JPH03160340A - Method for supplying cooling water to test internal combustion engine - Google Patents

Method for supplying cooling water to test internal combustion engine

Info

Publication number
JPH03160340A
JPH03160340A JP29995589A JP29995589A JPH03160340A JP H03160340 A JPH03160340 A JP H03160340A JP 29995589 A JP29995589 A JP 29995589A JP 29995589 A JP29995589 A JP 29995589A JP H03160340 A JPH03160340 A JP H03160340A
Authority
JP
Japan
Prior art keywords
diluted
tank
antifreeze
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29995589A
Other languages
Japanese (ja)
Inventor
Fumitaka Kono
文隆 河野
Hirohisa Toyama
外山 浩久
Tomoaki Hayashi
林 智亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daifuku Co Ltd
Toyota Motor Corp
Original Assignee
Daifuku Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daifuku Co Ltd, Toyota Motor Corp filed Critical Daifuku Co Ltd
Priority to JP29995589A priority Critical patent/JPH03160340A/en
Publication of JPH03160340A publication Critical patent/JPH03160340A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Engines (AREA)

Abstract

PURPOSE:To prevent the generation of rust at the time of stock and to make the concn. of an antifreezing solution constant by supplying a diluted antifreezing solution prepared by mixing a high concn. antifreezing solution with dilution water as cooling water and removing the same so as to make the residual amount thereof constant after the completion of a test. CONSTITUTION:The high concn. antifreezing solution 2 quantitatively supplied from a main tank 1 and dilution water 13 are mixed in a sub-tank 7 to prepare a diluted antifreezing solution 18 having desired concn. The diluted antifreezing solution 18 is supplied to a supply tank 20 through a supply pipe 22 to be supplied to an internal combustion engine 39 subjected to a test run. After a required test is conducted, the supply of the diluted antifreezing solution 18 is interrupted by closing an opening and closing valve 38 and the diluted antifreezing solution 18 in the internal combustion engine 39 is removed so as to make the residual amount thereof constant. As mentioned above, since the residual amount is entirely composed of the diluted antifreezing solution 18, the generation of rest in the internal combustion engine 39 at the time of stock can be prevented and, when the concn. of the diluted antifreezing solution 18 in a cooling and assembling process is matched with that of the diluted antifreezing solution 18 used after assembling, the concn. of the diluted antifreezing solution can be always set to a desired constant value.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、内燃機関試験装置で性能試験を行っている内
燃機関に対して冷却水を供給する方法に関するものであ
る. 従来の技術 内燃機関の試験は、試験位置に設置した内燃機関に対し
て燃料供給ホース、冷却水供給ホース、冷却水排水ホー
ス、排ガスダクトなどを接続するとともに、この内燃機
関の主軸と試験装置の作動軸の一端とを連動し、そして
作動軸の他端に内燃機関スタート用の駆動装置《直流モ
ータなど》を連動し、この駆動装置により前記内燃機関
の主軸をスタート回転(モータリング)させたのち内燃
機関を運転させることにより行っていた.このような運
転時において内燃機関内には、たとえば70℃〜80℃
に温調した冷却水が流され、所期の冷却を行っていた.
そして試験終了に伴なう内燃機関の停止後において、内
燃機関内に留まっている冷却水の排除が行われる. すなわち従来では、たとえば実開昭61−92716号
公報に見られる冷却水給排装置が提供されているこの従
来形式では、内燃機関の冷却水入口に第1経路(ホース
)を接続するとともに、冷却水出口に第2経路(ホース
)を接続している.そして第1経路中に設けた吐出ポン
プを作動させることで冷却水タンク内の冷却水(工業用
水〉を、第1経路から冷却水入口を介して内燃機関内に
供給するとともに、冷却水出口から第2経路を介して使
用ずみの冷却水を冷却水タンクに排水している.また所
期の試験を行ったのちには、ブロワーを介在した冷却水
抜取り経路を第1経路に接続するとともに、空気導入経
路を第2経路に接続し、そしてブロワーを作動させるこ
とで、内燃機関内に残留している冷却水を吸引除去して
いる.このとき残留水は完全に除去されるのではなく、
ほぼ一定の水量が残留している.なお吸引方式に代え加
圧方式でも行えるようにしている. このようにして所期の試験を終えた内燃機関はストック
される.このようにストックされている内燃機関は、た
とえば自動車製造ラインからの要求に応じて取り出され
、そして車体に組付けられるのであり、その際に、組付
け工程または組付け後に、残留水量を加味した濃度の不
凍液が投入される. 発明が解決しようとする課題 上記の従来形式によると、ストックされている間に、残
留水によって内燃機関内に錆が発生することになる.ま
た残留水は投入された不凍液の濃度に影響を与えること
から、その残留水量にバラツキを無くする必要がある.
しかし、上述したブロワーなどで冷却水の除去を行うと
きに、その除去水量の一定化は困難であり、しかも内燃
機関内の水路内面に付着している不均一な水滴(水分)
が残留水量に加算されることから、残留水量の一定化は
困難となる.したがって不凍液の濃度にバラツキが生じ
ることになって、しばしば後工程からのクレームとして
試験ラインにフィードバックされている. 本発明の目的とするところは、ストック時に錆が発生せ
ず、しかも不凍液の濃度を常に所望の値に一定化し得る
試験用内燃機関への冷却水供給方法を提供する点にある
. 課題を解決するための手段 上記目的を達戒するために本発明における試験用内燃機
関への冷却水供給方法は、高濃度不凍液用の主タンクと
、この主タンクに第1rf!11jI!弁を介して接続
するとともに希釈水供給装置に第2rI!J閉弁を介し
て接続する副タンクと、この副タンクに第3開閉弁を介
