JPH03160314A - Thickness measuring method using radiation and apparatus therefor - Google Patents

Thickness measuring method using radiation and apparatus therefor

Info

Publication number
JPH03160314A
JPH03160314A JP29887189A JP29887189A JPH03160314A JP H03160314 A JPH03160314 A JP H03160314A JP 29887189 A JP29887189 A JP 29887189A JP 29887189 A JP29887189 A JP 29887189A JP H03160314 A JPH03160314 A JP H03160314A
Authority
JP
Japan
Prior art keywords
radiation
thickness
measured
signal
kalman filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29887189A
Other languages
Japanese (ja)
Other versions
JPH0690020B2 (en
Inventor
Norio Konya
範雄 紺屋
Kiyoshi Okumura
奥村 精
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1298871A priority Critical patent/JPH0690020B2/en
Publication of JPH03160314A publication Critical patent/JPH03160314A/en
Publication of JPH0690020B2 publication Critical patent/JPH0690020B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

PURPOSE:To measure the thickness with high accuracy by detecting the radioactive rays generated when the radioactive rays are irradiated to an object to be measured, converting the radioactive rays to the thickness, and then presuming a true value by a Kalman filter. CONSTITUTION:Radioactive rays generated from an object S to be measured after being projected from a source 1 to the object S are detected by a radiation detector 2 consisting of a scintillator 21 and a photomultiplier tube 22, thereby to obtain a required electric signal. The electric signal is amplified to a predetermined level by an amplifier 3, and only a detecting signal is extracted by a pulse height selector 4 and counted by a counter 5. A microcomputer 6 reads an output of the counter 5 every cycle of a predetermined time and converts the same to the thickness. The latest (n) points are linearly fed back by the method of least squares, and the true thickness is presumed by a Kalman filter.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、鋼材等の厚さを放’A4 ijlの透過又は
反射で測定する放射線厚さ測定方法に関する.「従来の
技術と発明が解決しようとする課題」鋼板の圧延ライン
や鋼管OrA造ラインでは、淳み厠定手段として、被測
定物に放射線を投射し、その放射線の透過又は反射した
線澄を計数して厚さに換算するもの、すなわち、放1{
性物質の壊変を利用する淳み測定手段が用いられている
が、この場合、線量の統計的変動が主囚と思われる雑音
が含まれるため、これを除去することが考えられており
、その一つに、特開昭62−238404号公報に示さ
れたアナログ手法による雑音除去手段がある.このアナ
ログ雑音除去手段は、検出器による放射線の検出信号を
、雑音除去用の4iF域ろ波器に通し、ろ波後の信号を
ろ波前の生信号から減算して差信号を得、該差信号を基
準信号と比較して、基準レベル以上であれば、生信号を
そのまま厚み信号として出力し、基準レベル以下であれ
ば、ろ波後の信号を厚み測定信号として出力するもので
ある. つまり、生信号を一律に11シ域ろ波怨に通すだけでは
、雑音とともに雑音と同一間波数域に存在する厚み信号
成分をも除去してしまうため、雑音周波数域における厚
み信号成分が基準レベルより大きく差信号中に含まれて
いるときは、雑音を除去しなくともS/Nがさほど低下
しないことに鑑み生信号のままで出力し、基準レベルよ
り小さいときは、雑音周波数域の厚み信号成分が実質上
生信号に含まれていないことになるので、雑音を除去し
たろ波後のtS号を出力するというものである.しかし
、このアナログ雑音除去手段には、i)放射線の変動は
統計的なものであり、これを時系列的にサンプリングす
ると、本来は周波数によらずに一応に分布するが、例え
ば、直流電MW3のようなアナログ型検出器で検出すれ
ば、回路の時定数により、また、シンチレーションカウ
ンタのようなディジタル型検出器で検出すれば、測定時
間(間隔、周期)により特定の周波数域の特性が加わり
、したがって、放射線の統計的変動のうち、ある特定の
周波数帯域のみについては雑音を(Ii減できるが、そ
の山の周波数域では低?y&できない.更に、低減でき
るある特定の周波数帯域についても、その位相がずれて
しまい、本来の信号の波形が変化してしまウ.ii)9
gi音周波数域に厚み信号成分が存在する場合、雑音を
含んだままである. iii )小径シームレスストレッチレデエーサで圧延
した鋼管のように、先端部、t&端部に急峻な肉摩変化
がある場合、これを高速で検出すると、信号成分か雑音
かの弁別が困難であり、一定の基準値で処理することは
不可能である.等々の問題点があり、未だ高精度の厚み
測定ができない. そこで、本発明は、放射線の統計的変動を、その統計的
特徴を利用してカルマンフィルタにて処理することによ
り、上記問題点を解決し、高精度の測定を可能にしよう
とするものである.「課題を解決するための千段」 上記の目的を達成するため、請求項第1項の発明は、厚
さを測定する被測定物に放射線を投射し透過、反射にて
被測定物から出る放射線を放射線検出器で検出し、その
検出信号を計数して厚さ換算した後、カルマンフィルタ
により真の値を推定することを特徴とする放射線摩さ測
定方法にあるまた、請求項第2項の発明は、厚さを測定
する被測定物に放射線を投射する線源と、透過、反射に
て被測定物から出る放射線を所定の電気信号に変換する
放射XIA検出器と、その電気信号を所定レベルまで増
幅する地幅器と、その堆幅信号から所要の検出信号のみ
を抽出する波高選別器と、その検出信号を計数するカウ
ンタと、該カウンタの出力を一定時間周期で読込み演算
処理するカルマンフィルタをJII′Iiシたマイクロ
コンピュータとから成ることを特徴とする放射線厚さ測
定装置にある「作用」 如上の構成であり、検出信号の計数値から厚さ換算され
た観測データは、カルマンフィルタにて処理され、該カ
ルマンフィルタからは厚さに係る^     ^   
               ^が出力される. へ この式でXk−+ は、前回推定値、Xi は、ill
渕値、Kは、ゲイン、C1は、係数である.「実施例」 第1図は、本発明に係る装置の回路構成を示している. この装置では、放射線の線源lから被測定物Sへ向けて
放射線を投射し、被測定物Sから透過して出た放射線を
シンチレータ21と光電子増倍管22とから成る放射線
検出器2で検出して所要の電気信号を得、該信号を増幅
器3で所要のレベルまでl1幅し、かつ、波高選別器4
で検出信号のみを抽出し、該検出信号をカウンタ5で計
数し、これを、カルマンフィルタを構戒したマイクロコ
ンピュータ6で演算処理する. マイクロコンビエータ6による処理は、第2図辷示すよ
うに、カウンタ5の出力を一定時間周期で読込むカウン
ト数読込みを行い、これを厚さの観測データへと厚さ換
算し、次いで、そのfi測デして、カルマンフィルタに
要する係数Co.C+と分r& Vを求め、これらと上
記観測データからカルマンフィルタにより真の数値のI
I!定を行い、{IL1尋る. 上記最小2乗法では、観測データのi終n点から数点前
におけるIII定値x−co +CI  ・tを得るが
、ここではカルマンフィルタに用いるためにそのlli
定値Xに関ずる係数Co,C+ とこれらから求められ
る分11IiVを算lidする.なお、式X−CO→−
C+−Lは、{11定値Xを局部的に直線とみなした時
間tの関数であり、Goは、初期条件を、また、C1は
、直線の傾きを表している.■は、不偏分敗であり、統
計ノイズやIril帰による誤差等を意味している. 例えば、最新n点をn−5とし、時間ビッチΔt=1と
して( n − 1 ) / 2 − ( 5 − 1
 ) / 2 −211!前の准定値Xを{謀るものと
し、この]I定位置の観測点iにおける観渕値をXi 
