JPH03160287A - Operation control method for refrigerator - Google Patents

Operation control method for refrigerator

Info

Publication number
JPH03160287A
JPH03160287A JP30021089A JP30021089A JPH03160287A JP H03160287 A JPH03160287 A JP H03160287A JP 30021089 A JP30021089 A JP 30021089A JP 30021089 A JP30021089 A JP 30021089A JP H03160287 A JPH03160287 A JP H03160287A
Authority
JP
Japan
Prior art keywords
temperature
cold storage
freezing
storage
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30021089A
Other languages
Japanese (ja)
Inventor
Koichi Sato
幸一 佐藤
Yutaka Shimose
下瀬 裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP30021089A priority Critical patent/JPH03160287A/en
Priority to EP90308753A priority patent/EP0412811B1/en
Priority to DE69010422T priority patent/DE69010422T2/en
Priority to US07/566,248 priority patent/US5065592A/en
Publication of JPH03160287A publication Critical patent/JPH03160287A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obviate the replacement of a cold storage agent whenever selection is exchanged and to maintain a storage chamber at a specified temperature only by handling a selection means by housing the cold storage agent which has a freezing temperature responding with each operation mode to a freezing chamber. CONSTITUTION:A freezing cold storage agent 12A and an ice temperature storage cold storage agent 12B are mixed in an article housing section 12. A cooling device 14 freezes the cold storage agents 12A and 12B while the melting latent heat of the cold storage agent cools a storage chamber. Furthermore, this control system is designed to control a drive motor of a compressor so as to start and halt its operation in conformity with a selected operation mode. At the same time, this construction makes it possible to use a refrigerator in a double temperature zones, say, a temperature zone which freezes articles and a temperature zone which does not freeze articles by controlling the amount of air flow of a circulation fan device 11B per unit time.

Description

【発明の詳細な説明】 〔発明の目的〕 産業上の利用分野 本発明は冷凍室及び冷凍・冷蔵・氷温の各温度帯のうち
いずれか一つの温度帯に保持される貯蔵室の冷却を同時
に行なえる低温庫の運転制御方法に関する. 従来の技術 蓄冷剤及び冷却器を収納した蓄冷型の保冷庫として、特
開平1−102269号公報がある.この公報にあって
は、蓄冷剤及び除霜ヒータと送気ファンを内蔵する冷却
器を内装する蓄冷室と、食品等の輸送物品を保冷する保
冷室とより構戒する保冷庫本体と、前記蓄冷室と保冷室
を区画し通気孔と通気ファンを配設する断熱区画壁と、
保冷庫本体の保冷室側外部に設置する冷凍器ユニットと
を備えたものを開示している. 発明が解決しようとする課題 前記公報にあっては、蓄冷室に収納された蓄冷剤が収納
室に対して出し入れ可能か否かは開示されていない.仮
に、出し入れ可能であったとして凍結温度の異なる蓄冷
剤を収納させたとき、冷却器を収納した蓄冷室の制御温
度が切り替えられるようには構威されていないため、制
御温度に比べて蓄冷剤の凍結温度がかなり高い〈例えば
l5゜C以上高い〉蓄冷剤を収納した場合、その蓄冷剤
を過冷却することになることに加え、冷却室内を冷却し
過ぎることになり、所望の温度が得られず庫内商品の品
質低下を誘発することになる危惧があった. また、収納室に対して蓄冷剤の出し入れが行えないとす
れば、保冷室内を複数の温度帯に温度管理させようとし
たときに、やはり保冷室内を冷却し過ぎることとなった
り、冷却不足となったりすることがあった. そこで本発明では、冷凍室に蓄冷剤を混載するとともに
、蓄冷剤を収納する冷凍室及び貯蔵室の温度を複数の温
度帯に管理させるようにした低温庫を提供するものであ
る. 〔発明の構成〕 課題を解決するための手段 本発明は、仕切板にて仕切られ吹出口及び吸込口にて連
通ずる貯蔵室及び冷凍室と、該貯蔵室及び冷凍室を冷却
する冷却装置と、制御する温度帯にて区分けされfc3
つの運転モードのうちいずれか一つの運転モードにて冷
却装置の運転を制御する運転モード選択手段と、冷凍室
内に収納され運転モードに合わせfc異なる凍結温度を
有する複数種類の蓄冷剤とを備えtこ低温庫にあって、
前記運転モード選択手段によるモード選択時に、■第1
モードを選択したときには、冷凍室の温度を第1温度に
・貯蔵室の温度を前記第1温度より高い第4温度に制御
し、■第2モードを選択したときには、冷凍室の温度を
第1温度より高い第2温度に・貯蔵室の温度を第2温度
より高い第5温度に制御し、■第3モードを選択したと
きには、冷凍室の温度を第2温度に・貯蔵室の温度を第
5温度より高い第3温度に制御させるようにした低温庫
の運転制御方法を提供するものである. 作用 温度帯にて区分けされた運転モードを選択することによ
り貯蔵室と冷凍室の温度を、所望とする温度に制御させ
る運転モード選択手段によって、いずれの運転モードを
選択した場合でも、冷凍室には各運転モードに対応する
凍結温度を有した蓄冷剤が収納されていることから、選
択を替える度に蓄冷剤を入れ替える必要はなく、選択手
段による操作だけで貯蔵室を所望の温度に維持させる.