して接続する希釈不凍液の供給タンクとを有し、前記希
釈不凍液を試験用内燃機関側に排出した副タンク側から
の指示により、第1開閉弁または第2開閉弁の一方を開
弁して高濃度不凍液と希釈水との一方を所定量供給した
のち、一方の閉弁と他方の開弁により、高濃度不凍液と
希釈水との他方を所定量供給して、この副タンク内に所
定濃度の希釈不凍液を作り、希釈不凍液を排出した供給
タンク側からの指示により、第3開閉弁を開弁して、副
タンク内の希釈不凍液を供給タンクに移している. 作用 かかる本発明の構成によると、副タンク内で、定量供給
された高濃度不凍液と希釈水とを混合して、希望する濃
度の希釈不凍液を作るとともに貯め得る.そして希釈不
凍液は、供給タンクからの要求指示によって副タンクか
ら供給タンクに移つされ、そして試験のために運転され
ている内燃機関に冷却水として供給される.所期の試験
を行ったのち希釈不凍液は、残留水量を一定として内燃
機関から除去されるが、その際に残留水量は全て希釈不
凍液であることから内燃機関内に錆は発生しない. 実施例 以下に本発明の一実施例を図面に基づいて説明する. 1は高濃度不凍液2を貯蔵した主タンクで、壁3の外で
ある屋外4に設置される.この主タンク1には、タンク
ローり車で運ばれてきた高濃度不凍液2が受け入れ配管
5を通して投入される.屋内6には副タンク7が設置さ
れ、この副タンク7と前記主タンク1とは、第1ボンプ
8と第1開閉弁9とを介在した第1供給管10により接
続されている.さらに副タンク7には、第2開閉弁11
を介在した第2供給管12が接続される.この第2供給
管12は、希釈水(工業用水など)13の供給装置の一
例となる.前記副タンク7には、4個の水位検出器が上
下方向に配設してある.すなわち上部には、異常水位の
ときに作動して非常停止させる異常高水位検出器14が
設けられ、その下方に、高濃度不凍液2と希釈水13と
が定量供給されたときに作動して、その供給を停止させ
る混合水位検出器15が設けられる.そして混合水位検
出器15の下方に、高濃度不凍液2が定量供給されたと
きに作動して、その供給を停止させるとともに希釈水1
3を供給させる初期水位検出器16が設けられ、その下
方に、希釈不凍液18の排出限のときに作動して、排出
を停止させるとともに高濃度不凍液2を供給させる低水
位検出器17が設けられる.さらに屋内6には前記副タ
ンク7の下方に供給タンク20が設置され、この供給タ
ンク20と前記副タンク7とは、第3開閉弁21を介在
した第3供給管22により接続されている.前記供給タ
ンク20には3個の水位検出器が上下方向に配設してあ
る.すなわち上部には、異常水位のときに希釈不凍液1
8の供給を非常停止したり警報を発したりする異常高水
位検出器23が設けられ、その下方に、希釈不凍液18
が定量供給されたときに作動して、副タンク7からの供
給を開始させる受け入れ水位検出器24が設けられ、さ
らに下方に、希釈不凍液18が異常排出されたときに動
作して、排出を非常停止するとともに警報を発せさせる
異常低水位検出器25が設けられる.前記各検出器14
〜27. 23〜25はたとえばフロートスイッチ形式
であって、各タンク7,20に対応してそれぞれ指示(
信号)用のヘッド26.27が設けられている. 前記供給タンク20内の希釈不凍液18の温度を、たと
えば70℃〜80℃に温度調節するための温度調N装置
30は、異常低水位検出器25の下方でかつ供給タンク
20内に配管した熱交換部31と、この熱交換部31の
上端に接続しかつ蒸気32の供給を行う蒸気供給部33
と、前記熟交換部31の下端に接続したドレン排出部3
4とから構成される.前記供給タンク20の下部に連通
した希釈不凍液供給管35には第2ポンプ36が介在さ
れ、さらに希釈不凍液供給管35は試験設備まで延びて
複数の分配管37に分岐される.各分配管37には第4
開閉弁38が介在され、さらに分配管37の端部は内燃
機関39の冷却水人口40に接続自在となる.また冷却
水出口41に接続自在な排出管42は、集合部材43、
第3ボンプ44を有する回収管45などを介して供給タ
ンク20に接続している. 次に上記実施例において内燃機関39への冷却水供給方
法を説明する. 第2図は副タンク7内の希釈不凍液18が第3供給管2
2を介しての自然流出により供給タンク20に供給され
、そして供給タンク20内の希釈不凍液18が試験設備
測で使用されている状態を示している.この状態で副タ
ンク7内の液レベルが下降し、第3図に示すように低水
位検出器17で検出されると、この低水位検出器17か
ら第3開閉弁21に閉動指示17aが発せられ、この第
3開閉弁21が閉動して第3供給管22を遮断すること
になる.これと同時に、または直後に、低水位検出器1
7から第1開閉弁9に開動指示17bが発せられるとと
もに、第1ボンプ8に運転指示17cが発せられ、以っ
て主タンク1内の高濃度不凍液2が第1供給管10を介
して副タンク7へ供給される.これにより副タンク7内
の液レベルが上昇し、第4図に示すように初期水位検出
器16で検出されると、この初期水位検出器16から第
1開閉弁9に閉動指示16aが発せられるとともに、第
1ポンプ8に停止指示16bが発せられ、第1供給管1
0を遮断して副タンク7に対する高濃度不凍液2の所定
量供給が終了する.これと同時に、または直後に、初期
水位検出器16から第2開閉弁11に開動指示16cが
発せられ、以って希釈水13が第2供給管12を介して
副タンク7に供給される.これにより副タンク7内の液
レベルが上昇し、第5図に示すように混合水位検出器1
5で検出されると、この混合水位検出器15から第2W
i閉弁11に閉動指示15aが発せられ、第2供給管1
2を遮断して副タンク7に対する希釈水13の所定量供
給が終了する.それぞれ所定量が供給された高濃度不凍
液2と希釈水13とは、副タンク7内で混合され、以っ
て所定濃度の希釈不凍液18が作られるここで所定濃度
は、後に行われる組付け時に投入される希釈不凍液の濃
度と合わせている.上記のような作業中でも供給タンク
20内の希釈不凍液18は試験設備側で使用されている
.すなわち温度調整装置30によって温度調整された希
釈不凍液18は、第2ポンプ36の運転によって希釈不
凍液供給管35を介して取り出され、そして分配管37
を介して冷却水人口4Qに供給されて内燃機関39の冷
却に使用される.そして希釈不凍M18は冷却水出04
1から排出管42を介して集合部材43に取出され、そ
して回収管45を介して供給タンク20へと回収される
.内燃機関39に対する所期の試験を終えたのち、第4
開閉弁38の閉動によって供給が断たれ、さらに内燃機
閲39内の希釈不凍液18は、残留水量を一定として除
去される. このように希釈不凍液18を使用することで、少なくと
も残留水量に応じた量が漸次減少することになり、した
がって供給タンク20内の液レベルは次第に下降する.
そして第6図に示すように受け入れ水位検出器24で検
出されると、この受け入れ水位検出器24から第3開閉
弁21に開動指示24aが発せられ、以って副タンク7
内の希釈不凍液18が第3供給管22を介して供給タン
ク20へ補充(供給)され、第2図の状態に戻る. たとえば第4図に示すように希釈水13を供給している
ときで混合水位検出器15が故障していたとき、副タン
ク7内の液レベルが検出レベルよりもさらに上昇する.
この上昇する液レベルが第7図実線で示すように異常高
水位検出器14で検出されると、この異常高水位検出器
14から異常指示14aが発せられ非常停止に移ること
になる.また第7図仮想線で示すように供給タンク20
IllIでも同様な事態が発生する恐れがあり、ここで
異常高水位検出器23で検出されると、この異常高水位
検出器23から第3開閉弁21に閉動指示23aが発せ
られたり、警報指示23bが発せられたりする.さらに
異常低水位検出器25で検出されると、この異常低水位
検出器25から第2ポンプ36へ停止指示25aが発せ
られるとともに、警報指示25bが発せられる.発明の
効果 上記#Itcの本発明によると、副タンク内で、定量供
給された高濃度不凍液と希釈水とを混合して、希望する
濃度の希釈不凍液を作って貯めることができる.そして
希釈不凍液は、供給タンクからの要求指示によって副タ
ンクから供給タンクに移つすことができ、そして#A験
のために運転されている内燃機関に冷却水として供給す
ることができる.所期の試験を行ったのち希釈不凍液は
、残留水量を一定として内燃機関から除去されるが、そ
の際に残留水量は全て希釈不凍液であることから、スト
ック時に内燃機関内に錆が発生することを防止できる.
ここで冷却に使用される希釈不凍液の濃度と、組付け工
程または組付け後に投入される希釈不凍液の濃度とを合
わせておくことにより、組付け工程または組付け後に投
入される希釈不凍液は、内燃mrIAの残留水量のバラ
ツキに関係なく、ただ単に追い足すだけで好適な投入を
行うことができる.