、これを中心とする前後各2 111i1の観測点i−
2,i−1,i+l,+4−2における各観渕値をXi
−z,Xi−富,Xi++ X1+2とすれば、推定値Xに関する係数CD,CI 及び分敗■は、次式で求められる. 4+1+1+4 Caエ X CI − L= 5 次に、カルマンフィルタでは、上記観厠データXi、係
数Co,C+及び分敗■から、次式に基づきゲインK,
rg−さに係る真値の11定値X1、誤差分敗P(次同
用)を算出し、その推定値Xi を出力する. なお、添字k−+ は、前回値を示している.5 P冨 V 「発明の効果」 本発明によれば、従来のアナログ雑音除去手段の場合の
ような不合理はなく、放射線の統計的変動を、その統計
的特徴を利用して適確に排除でき、所定の測定精度を確
保できる. また、小径シームレスストレッチレデューサで圧延した
鋼管のように、高速で急峻に肉厚が変化するような場合
であっても、的確に高精度で厚み測定できる. 更に、装置は、マイクロコンピュータを利用して簡潔に
構或できる.
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a radiation thickness measurement method for measuring the thickness of steel materials, etc. by transmission or reflection of radiation. ``Prior art and problems to be solved by the invention'' In steel plate rolling lines and steel pipe OrA building lines, radiation is projected onto the object to be measured as a cleaning means, and the transmitted or reflected radiation is collected. What is counted and converted into thickness, i.e. radiation 1 {
A method of measurement is used that utilizes the decay of a chemical substance, but in this case, noise is included, which is thought to be mainly due to statistical fluctuations in the dose. One example is a noise removal means using an analog method, which is disclosed in Japanese Patent Application Laid-Open No. 62-238404. This analog noise removal means passes the radiation detection signal from the detector through a 4iF band filter for noise removal, subtracts the filtered signal from the unfiltered raw signal to obtain a difference signal, and The difference signal is compared with a reference signal, and if it is above the reference level, the raw signal is output as is as a thickness signal, and if it is below the reference level, the filtered signal is output as a thickness measurement signal. In other words, if the raw signal is uniformly passed through an 11-band filter, the thickness signal component existing in the same frequency range as the noise will be removed along with the noise, so the thickness signal component in the noise frequency range will be at the reference level. When the difference is larger than the standard level, the raw signal is output as it is, since the S/N does not decrease much even if the noise is not removed, and when it is smaller than the reference level, the thickness signal in the noise frequency range is output. Since the component is not substantially included in the raw signal, the filtered tS signal with noise removed is output. However, this analog noise removal means has the following problems: i) Radiation fluctuations are statistical, and when they are sampled in a time series, they are normally distributed regardless of frequency, but for example, when DC current MW3 is If detected with an analog type detector such as a scintillation counter, the characteristics of a specific frequency range will be added due to the time constant of the circuit, and if detected with a digital type detector such as a scintillation counter, the characteristics of a specific frequency range will be added due to the measurement time (interval, period). Therefore, among the statistical fluctuations of radiation, noise can be reduced (Ii) only in a certain frequency band, but it cannot be reduced in that peak frequency range. The phase will shift and the waveform of the original signal will change.ii)9
If a thickness signal component exists in the gi sound frequency range, it will still contain noise. iii) When there is a steep wear change at the tip, t&end, such as a steel pipe rolled with a small-diameter seamless stretch reducer, if this is detected at high speed, it is difficult to distinguish whether it is a signal component or noise. It is impossible to process with fixed standard values. Due to these problems, highly accurate thickness measurements are still not possible. Therefore, the present invention aims to solve the above problems and enable highly accurate measurement by processing statistical fluctuations in radiation using a Kalman filter using its statistical characteristics. "A Thousand Steps to Solve the Problem" In order to achieve the above object, the invention of claim 1 projects radiation onto the object to be measured whose thickness is to be measured, and emits radiation from the object through transmission and reflection. A method for measuring radiation abrasion, characterized in that radiation is detected by a radiation detector, the detected signal is counted and converted into thickness, and then a true value is estimated by a Kalman filter. The invention