また、運転モード選択手段によるモード選択時に、■第
lモードを選択したときには、冷凍室の温度を第1温度
に・貯蔵室の温度を前記第1温度より高い第4温度に制
御し、■第2モードを選択したときには、冷凍室の温度
を第1温度より高い第2温度に・貯蔵室の温度を第2温
度より高い第5温度に制御し、■第3モードを選択した
ときには、冷凍室の温度を第2温度に・貯蔵室の温度を
第5温度より高い第3温度に制御させるようにしたため
、冷凍室の制御温度が設定に応じて自動的に切り替えら
れ、冷凍室の蓄冷剤の過冷却及び冷却不足が々くなり、
貯蔵室を所望の温度に維持させやすくなる. 実施例 以下本発明の実施例を図面に基づき説明する.1は低温
庫であり、本例ではトラック等の搬送手段に載せて物品
の冷却を行ないながら輸送を行なう場合に利用されコー
ルドロールボックスと称される移動式の低温庫を例にと
り説明する.低温庫1は、その底部に移動用の車輪2を
具備し、一側面に開口3を形成しtこ断熱箱4と、開口
3を開閉自在に閉塞する断熱扉5とを有し、その内部に
は,仕切板6にて仕切られる冷凍室7及び貯蔵室として
の仕様選択室8を配置している.冷凍室7には、蒸発器
lOと、複数の送風装置11と、蓄冷剤12A及び12
Bを収納する蓄冷剤収納部としての物品収納部l2とを
配置している.送風装置1lは、交流電源30にて駆動
される2つの蒸発器用送風装置11Aと、直流電源35
若しくは50にて駆動される1つの渾内空気循環用送風
装置11Bとからなる。尚、各送風装置11A,IIB
の送風量を略同じにしてある.また、冷凍室7の一壁す
なわち天壁l3に沿って、一端を物品収納部l2の風下
側に開口し他端を蒸発器10の風上側に開口したダク}
14を配設して、後述する冷気循環路Qに並列な冷気バ
イパス路Pを形成している. 15は仕切板6における物品収納部l2の風下側に位置
する部分に形成された吹出口、16は庫内空気循環用送
風装置11Bに対応させて仕切板6に形成した吸込口で
ある.そして、物品収納部l2の蓄冷剤12A及び12
Bを通過した冷気を吹出口l5から仕様選択室8内に導
ひき、吸込口16から物品収納部12に帰還させる冷気
循環路Qを形成している. 尚、庫内空気循環用送風装置11Bの蒸発器側の部分に
は、蒸発器lOを通過した空気を吸い込まないようにす
るとともに、吸込口l6から吸い込んだ仕様選択室8の
空気を蒸発器側へ移動させないようにするtζめ、吸込
口16に連なり蒸発器用送風装置+1Aと循環用送風装
置L1’Bとを区画するように循環用送風装置11Bを
覆うとともに蓄冷剤12A及び12B側に向けて開口さ
せtこファンケーシングの機能を有した区画板l7が配
置してある.また各送風装置11A,IIBの送風空気
容量を略同じにしたことから、庫内循環用送風装置11
Bが吸込口I6から吸い込む空気量と、ダクト14を経
て蒸発器lOの空気人口側へ導ひかれる空気量とが略1
:2の割合となり、後者すなわち冷気バイパス路Pを通
過する空気量を多くすることができる.これにより、蓄
冷剤12A及び12Bの凍結を主とし、仕様選択室8の
冷却を副とした冷却運転を行うことができるとともに、
蓄冷剤の凍結時間の短縮化を図ることができる. 18は物品収納部l2の前面に形成されるところの蓄冷
剤出入口19を開閉自在に閉塞する透明材科から成る中
扉である. 20は圧縮機、凝Wi器、凝縮器用送風装置等を収納す
る機械室である. 次に低温庫の運転制御装置Kについて第5図を基に説明
する. Lは交流回路部、Mは直流回路部であって、30は三相
交流電源、34は電源ライン31〜33に接続される圧
縮機駆動モータである.35は交流を直流に変換し後述
する蓄電池50の充電に必要な電圧を得る充電器として
の交流直流変換器、36は第1リレーコイル、37は蒸
発器用送風装置11Aの交流ファンモー夕、38は凝縮
器用送風装置の交流ファンモータ、39.40はマグネ
ットコイル52Gの第1開閉器及び第2開閉器である. 4lは物品収納部12内の温度を検知し、検知温度に基
づき圧縮機駆動モータ34の運転 停止を制御して、冷
凍室7における物品収納部12を冷凍温度(例えば−l
O゜C以下)に保持する冷凍室温度制御部であり、本実
施例では凍結温度の異なる2種類の蓄冷剤(一方が−2
5゜C、他方が5゜Cの凍結温度であり、前者を冷凍用