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for supplying cooling water to an internal combustion engine undergoing a performance test using an internal combustion engine testing device. Conventional technology Internal combustion engine testing involves connecting the fuel supply hose, cooling water supply hose, cooling water drainage hose, exhaust gas duct, etc. to the internal combustion engine installed at the test location, and connecting the main shaft of the internal combustion engine to the test equipment. One end of the operating shaft is interlocked with the other end of the operating shaft, and a drive device (such as a direct current motor) for starting the internal combustion engine is interlocked with the other end of the operating shaft, and this drive device causes the main shaft of the internal combustion engine to start rotation (motoring). This was later achieved by operating an internal combustion engine. During such operation, the temperature inside the internal combustion engine is, for example, 70°C to 80°C.
Temperature-controlled cooling water was poured into the tank to provide the desired cooling.
After the internal combustion engine is stopped at the end of the test, the cooling water remaining inside the engine is removed. In other words, in the conventional type, a cooling water supply/discharge device as seen in, for example, Japanese Utility Model Application Publication No. 61-92716 has been provided.In this conventional type, the first path (hose) is connected to the cooling water inlet of the internal combustion engine, and the cooling water is A second route (hose) is connected to the water outlet. Then, by operating the discharge pump installed in the first path, the cooling water (industrial water) in the cooling water tank is supplied from the first path to the internal combustion engine via the cooling water inlet, and from the cooling water outlet. The used cooling water is drained into the cooling water tank via the second path.After the intended test, the cooling water withdrawal path with a blower is connected to the first path. By connecting the air introduction path to the second path and operating the blower, the cooling water remaining in the internal combustion engine is suctioned and removed.At this time, the residual water is not completely removed;
An almost constant amount of water remains. It is also possible to use a pressure method instead of the suction method. Internal combustion engines that have completed their intended testing in this way are stored. Internal combustion engines that are stocked in this way are taken out in response to requests from, for example, an automobile manufacturing line and assembled into the car body. Concentrated antifreeze is added. Problems to be Solved by the Invention According to the conventional method described above, rust occurs in the internal combustion engine due to residual water while it is being stocked. Furthermore, since residual water affects the concentration of antifreeze added, it is necessary to eliminate variations in the amount of residual water.
However, when removing cooling water using the above-mentioned blower, etc., it is difficult to maintain a constant amount of removed water, and moreover, uneven water droplets (moisture) adhere to the inner surface of the water channel inside the internal combustion engine.
is added to the residual water volume, making it difficult to stabilize the residual water volume. Therefore, variations in the concentration of antifreeze occur, which are often fed back to the test line as complaints from downstream processes. An object of the present invention is to provide a method for supplying cooling water to a test internal combustion engine that does not cause rust when stocked and can always keep the concentration of antifreeze at a desired value. Means for Solving the Problems In order to achieve the above object, the method of supplying cooling water to a test internal combustion engine according to the present invention includes a main tank for high concentration antifreeze, and a first rf! 11jI! A second rI! is connected to the dilution water supply device via a valve! A sub-tank side that has a sub-tank