consists of a radiation source that projects radiation onto an object to be measured whose thickness is to be measured, a radiation XIA detector that converts radiation emitted from the object through transmission and reflection into a predetermined electrical signal, and a radiation a wave height selector that extracts only the required detection signal from the amplitude signal, a counter that counts the detection signal, and a Kalman filter that reads and processes the output of the counter at a fixed time period. ``Function'' of a radiation thickness measuring device characterized by comprising a microcomputer with a JII'Ii program. Processed and from the Kalman filter it depends on the thickness ^ ^
^ is output. In Heko's equation, Xk-+ is the previous estimated value, and Xi is ill
The edge value, K is the gain, and C1 is the coefficient. ``Example'' FIG. 1 shows the circuit configuration of a device according to the present invention. In this device, radiation is projected from a radiation source l toward an object to be measured S, and the radiation transmitted from the object S is detected by a radiation detector 2 consisting of a scintillator 21 and a photomultiplier tube 22. Detect and obtain the required electrical signal, increase the width of the signal to the required level with the amplifier 3, and pulse height selector 4.
Only the detection signal is extracted, the detection signal is counted by a counter 5, and the result is subjected to arithmetic processing by a microcomputer 6 equipped with a Kalman filter. As shown in Figure 2, the processing performed by the micro combinator 6 is to read the output of the counter 5 at a fixed time period, convert it into thickness observation data, and then calculate the number of counts. fi and calculate the coefficient Co. required for the Kalman filter. Calculate C+ and r&V, and from these and the above observed data, use a Kalman filter to calculate the true numerical value I.
I! and {IL1 ask. In the above least squares method, the III constant value x-co +CI ・t is obtained at several points before the i-final n point of the observation data, but here, in order to use it for the Kalman filter,
Calculate the coefficients Co, C+ related to the constant value X and the component 11IiV found from these. In addition, the formula X-CO→-
C+-L is a function of time t when {11 constant value X is locally regarded as a straight line, Go represents the initial condition, and C1 represents the slope of the straight line. ■ is unbiased loss, meaning statistical noise, errors due to Iril regression, etc. For example, if the latest n point is n-5 and the time pitch Δt=1, (n-1)/2-(5-1
) / 2 -211! The previous quasi-definite value
, 2 111i1 observation points i- before and after this center
2, each observation value at i-1, i+l, +4-2 is Xi
-z, Xi-wealth, Xi++ X1+2, then the coefficients CD, CI, and division ■ regarding the estimated value X can be obtained by the following formula. 4+1+1+4 Ca×CI−L=5 Next, in the Kalman filter, the gains K,
The 11 constant value X1 of the true value related to rg-sensitivity and the error portion P (same as next) are calculated, and the estimated value Xi is output. Note that the subscript k-+ indicates the previous value. 5 Ptomi V ``Effects of the Invention'' According to the present invention, statistical fluctuations in radiation can be accurately eliminated using its statistical characteristics, without any unreasonableness unlike in the case of conventional analog noise removal means. It is possible to ensure the specified measurement accuracy. In addition, even in cases where the wall thickness changes rapidly at high speeds, such as steel pipes rolled with a small-diameter seamless stretch reducer, the thickness can be measured accurately and with high precision. Furthermore, the device can be simply constructed using a microcomputer.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明の実施例で、第1図は、本発明に係る装
置の回路構成を示すプロンク図、第2図は、該ブロック
図におけるマイクロコンピュータのフローチャートであ
る. l・・・線源     2・・・放射線検出器2l・・
・シンチレータ 22・・・光電子増倍管3・・・増幅
器    4・・・波高選別器5・・・カウンタ   
6・・・マイクロコンピュータS・・・被測定物
The drawings show embodiments of the present invention; FIG. 1 is a Pronk diagram showing the circuit configuration of a device according to the present invention, and FIG. 2 is a flowchart of the microcomputer in the block diagram. l...Radiation source 2...Radiation detector 2l...
・Scintillator 22... Photomultiplier tube 3... Amplifier 4... Wave height selector 5... Counter
6...Microcomputer S...Object to be measured