蓄冷剤l2A、後者を氷温冷蔵用蓄冷剤12Bと称して
区別する)の両方を複数個(一定の割合で混載するかた
ちで)物品収納部I2内に収納させるものとする.第1
図にあっては、蓄冷剤12A及び12Bを、それぞれ4
個及び2個ずつとし後者が送風装置11側となるように
配置させている.そして蓄冷剤の凍結温度(すなわち融
解温度)に応じて、物品収納部l2内の4度を後述する
操作部52による運転モードに対応しtこ温度に制御で
きるようにしている. 42は冷凍用蓄冷剤12Aを凍結させるため、物品収納
部12内を、この蓄冷剤の凍結温度(一25゜C)より
所定の温度だけ[例えばio’c]低い第1温度(−3
5゜C)に制御する第「サーモスタットである.43は
氷温冷蔵用蓄冷剤12Bを凍結させるために、物品収納
部l2内を、この蓄冷剤の凍結温度(−5゜C)より所
定の温度だけ[例えば10゜C]低い第2温度(一l5
゜c)に制御する第2サーモスタットである.44は第
1サーモスタット42に直列接続され、後述する第2リ
レーコイル60の開閉器で、45.46は1いに並列接
続され第2サーモスタット42に直3接続される開閉器
であって、それぞれ後述するこ31Jレ−mイル61、
第4リレーコイル62Mc3応する.向、畜冷剤12A
,12Bとしては、クーエチレングリコールー糊料の溶
液や天然炭水イ1物一無機塩類一食用保存料一食用着色
剤の溶液÷がある. 直流回路部Mは交流一直流変換器35の出力<nに接続
されており、50は第1リレーコイル3eの開閉器5I
を介して交流一直流変換器35にI≧統される直流電源
としての充放電可能な蓄電池てある. 52は、■第1モードを選択したときに、冷4室7の温
度を冷凍用蓄冷剤12Aを凍結させる芽l温度[−35
゜C]に・貯蔵室8の温度を第1 fM度より高く貯蔵
物が凍結する温度、即ち冷凍温瓜(例えば−10゜C以
下〉としての第4温度[一18゜Cとする]にされぞれ
制御し、■第2モードを選択したときに、冷凍室7の温
度を第1温度より高く水温冷蔵用蓄冷剤12Bを凍結さ
せる第2温度[−+5゜C]に一貯蔵室8の温度を第2
温度より高く0゜C以下であって貯蔵物の凍結直前まで
の温度、即ち水温温度(−5゜C〜0゜C程度)として
の第5温度[0゜C&する]にそれぞれ制御し、■第3
モードを選択したときに、冷凍室7の温度を第2温度に
一貯蔵室8の温度を第5温度より高く冷蔵温度(l″C
〜10゜C程度)としての第3温度[5゜Cとする1に
それぞれ制御する温度設定部としての機能を有する運転
モード選択手段としての操作部である. この操作部52による選択に基づき、冷凍室7内適所に
配置しtこ冷凍室温度制御部4Iを作動させるとともに
、仕様選択室8内適所に配置した温度制御装置としての
貯蔵室温度制御部53を動作させて、圧縮機駆動モータ
34の運転・停止及び庫内空気循環用送風装置11Bの
運転 停止を制御して単位時間当りの送風量を制御する
.57は直流ファンモータで、58は直流ファンモータ
57の回転数や回転方向を制御するtこめのコントロー
ラである.tζだし本実施例では,コントローラ58は
同一方向に同一回転数で直流ファンモータ57を回転さ
せるものとする.貯蔵室温度制御部53としては、仕様
選択室8内を第4温度[−18゜C1に維持する冷凍用
サーモスタット54一第5温度[ 0 ’C ]に維持
する氷温用サーモスタット55・第5温度[5゜c1に
維持する冷蔵用サーモスタット56の3つのものを用意
し、操作部52による選択操作で、いずれか一つのサー
モスタットを選択して、循環用送風装置11B(詳しく
は送風M)を制御させ仕様選択室8を選択に応じた温度
に維持する, 59は貯蔵室温度制御部53を庫内循環用送風装置11
Bとの直列回路に対して並列接続されたリレー群であり
、60は冷凍用サーモスタット54に対応させた第2リ
レーコイル、61は水温用サーモスタット55に対応さ
せた第3リレーコイル、62は冷蔵用サーモスタット5
6に対応させた第4リレーコイルである. また、本例では各温度制御部41.53をサーモスタッ
トで構戒する例を示してあるが、冷凍室7及び仕様選択
室8のそれぞれにサーミスタを配置し、各サーミスタか
らの検知信号と操作部52によるモード設定(例えば第
1・第2 第3モードのうちのいずれか一つ)とに応じ