connected via a J-closing valve and a diluted antifreeze supply tank connected to this sub-tank via a third on-off valve, and the sub-tank side discharges the diluted antifreeze liquid to the test internal combustion engine side. According to the instructions from the operator, one of the first on-off valve or the second on-off valve is opened to supply a predetermined amount of either high-concentration antifreeze solution or dilution water, and then the high-concentration antifreeze solution is supplied by closing one valve and opening the other. Supplying a predetermined amount of the other of antifreeze and dilution water to create diluted antifreeze with a predetermined concentration in this sub tank, and opening the third on-off valve according to instructions from the supply tank that discharged the diluted antifreeze. The diluted antifreeze in the sub tank is being transferred to the supply tank. According to the configuration of the present invention, a diluted antifreeze having a desired concentration can be created and stored by mixing the high concentration antifreeze and dilution water supplied in a fixed amount in the sub tank. The diluted antifreeze is then transferred from the auxiliary tank to the supply tank according to the demand instructions from the supply tank, and is then supplied as cooling water to the internal combustion engine being operated for testing. After conducting the intended tests, the diluted antifreeze is removed from the internal combustion engine with a constant amount of residual water, but since all of the remaining water is diluted antifreeze, no rust will occur in the internal combustion engine. EXAMPLE An example of the present invention will be explained below based on the drawings. 1 is a main tank that stores high-concentration antifreeze 2, and is installed outdoors 4 outside a wall 3. High-concentration antifreeze liquid 2, which has been transported by a tank truck, is introduced into the main tank 1 through a receiving pipe 5. A sub-tank 7 is installed indoors 6, and the sub-tank 7 and the main tank 1 are connected by a first supply pipe 10 with a first pump 8 and a first on-off valve 9 interposed therebetween. Furthermore, a second on-off valve 11 is provided in the sub tank 7.
A second supply pipe 12 is connected therebetween. This second supply pipe 12 is an example of a supply device for dilution water (industrial water, etc.) 13. The sub tank 7 has four water level detectors arranged vertically. That is, an abnormally high water level detector 14 is provided at the top to activate and make an emergency stop when the water level is abnormal, and below it is installed to activate when high concentration antifreeze 2 and dilution water 13 are supplied in fixed amounts. A mixing water level detector 15 is provided to stop the supply. When the high-concentration antifreeze liquid 2 is supplied in a fixed quantity below the mixed water level detector 15, it is activated to stop the supply and also to stop the supply of the diluted water 1.
An initial water level detector 16 is provided below which supplies the high concentration antifreeze 2, and a low water level detector 17 is provided below the initial water level detector 16 which is activated when the diluted antifreeze 18 reaches its discharge limit to stop the discharge and supply the high concentration antifreeze 2. .. Furthermore, a supply tank 20 is installed below the sub-tank 7 in the indoor space 6, and the supply tank 20 and the sub-tank 7 are connected by a third supply pipe 22 with a third on-off valve 21 interposed therebetween. Three water level detectors are arranged in the supply tank 20 in the vertical direction. In other words, in the upper part, 1 part of diluted antifreeze is added when the water level is abnormal.
An abnormally high water level detector 23 is installed to emergency stop the supply of the diluted antifreeze liquid 18 or issue an alarm.
