means for calculating a steering angle of the movable trolley so that the movable trolley travels on a target traveling line preset based on the angle and the trolley distance. Tracing traveling device. 2. The light source is configured to emit flashing infrared light;
The movement according to claim 1, wherein the optical sensor is configured to receive the reflected light through a filter for blocking extraneous light, and to select the reflected light using a bandpass filter whose center frequency is a blinking period. A non-contact wall tracing device for trolleys.
JP1300630A 1989-11-17 1989-11-17 Device for traveling truck along wall surface with non-contact Pending JPH03160507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1300630A JPH03160507A (en) 1989-11-17 1989-11-17 Device for traveling truck along wall surface with non-contact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1300630A JPH03160507A (en) 1989-11-17 1989-11-17 Device for traveling truck along wall surface with non-contact

Publications (1)

Publication Number Publication Date
JPH03160507A true JPH03160507A (en) 1991-07-10

Family

ID=17887176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1300630A Pending JPH03160507A (en) 1989-11-17 1989-11-17 Device for traveling truck along wall surface with non-contact

Country Status (1)

Country Link
JP (1) JPH03160507A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5947225A (en) * 1995-04-14 1999-09-07 Minolta Co., Ltd. Automatic vehicle
US6038501A (en) * 1997-02-27 2000-03-14 Minolta Co., Ltd. Autonomous vehicle capable of traveling/stopping in parallel to wall and controlling method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6081609A (en) * 1983-10-08 1985-05-09 Nippon Yusoki Co Ltd Supporting device of travelling course of omnidirectional movable truck
JPS62175813A (en) * 1986-01-30 1987-08-01 Komatsu Ltd Method for guiding curved route of unmanned vehicle
JPS62245958A (en) * 1986-04-18 1987-10-27 Ishikawajima Kensa Keisoku Kk Ultrasonic inspecting instrument
JPH01244311A (en) * 1988-03-26 1989-09-28 Yasunori Kurimura Distance measuring device and method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6081609A (en) * 1983-10-08 1985-05-09 Nippon Yusoki Co Ltd Supporting device of travelling course of omnidirectional movable truck
JPS62175813A (en) * 1986-01-30 1987-08-01 Komatsu Ltd Method for guiding curved route of unmanned vehicle
JPS62245958A (en) * 1986-04-18 1987-10-27 Ishikawajima Kensa Keisoku Kk Ultrasonic inspecting instrument
JPH01244311A (en) * 1988-03-26 1989-09-28 Yasunori Kurimura Distance measuring device and method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5947225A (en) * 1995-04-14 1999-09-07 Minolta Co., Ltd. Automatic vehicle
US6038501A (en) * 1997-02-27 2000-03-14 Minolta Co., Ltd. Autonomous vehicle capable of traveling/stopping in parallel to wall and controlling method thereof

Similar Documents

Publication Publication Date Title
JP4857369B2 (en) Turnout inspection device
KR101030229B1 (en) Bridge inspecting system using inspection moving car
JPH03267745A (en) Surface property detecting method
CA2591885A1 (en) Thin film thickness measurement method and apparatus
GB2416835C (en) Method and apparatus for studying surfaces
JP6317621B2 (en) Method for measuring three-dimensional shape of wheel mounted on vehicle and three-dimensional shape measuring device for wheel mounted on vehicle
Nilsen et al. Robust vision-based joint tracking for laser welding of curved closed-square-butt joints
JP3294916B2 (en) Guide line imaging method for unmanned guided vehicles
JPH03160507A (en) Device for traveling truck along wall surface with non-contact
JPH01187403A (en) Glass edge detecting device
JP3951709B2 (en) Rail wear inspection car on trolley conveyor
JP5487920B2 (en) Optical three-dimensional shape measuring apparatus and optical three-dimensional shape measuring method
JP2002005631A (en) Method and apparatus for measuring characteristics of plate
JP5228731B2 (en) Vehicle wheel position measuring device by image processing
JPH01136009A (en) Non-contact type film thickness measuring device
CN110763162A (en) Ultra-precise line laser corner sensing method
JP4455961B2 (en) Dach surface characteristic measuring method and dach surface characteristic measuring apparatus
JP2851053B2 (en) Light beam incident angle detection sensor
KR101129880B1 (en) Optical apparatus for measuring flatness
JPH08136256A (en) Measuring apparatus for position deviation and angle deviation of carrier truck
JP2009198370A (en) Noncontact type position measuring device by image processing
JPS63252204A (en) Distance and angle-of-inclination measuring device
JP2001270682A (en) Position measuring system
JPS5832324B2 (en) Position detection method
JPS6396551A (en) Ultrasonic flaw detector