て、圧縮機駆動モータ34及び庫内循環用送風装置11
Bの運転一停止を制御するようにしてもよい.以上の構
成に基づき冷凍室7及び仕様選択室8の冷却について説
明する.ただし、両室7,8内が非冷却の状態にあるも
のとする. ■操作部52により第1モードを選択したとすると、こ
の選択操作により冷凍用サーモスタット54が選択され
る.そして冷却運転スイッチ(図示せず)を押すか若し
くは電源プラグをソケット(ともに図示せず)に差し込
むと、第1リレーコイル36に通電され開閉器5lが閉
成して蓄電池50の充電及び循環用送風装置11B並び
に第2リレーコイル60への通電がなされるとともにマ
グネットコイル52Cに通電されて,圧縮機駆動モータ
34・交流ファンモータ37.38に通電されてそれぞ
れが運転を開始する.このため、物品収納部12内は蒸
発器lOを経て冷却された空気にて徐々に冷却され蓄冷
剤12A及び12Bをそれぞれ凍結してゆく.また仕様
選択室8内は循環用送風装置11Bの運転により、蓄冷
剤12.A及び12Bの融解潜熱でもって除々に冷却さ
れてゆく. このとき、物品収納部l2の蓄冷剤12Bの風下側まで
導ひかれtζ冷気は、吹出口l5から仕様選択室8へ入
り吸込口l6から再び物品収納部l2へ帰還する経路す
なわち冷気循環路Qを流れるもの(以下冷気流(ア)と
称す)と、ダクト14を介して蒸発器10の風上側に帰
還し蒸発器10にて冷却されて物品収納部12へ戻る経
路すなわち冷気バイパス路Pを流れるもの(以下冷気流
(イ)と称す〉とに分流される. しかも、この分流にあたっては、前述しtこように冷気
流(イ)の空気量が多く、また、蓄冷剤12Bを経た後
ほとんど熱交換されないまま冷気を直接蒸発器lOへ導
入することができ、蒸発器l0へ帰還する空気の温度上
昇を抑制している.このtζめ蒸発器10の熱交換能力
を低下させることなく、しかもより低温の冷気として蓄
冷剤12A及び12Bに吹きつけることができ、蓄冷剤
+2A及び12Bの冷却効率を向上し、従来のような単
なる強制対流式のものよりも蓄冷剤凍結所要時間を短縮
できる. そして、サーモスタット54の開放動作温度(本例では
−19゜Cに設定)以下になると、その接点が開放して
循環用送風装置11Bが停止し、仕様選択室8内の冷気
強制対流を停止する.この仕様選択室8内の冷気強制対
流が停止することで仕様選択室8内の強制冷却はなされ
ず、次第に温度上昇してゆく.そしてサーモスタット5
4の復帰動作温度(本例では−17゜C)以上になると
サーモスタット54の接点が閉じ、庫内循環用送風装置
118が再び運転を開始し、仕様選択室8の強制対流に
よる冷却を行なう。以下上述の動作を繰り返し仕様選択
室8を冷凍温度に維持する.一方、物品収納部】2の出
口側からダク}14を経て蒸発器10の空気人口側へ冷
気を導ひいていることから、このダクトl4は冷気のバ
イパス通路として作用し、物品収納部l2の冷却を促進
させている.特に(イ)による冷気流量を(ア)による
冷気流量より多くしてあるため、物品収納部l2の冷却
は促進される.さらに、(イ)による冷気は貯蔵室8を
経ることなく蒸発810へ帰還するナこめ、(ア)によ
る冷気よりも低い相対湿度でもって帰還しており、蒸発
器lOへの単位時間当りの着霜量が減少し除霜回数の低
減を図ることができるまた、物品収納部l2が徐々に冷
却されて第1サーモスタット42の開放動作温度(本例
では36゜Cに設定)以下になると、その接点が開放し
圧縮機駆動モータ34が停止して、冷凍室7の冷却を停
止させて冷凍室7の過冷却を防止しているただし蒸発器
用送風装置11Aは交流ファンモタ37に通電されてい
るため運転を継続している冷却の停止に伴ない物品収納
部12内が除々に温度上昇して第1サーモスタット42
の復帰温度(本例では−34℃に設定〉以上になると、
その接点が閉鎖して再び圧縮機が駆動して、冷凍室7の
冷却を行なう. 以下上述の動作を繰り返して物品収納部12内を冷凍用
蓄冷剤の凍結温度より低い第1温度(本例では−35゜
C)に維持する. 次に、操作部52により、第2モード若しくは第3モー
ドを選択した場合には、仕様選択室8における動作説明
の中にある「冷凍用」を「氷温若しくは氷温用」若しく
は「冷蔵温度若しくは冷蔵用]に置き換えた動作をする
とともに、冷凍室7における上述の動作説明の中にある