A receiving water level detector 24 is provided which operates when a fixed amount of antifreeze is supplied to start supply from the sub tank 7, and further below, which operates when diluted antifreeze 18 is abnormally discharged to prevent the discharge from occurring in an emergency. An abnormally low water level detector 25 is provided to issue an alarm when the water stops. Each of the detectors 14
~27. Reference numerals 23 to 25 are, for example, float switch types, and each of the tanks 7 and 20 has an instruction (
Heads 26 and 27 for signals) are provided. A temperature control N device 30 for adjusting the temperature of the diluted antifreeze liquid 18 in the supply tank 20 to, for example, 70° C. to 80° C. is installed below the abnormally low water level detector 25 and connected to a heat source piped inside the supply tank 20. an exchange section 31 and a steam supply section 33 that is connected to the upper end of the heat exchange section 31 and supplies steam 32.
and a drain discharge section 3 connected to the lower end of the deep exchange section 31.
It consists of 4. A second pump 36 is interposed in the diluted antifreeze supply pipe 35 communicating with the lower part of the supply tank 20, and the diluted antifreeze supply pipe 35 further extends to the test equipment and branches into a plurality of distribution pipes 37. Each distribution pipe 37 has a fourth
An on-off valve 38 is interposed, and the end of the distribution pipe 37 can be freely connected to a cooling water supply 40 of an internal combustion engine 39. Further, the discharge pipe 42 which can be freely connected to the cooling water outlet 41 includes a collecting member 43,
It is connected to the supply tank 20 via a recovery pipe 45 having a third pump 44, etc. Next, a method of supplying cooling water to the internal combustion engine 39 in the above embodiment will be explained. Figure 2 shows that the diluted antifreeze liquid 18 in the sub tank 7 is supplied to the third supply pipe 2.
The diluted antifreeze solution 18 in the supply tank 20 is shown being supplied to the supply tank 20 by gravity flow through the supply tank 2, and the diluted antifreeze solution 18 in the supply tank 20 is being used in a test equipment measurement. In this state, when the liquid level in the sub tank 7 falls and is detected by the low water level detector 17 as shown in FIG. This causes the third on-off valve 21 to close and cut off the third supply pipe 22. At the same time or immediately after this, the low water level detector 1
7 issues an opening instruction 17b to the first on-off valve 9, and also issues an operation instruction 17c to the first pump 8, whereby the high concentration antifreeze 2 in the main tank 1 is transferred to the secondary tank via the first supply pipe 10. It is supplied to tank 7. As a result, the liquid level in the sub tank 7 rises, and when detected by the initial water level detector 16 as shown in FIG. At the same time, a stop instruction 16b is issued to the first pump 8, and the first supply pipe 1
0 is shut off, and the supply of a predetermined amount of high concentration antifreeze 2 to the sub tank 7 is completed. At the same time or immediately after this, an opening instruction 16c is issued from the initial water level detector 16 to the second on-off valve 11, and the dilution water 13 is thereby supplied to the auxiliary tank 7 via the second supply pipe 12. As a result, the liquid level in the sub tank 7 rises, and as shown in FIG.
5, the second W is detected from this mixing water level detector 15.
A closing instruction 15a is issued to the closing valve 11, and the second supply pipe 1
2 is shut off, and the supply of a predetermined amount of dilution water 13 to the sub tank 7 is completed. The high concentration antifreeze 2 and the diluted water 13, each supplied in a predetermined amount, are mixed in the sub tank 7, thereby creating the diluted antifreeze 18 with a predetermined concentration. This is matched with the concentration of diluted antifreeze to be added. Even during the above-mentioned work, the diluted antifreeze liquid 18 in the supply tank 20 is being used by the test equipment. That is, the diluted antifreeze liquid 18 whose temperature has been adjusted by the temperature adjustment device 30 is taken out via the diluted antifreeze liquid supply pipe 35 by operation of the second pump 36, and then transferred to the distribution pipe 37.