Claims (2)

【特許請求の範囲】[Claims] (1)厚さを測定する被測定物に放射線を投射し、透過
、反射にて被測定物から出る放射線を放射線検出器で検
出し、その検出信号を計数して厚さ換算した後、カルマ
ンフィルタにより真の値を推定することを特徴とする放
射線厚さ測定方法。
(1) Radiation is projected onto the object to be measured whose thickness is to be measured, the radiation emitted from the object through transmission and reflection is detected by a radiation detector, the detected signals are counted and converted into thickness, and then the Kalman filter is applied. A radiation thickness measurement method characterized by estimating a true value.
(2)厚さを測定する被測定物に放射線を投射する線源
と、透過、反射にて被測定物から出る放射線を所定の電
気信号に変換する放射線検出器と、その電気信号を所定
レベルまで増幅する増幅器と、その増幅信号から所要の
検出信号のみを抽出する波高選別器と、その検出信号を
計数するカウンタと、該カウンタの出力を一定時間周期
で読込み演算処理するカルマンフィルタを構成したマイ
クロコンピュータとから成ることを特徴とする放射線厚
さ測定装置。
(2) A radiation source that projects radiation onto the object to be measured whose thickness is to be measured, a radiation detector that converts the radiation emitted from the object through transmission and reflection into a predetermined electrical signal, and a radiation detector that converts the electrical signal to a predetermined level. A microcomputer consisting of an amplifier that amplifies up to A radiation thickness measuring device comprising: a computer;
JP1298871A 1989-11-17 1989-11-17 Radiation thickness measuring device Expired - Lifetime JPH0690020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1298871A JPH0690020B2 (en) 1989-11-17 1989-11-17 Radiation thickness measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1298871A JPH0690020B2 (en) 1989-11-17 1989-11-17 Radiation thickness measuring device