第1サーモスタットを第2サーモスタットに置き換えt
こ動作をするしのと考えればよいtこめ、その説明は省
略するが、■第2モードを選択しtこ場合には、物品収
納部l2内を−l5゜Cに・仕様選択室8内を0゜Cに
それぞれ維持させ、■第3モードを選択した場合には、
物品収納部12内を−15゜Cに、仕様選択室8内を5
゜Cにそれぞれ維持させる.tこだし冷凍く氷温く冷蔵
という温度関係であることから、この温度関係に対応さ
せた各サーモスタットの動作温度の違いにより、制御温
度が高い程循環用送風装置11Bの運転・停止を合わせ
た間隔が短くなり、結果として送風装置の送風量が少な
くなるものである. 以上の実施例を通じて、貯蔵室8内を冷凍・氷温・冷蔵
の3温度帯のいずれかの温度帯に維持する例を示したが
、(I)冷凍と水温、(10水温と冷蔵、a10冷凍と
冷蔵という2温度帯の組み合わせにし、いずれか一方の
温度帯を選択できるようにしたものであっても構わない
.この場合、実施例に示しtcような3温度帯対応では
なく2温度帯対応という低温庫ができるものであり、温
度制御装置他の回路構成についてかなりの省略を行うこ
とができる. 以上のような構成によれば、低温庫1に設けtこ冷却装
置14により蓄冷剤!2A及び12Bの凍結を行うとと
もに、蓄冷剤の融解潜熱でもって貯蔵室8の冷却を行い
、しかも操作部52にて選択された■〜■の運転モード
に応じて、圧縮機駆動モータ34の運転 停止を制御す
るとと6に、循環用送風装置11Bの単位時間当りの送
風量を制御するようにしており、一台の低温庫を物品が
凍結する温度帯及び物品が凍結しない温度帯の複数の温
度帯で使用することが可能となる.また、この低温庫1
を使用することにより、輸送を行う場合の集配場や中継
地点には特別な低温倉庸を必要とせず、輸送体系におけ
る設備の縮小を図ることができる.さらに、循環用送風
装置11Bにて強制対流方式にしていることから、貯蔵
室内の温度分布が均一となって、貯蔵室内を氷温温度帯
に維持する場合にも十分対応させることができるように
なる. そして、循環用送風装置11Bと蒸発器用送風装置11
Aとを区画壁I7にて区画して、吸込口l6から吸い込
んだ空気を蒸発器10を通過させることなく蓄冷剤11
A及びIIBに導くようにして、湿気を含んだ空気が萼
発器IOへ直接戻ら々いようにすることができる.また
、蓄冷剤に導かれた空気を蒸発器IOを通過した空気と
混合させて、庫内温度に近づけたものとして吹出口15
から貯蔵室8に吹き出すようにして、吹出口15近くに
配置された物品に対して生じやすかった過冷却を防止し
ている. さらに、物品収納部l2内には、冷凍用蓄冷剤+2A及
び氷温冷蔵用蓄冷剤12Bを混載していることから、操
作部52により運転モードを切り替えた場合でも、物品
収納部l2内の蓄冷剤を異なる蓄冷剤に入れ替える必要
はなく、単に操作部52を異なる運転モードに切り替え
るだけで対応でき、非常に操作性が向上し保守が容易に
行えるようになる. そして、凍結温度の異なる蓄冷剤を混載し、運転モード
を切り替えることで冷凍室7の制御温度帯も切り替わる
ようにしたため、第7図に示したように、低温庫lとし
ては使用頻度の高い■第2モード・■第3モードを選択
したときに、蓄冷剤の凍結時間が短縮でき、しかも蓄冷
剤の過冷却・冷却不足や冷凍室7及び仕様選択室l2の
過冷却を防止でき、低温庫としての使用性を向上するこ
とができる. 〔発明の効果〕 以上詳述したように本発明によれば、冷凍室内には、運
転モードに合わせtζ凍結温度を有する複数種類の蓄冷
部材(すなわち冷凍用蓄冷剤及び氷温冷蔵用蓄冷剤)を
混載していることから、温度設定部により運転モードを
切り替えた場合で6、冷凍室内の蓄冷剤を異なる蓄冷剤
に入れ替える必要はなく、単に温度設定部を異なる運転
モードに切り替えるだけで対応でき、非常に操作性が向
上し、低温庫の保守が容易に行えるようになる.そして
、凍結温度の異なる蓄冷剤を混載し、運転モードを切り
替えることで冷凍室の制御温度帯も切り替わるようにし
たため、低温庫としては使用頻度の高い■第2モード・
■第3モードを選択しtこときに、蓄冷剤の凍結時間が
短縮でき、しかも蓄冷剤の過冷却 冷却不足や冷凍室及
び貯蔵室の過冷却を防止でき、低温庫としての使用性を
向上することができる.