The cooling water is supplied to the cooling water population 4Q through the cooling water and used for cooling the internal combustion engine 39. And diluted antifreeze M18 has cooling water output 04
1 to the collecting member 43 via the discharge pipe 42, and then recovered to the supply tank 20 via the recovery pipe 45. After completing the intended tests on the internal combustion engine 39, the fourth
The supply is cut off by closing the on-off valve 38, and the diluted antifreeze liquid 18 in the internal combustion engine controller 39 is removed while keeping the amount of residual water constant. By using the diluted antifreeze liquid 18 in this manner, the amount of the antifreeze liquid 18 is gradually reduced at least in proportion to the amount of residual water, and therefore the liquid level in the supply tank 20 is gradually lowered.
When the receiving water level detector 24 detects the water level as shown in FIG. 6, an opening instruction 24a is issued from the receiving water level detector 24 to the third on-off valve 21.
The diluted antifreeze liquid 18 inside is replenished (supplied) to the supply tank 20 via the third supply pipe 22, and the state returns to the state shown in FIG. For example, as shown in FIG. 4, when the dilution water 13 is being supplied and the mixing water level detector 15 is out of order, the liquid level in the auxiliary tank 7 rises further above the detection level.
When this rising liquid level is detected by the abnormally high water level detector 14 as shown by the solid line in FIG. 7, an abnormality instruction 14a is issued from the abnormally high water level detector 14 and the system shifts to an emergency stop. In addition, as shown by the imaginary line in Fig. 7, the supply tank 20
A similar situation may occur in IllI, and if it is detected by the abnormally high water level detector 23, the abnormally high water level detector 23 will issue a closing instruction 23a to the third on-off valve 21, or issue an alarm. Instruction 23b may be issued. Furthermore, when the abnormally low water level detector 25 detects this, the abnormally low water level detector 25 issues a stop instruction 25a to the second pump 36, and also issues an alarm instruction 25b. Effects of the Invention According to the present invention described in #Itc above, a diluted antifreeze having a desired concentration can be created and stored by mixing the high concentration antifreeze and dilution water that are supplied in fixed quantities in the sub tank. The diluted antifreeze can then be transferred from the auxiliary tank to the supply tank according to the demand instructions from the supply tank, and can be supplied as cooling water to the internal combustion engine being operated for the #A test. After conducting the intended tests, the diluted antifreeze is removed from the internal combustion engine while keeping the amount of residual water constant, but since all of the remaining water is diluted antifreeze, rust may occur in the internal combustion engine when stocked. can be prevented.
By matching the concentration of the diluted antifreeze used for cooling with the concentration of the diluted antifreeze added during the assembly process or after assembly, the diluted antifreeze used during the assembly process or after assembly will be used for internal combustion. Irrespective of the variation in the amount of residual water in mrIA, it is possible to perform suitable injection simply by adding more water.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示し、第1図は全体の配置説
明図、第2図〜第7図は作用説明図である.
The drawings show one embodiment of the present invention, with FIG. 1 being an explanatory diagram of the overall arrangement, and FIGS. 2 to 7 being explanatory diagrams of the operation.