Publications (2)

Publication Number Publication Date
JPH03160314A true JPH03160314A (en) 1991-07-10
JPH0690020B2 JPH0690020B2 (en) 1994-11-14

Family

ID=17865267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1298871A Expired - Lifetime JPH0690020B2 (en) 1989-11-17 1989-11-17 Radiation thickness measuring device

Country Status (1)

Country Link
JP (1) JPH0690020B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5379053U (en) * 1976-12-01 1978-07-01
JPS58203745A (en) * 1982-05-21 1983-11-28 株式会社東芝 X-ray photography apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5379053U (en) * 1976-12-01 1978-07-01
JPS58203745A (en) * 1982-05-21 1983-11-28 株式会社東芝 X-ray photography apparatus

Also Published As

Publication number Publication date
JPH0690020B2 (en) 1994-11-14

Similar Documents

Publication Publication Date Title
JPH0428005Y2 (en)
JPH0125010B2 (en)
JPS6239379B2 (en)
EP0445983A2 (en) Flaw detection
US5131743A (en) Apparatus and method for inspecting optical fibers
JPH03160314A (en) Thickness measuring method using radiation and apparatus therefor
US4301366A (en) Chatter detection in thickness measuring gauges and the like
EP0012609A1 (en) Method and apparatus for surface-topography parameter evaluation
US3099746A (en) Thickness measuring apparatus utilizing gamma radiation
JP2856815B2 (en) X-ray thickness gauge
JPS61138160A (en) Ultrasonic flaw detector
EP3540416A3 (en) X-ray utilized compound measuring apparatus
JPH05141944A (en) Radiation thickness gauge
JPS5819986B2 (en) AE Shingo Shinpuku Bunpusokutei Souchi
JPH0520993Y2 (en)
JP2577456B2 (en) Thickness measuring device
JPS5819987B2 (en) AE
JP4538928B2 (en) Crystal grain size abnormality judgment device and crystal grain size abnormality judgment method
JPS6063406A (en) Radiation thickness gauge
JPH0514858B2 (en)
RU2234677C2 (en) Sheet articles thickness x-ray measurement method
RU2019823C1 (en) Device for measuring parameters of matter
JPH0724256B2 (en) Size measuring device
SU1170339A1 (en) Method of eddy current check of ferromagnetic metal objects
JP2002071447A (en) Pulse sound judging method