[Detailed Description of the Invention] [Object of the Invention] Industrial Application Field The present invention is directed to the cooling of a freezing room and a storage room that is maintained at one of the temperature ranges of freezing, refrigeration, and ice temperature. This article relates to a method for controlling the operation of low-temperature storage at the same time. JP-A No. 1-102269 discloses a conventional cold storage type refrigerator containing a cold storage agent and a cooler. In this publication, a cold storage chamber containing a cooler containing a cold storage agent, a defrosting heater, and an air supply fan, a cold storage chamber for keeping transport goods such as food cool, and a cold storage main body, which is composed of a cold storage chamber for keeping transported goods such as food, and the above-mentioned an insulating partition wall that partitions the cold storage room and the cold storage room and provides ventilation holes and a ventilation fan;
Discloses a refrigerator unit that is equipped with a refrigerator unit that is installed outside the cold storage room side of the refrigerator body. Problems to be Solved by the Invention The above publication does not disclose whether the cold storage agent stored in the cold storage chamber can be taken in and out of the storage chamber. Even if it were possible to put in and take out cold storage agents with different freezing temperatures, the control temperature of the cold storage room that houses the cooler is not set up to be changed, so the temperature of the cold storage agent would be lower than the control temperature. When storing a cold storage agent whose freezing temperature is considerably high (for example, higher than 15°C), not only will the cold storage agent be supercooled, but the inside of the cooling chamber will be overcooled, making it difficult to reach the desired temperature. There was a concern that this would lead to a decline in the quality of the products in the warehouse. In addition, if it is not possible to take the cold storage agent in and out of the storage room, when trying to control the temperature in multiple temperature zones within the cold storage room, the inside of the cold storage room may end up being overcooled or insufficiently cooled. Sometimes it happened. Accordingly, the present invention provides a low-temperature refrigerator in which a cold storage agent is mixed in the freezer compartment, and the temperature of the freezer compartment and storage compartment in which the cold storage agent is stored is managed in a plurality of temperature ranges. [Structure of the Invention] Means for Solving the Problems The present invention provides a storage compartment and a freezing compartment that are separated by a partition plate and communicated through an air outlet and a suction port, and a cooling device that cools the storage compartment and the freezing compartment. , separated by temperature range to be controlled fc3
It is equipped with an operation mode selection means for controlling the operation of the cooling device in one of the two operation modes, and a plurality of types of cold storage agents stored in the freezer compartment and having different freezing temperatures according to the operation mode. In this low temperature storage,
When selecting a mode by the operation mode selection means, ■the first
When the mode is selected, the temperature of the freezer compartment is controlled to the first temperature and the temperature of the storage compartment is controlled to a fourth temperature higher than the first temperature, and when the second mode is selected, the temperature of the freezer compartment is controlled to the first temperature. When the third mode is selected, the temperature of the freezer compartment is set to the second temperature, and the temperature of the storage compartment is controlled to the fifth temperature, which is higher than the second temperature. This invention provides a method for controlling the operation of a low-temperature refrigerator in which the temperature is controlled to a third temperature higher than the fifth temperature. The operating mode selection means controls the temperature of the storage compartment and the freezing compartment to the desired temperature by selecting the operating mode divided by the operating temperature range. Since the regenerator stores a refrigerant with a freezing temperature corresponding to each operation mode, there is no need to replace the refrigerant each time the selection is changed, and the storage room can be maintained at the desired temperature simply by operating the selection means. ..
Further, when selecting the mode by the operation mode selection means, when the first mode is selected, the temperature of the freezer compartment is controlled to the first temperature, the temperature of the storage compartment is controlled to a fourth temperature higher than the first temperature, and When mode 2 is selected, the temperature of the freezer compartment is controlled to a second temperature higher than the first temperature, and the temperature of the storage compartment is controlled to a fifth temperature higher than the second temperature. Since the temperature of the storage compartment is controlled to the second temperature and the temperature of the storage compartment is controlled to the third temperature higher than the fifth temperature, the control temperature of the freezing compartment is automatically switched according to the setting, and the temperature of the cold storage agent in the freezing compartment is controlled. Overcooling and undercooling become common,
This makes it easier to maintain the storage room at the desired temperature. EXAMPLES Below, examples of the present invention will be explained based on the drawings. 1 is a low temperature storage, and in this example, a mobile low temperature storage called a cold roll box, which is used when transporting goods while cooling them on a transport means such as a truck, will be explained as an example. The low-temperature refrigerator 1 has wheels 2 for movement at the bottom, an insulating box 4 with an opening 3 formed on one side, and an insulating door 5 that freely opens and closes the opening 3. A freezer compartment 7 separated by a partition plate 6 and a specification selection compartment 8 serving as a storage compartment are arranged in the compartment. The freezer compartment 7 includes an evaporator lO, a plurality of blowers 11, and cold storage agents 12A and 12.
An article storage section 12 serving as a cold storage agent storage section for storing B is arranged. The blower device 1l includes two evaporator blowers 11A driven by an AC power source 30 and a DC power source 35.
Alternatively, it consists of one in-pool air circulation blower device 11B driven by the pump 50. In addition, each blower device 11A, IIB
The air flow rates are kept almost the same. Also, along one wall of the freezer compartment 7, that is, the ceiling wall l3, there is a duct which has one end opened on the leeward side of the article storage section l2 and the other end opened on the windward side of the evaporator 10.