Claims (1)

【特許請求の範囲】[Claims] 1、高濃度不凍液用の主タンクと、この主タンクに第1
開閉弁を介して接続するとともに希釈水供給装置に第2
開閉弁を介して接続する副タンクと、この副タンクに第
3開閉弁を介して接続する希釈不凍液の供給タンクとを
有し、前記希釈不凍液を試験用内燃機関側に排出した副
タンク側からの指示により、第1開閉弁または第2開閉
弁の一方を開弁して高濃度不凍液と希釈水との一方を所
定量供給したのち、一方の閉弁と他方の開弁により、高
濃度不凍液と希釈水との他方を所定量供給して、この副
タンク内に所定濃度の希釈不凍液を作り、希釈不凍液を
排出した供給タンク側からの指示により、第3開閉弁を
開弁して、副タンク内の希釈不凍液を供給タンクに移す
ことを特徴とする試験用内燃機関への冷却水供給方法。
1. A main tank for high concentration antifreeze and a 1st tank in this main tank.
Connected via an on-off valve and connected to a second dilution water supply device.
It has a sub-tank connected via an on-off valve, and a diluted antifreeze supply tank connected to this sub-tank via a third on-off valve, and the diluted antifreeze is discharged from the sub-tank side to the test internal combustion engine side. According to the instruction, one of the first on-off valve or the second on-off valve is opened to supply a predetermined amount of either the high concentration antifreeze solution or dilution water, and then the high concentration antifreeze solution is supplied by closing one valve and opening the other valve. A predetermined amount of diluted antifreeze and diluted water are supplied to create a predetermined concentration of diluted antifreeze in this subtank, and the third on-off valve is opened according to instructions from the supply tank that discharged the diluted antifreeze. A method for supplying cooling water to a test internal combustion engine, characterized by transferring diluted antifreeze in a tank to a supply tank.
JP29995589A 1989-11-17 1989-11-17 Method for supplying cooling water to test internal combustion engine Pending JPH03160340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29995589A JPH03160340A (en) 1989-11-17 1989-11-17 Method for supplying cooling water to test internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29995589A JPH03160340A (en) 1989-11-17 1989-11-17 Method for supplying cooling water to test internal combustion engine

Publications (1)

Publication Number Publication Date
JPH03160340A true JPH03160340A (en) 1991-07-10

Family

ID=17878982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29995589A Pending JPH03160340A (en) 1989-11-17 1989-11-17 Method for supplying cooling water to test internal combustion engine

Country Status (1)

Country Link
JP (1) JPH03160340A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103675001A (en) * 2013-12-10 2014-03-26 昆明理工大学 Cooling system used for thermal shock and thermal fatigue strength tests

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103675001A (en) * 2013-12-10 2014-03-26 昆明理工大学 Cooling system used for thermal shock and thermal fatigue strength tests
CN103675001B (en) * 2013-12-10 2015-12-02 昆明理工大学 The cooling system of a kind of thermal shock and thermal fatigue strength examination

Similar Documents

Publication Publication Date Title
CN111169288B (en) Method and device for detecting hydrogen leakage of vehicle-mounted hydrogen supply system and fuel cell vehicle
US5899073A (en) Fuel supply apparatus for gas turbine and control unit for the same
US6851298B2 (en) Fluid leakage detection apparatus and fluid leakage detection method
CN202948632U (en) Proton exchange membrane fuel cell engine system testing platform for automobile
CN105190770B (en) The emission monitoring system of exhaust system for nuclear power station
CN101416341A (en) Fuel cell running system, and valve-freeze preventing method in the fuel cell running system
CN113745579B (en) Integrated hydrogen supply system of fuel cell
JP2016525682A (en) Apparatus and method for continuously measuring the dynamic fuel consumption of an internal combustion engine
JP3322119B2 (en) Failure diagnosis device for fuel evaporation prevention device
EP3141724A1 (en) Detection of high stage valve leakage by pressure lockup
KR20140083739A (en) Control method for hydrogen leak detecting system of fuel cell vehicle
KR101192205B1 (en) A Test Block Apparatus For Solenoid Valve Operating Main Steam Isolation Valve And A Method Using Of It
CN106120950B (en) Closed circulating water full-automatic switching rapid emergency pressure stabilizing device
JPH03160340A (en) Method for supplying cooling water to test internal combustion engine
KR100958939B1 (en) Fuel gas moisture monitoring apparatus and method of monitoring fuel gas moisture
US20070292726A1 (en) Fuel Cell System And Method For Inspecting Gas Leakage Of Same
JP3212895B2 (en) Gas turbine fuel supply device and control device therefor
RU2392197C1 (en) Method for testing aircraft system of neutral gas for minimisation of flammable fuel vapours generation
JP2992871B2 (en) A fire pump truck equipped with an automatic auxiliary device for fire pump operation
US20050027411A1 (en) Locomotive engine restart shutdown override system and method
JPH0342543A (en) Cooling water supply device for internal combustion engine testing equipment
CN215860825U (en) Gas-water separator and hydrogen circulating pump integrated structure
WO2023246258A1 (en) Gas detection-based online positioning system and method for leaking pipe of condenser
CN209435040U (en) Water-air cooling system
CN212585968U (en) Oil flow relay checking device