14 to form a cold air bypass path P parallel to a cold air circulation path Q, which will be described later. Reference numeral 15 designates an air outlet formed in a portion of the partition plate 6 located on the leeward side of the article storage section l2, and reference numeral 16 represents an inlet port formed in the partition plate 6 in correspondence with the blower device 11B for circulating air within the warehouse. Then, the cold storage agents 12A and 12 in the article storage section l2
A cold air circulation path Q is formed in which the cold air that has passed through B is guided into the specification selection chamber 8 from the blow-off port 15 and returned to the article storage section 12 from the suction port 16. Note that the evaporator-side part of the internal air circulation blower 11B is designed not to suck in the air that has passed through the evaporator 1O, and also to prevent the air from the specification selection chamber 8 sucked in from the suction port 16 into the evaporator side. To prevent it from moving to the refrigerant 12A and 12B side, cover the circulating air blower 11B so as to separate the evaporator air blower +1A and the circulation air blower L1'B connected to the suction port 16, and A partition plate 17 having an opening function as a fan casing is arranged. In addition, since the air capacity of each blower device 11A and IIB is approximately the same, the air blower device 11 for internal circulation
The amount of air that B sucks in from the suction port I6 and the amount of air that is led to the air intake side of the evaporator IO through the duct 14 are approximately 1.
:2, and the latter, that is, the amount of air passing through the cold air bypass path P can be increased. As a result, it is possible to perform a cooling operation that mainly freezes the cold storage agents 12A and 12B and secondaryly cools the specification selection chamber 8, and
The freezing time of the cold storage agent can be shortened. Reference numeral 18 denotes an inner door made of a transparent material that freely opens and closes the cold storage agent entrance/exit 19 formed on the front surface of the article storage section l2. 20 is a machine room that houses the compressor, condenser, air blower for the condenser, etc. Next, the operation control device K of the low-temperature refrigerator will be explained based on Fig. 5. L is an AC circuit section, M is a DC circuit section, 30 is a three-phase AC power source, and 34 is a compressor drive motor connected to power lines 31 to 33. 35 is an AC/DC converter as a charger which converts AC into DC and obtains the voltage necessary for charging the storage battery 50 which will be described later; 36 is a first relay coil; 37 is an AC fan motor of the evaporator blower 11A; In the AC fan motor of the condenser blower, 39.40 is the first switch and second switch of the magnet coil 52G. 4l detects the temperature inside the article storage section 12, controls the operation and stop of the compressor drive motor 34 based on the detected temperature, and cools the article storage section 12 in the freezer compartment 7 to a freezing temperature (for example -l).
In this example, two types of cold storage agents with different freezing temperatures (one is -2
5°C, and the other has a freezing temperature of 5°C, and the former is called the cold storage agent 12A for freezing, and the latter is called the cold storage agent 12B for ice-temperature refrigeration. (in the form) shall be stored in the article storage section I2. 1st
In the figure, the cold storage agents 12A and 12B are each
They are arranged so that the latter is on the side of the blower 11. Depending on the freezing temperature (that is, the melting temperature) of the cold storage agent, the temperature in the article storage section 12 can be controlled to 4 degrees Celsius according to the operation mode by the operating section 52, which will be described later. In order to freeze the freezing cold storage agent 12A, the inside of the article storage section 12 is heated to a first temperature (-3° C.) lower by a predetermined temperature (for example, io'c) than the freezing temperature (-25° C.) of the cold storage agent 12A.
43 is a thermostat that controls the temperature at a predetermined temperature (-5°C) from the freezing temperature of the cold storage agent 12B in order to freeze the cold storage agent 12B. A second temperature (15°C) lower by a certain amount [e.g. 10°C]
This is the second thermostat that controls the temperature at ゜c). 44 is a switch connected in series to the first thermostat 42 and for a second relay coil 60 to be described later; 45 and 46 are switches connected in parallel to 1 and connected in series to the second thermostat 42; 31J rail 61, which will be described later.
The fourth relay coil 62Mc3 corresponds. Forwards, cold storage agent 12A
, 12B includes a solution of ethylene glycol and a thickening agent, and a solution of natural carbohydrate, one substance, one inorganic salt, one edible preservative, and one edible coloring agent. The DC circuit section M is connected to the output <n of the AC-DC converter 35, and 50 is the switch 5I of the first relay coil 3e.
There is a chargeable/dischargeable storage battery as a DC power source which is integrated into the AC-DC converter 35 via the AC to DC converter 35. 52 is a temperature [-35
°C] - The temperature of the storage chamber 8 is set to a temperature higher than the first fM degree at which the stored material freezes, i.e., a fourth temperature [-18 °C] for frozen melon (for example, below -10 °C). ■ When the second mode is selected, the temperature of the freezer compartment 7 is set to a second temperature [-+5°C] that is higher than the first temperature and freezes the cold storage agent 12B for cold storage. the temperature of the second
Control the temperature to a fifth temperature [0°C and above] which is higher than the temperature and below 0°C and just before freezing the stored material, that is, the water temperature (about -5°C to 0°C), Third
When the mode is selected, the temperature of the freezing compartment 7 is set to the second temperature, and the temperature of the storage compartment 8 is set to a higher temperature than the fifth temperature.
This is an operating section serving as an operation mode selection means that has a function as a temperature setting section that controls the third temperature [about 10°C] and 5°C. Based on the selection made by the operating section 52, the freezing chamber temperature control section 4I, which is located at an appropriate location within the freezer compartment 7, is activated, and the storage chamber temperature controller 53, which serves as a temperature control device, is located at an appropriate location within the specification selection chamber 8. is operated to control the operation and stop of the compressor drive motor 34 and the operation and stop of the indoor air circulation blower 11B, thereby controlling the amount of air blown per unit time. 57 is a DC fan motor, and 58 is a controller for controlling the rotation speed and rotation direction of the DC fan motor 57. In this embodiment, it is assumed that the controller 58 rotates the DC fan motor 57 in the same direction and at the same rotation speed. The storage room temperature control unit 53 includes a freezing thermostat 54 that maintains the interior of the specification selection chamber 8 at a fourth temperature [-18° C1] and an ice temperature thermostat 55 that maintains the interior of the specification selection room 8 at a fifth temperature [0'C]. Three refrigeration thermostats 56 are prepared to maintain the temperature at 5°C1, and one of the thermostats is selected using the operation unit 52 to turn on the circulating air blower 11B (more specifically, air blower M). 59 controls the temperature of the storage chamber temperature control section 53 to maintain the temperature of the specification selection chamber 8 at a temperature corresponding to the selection.
A group of relays connected in parallel to the series circuit with B, 60 is a second relay coil corresponding to the refrigeration thermostat 54, 61 is a third relay coil corresponding to the water temperature thermostat 55, and 62 is a refrigeration coil. thermostat 5
This is the fourth relay coil that corresponds to 6. In addition, although this example shows an example in which each temperature control section 41.53 is controlled by a thermostat, a thermistor is arranged in each of the freezing compartment 7 and the specification selection compartment 8, and the detection signal from each thermistor and the operation section 52 (for example, one of the first, second, and third modes), the compressor drive motor 34 and the internal circulation air blower 11
It may also be possible to control the operation and stop of B. Cooling of the freezer compartment 7 and specification selection compartment 8 will be explained based on the above configuration. However, it is assumed that both chambers 7 and 8 are in a non-cooled state. (2) If the first mode is selected by the operation unit 52, the refrigeration thermostat 54 is selected by this selection operation. Then, when the cooling operation switch (not shown) is pressed or the power plug is inserted into the socket (both not shown), the first relay coil 36 is energized, the switch 5l is closed, and the storage battery 50 is charged and circulated. The blower 11B and the second relay coil 60 are energized, the magnet coil 52C is energized, the compressor drive motor 34 and the AC fan motor 37, 38 are energized, and each starts operating. Therefore, the inside of the article storage section 12 is gradually cooled by the cooled air via the evaporator IO, and the cold storage agents 12A and 12B are respectively frozen. In addition, inside the specification selection room 8, the cold storage agent 12. It is gradually cooled by the latent heat of fusion of A and 12B. At this time, the cold air guided to the leeward side of the cold storage agent 12B in the article storage section l2 enters the specification selection chamber 8 from the outlet l5 and returns to the article storage section l2 from the suction port l6, that is, the cold air circulation path Q. The flowing air (hereinafter referred to as cold air flow (A)) returns to the windward side of the evaporator 10 via the duct 14, is cooled in the evaporator 10, and returns to the article storage section 12, that is, the cold air bypass path P. In addition, in this splitting, the amount of air in the cold airflow (a) is large as described above, and after passing through the cold storage agent 12B, almost no The cold air can be directly introduced into the evaporator 10 without undergoing heat exchange, and the temperature rise of the air returning to the evaporator 10 is suppressed. It is possible to blow cold air at a lower temperature onto the cold storage agents 12A and 12B, improving the cooling efficiency of the cold storage agents +2A and 12B, and shortening the time required to freeze the cold storage agents compared to the conventional forced convection type. When the temperature drops below the open operating temperature of the thermostat 54 (set to -19°C in this example), the contact opens, the circulation blower 11B stops, and the forced convection of cold air in the specification selection chamber 8 is stopped. .By stopping the forced convection of cold air within the specification selection chamber 8, forced cooling within the specification selection chamber 8 is no longer achieved, and the temperature gradually rises.Then, the thermostat 5
When the temperature exceeds the return operating temperature of No. 4 (-17° C. in this example), the contact of the thermostat 54 closes, the internal circulation blower 118 starts operating again, and the specification selection chamber 8 is cooled by forced convection. The above operations are then repeated to maintain the specification selection chamber 8 at freezing temperature. On the other hand, since cold air is guided from the outlet side of the article storage section 2 to the air intake side of the evaporator 10 via the duct 14, this duct 14 acts as a bypass passage for the cold air, It promotes cooling. In particular, since the flow rate of cold air according to (a) is made larger than the flow rate of cold air according to (a), cooling of the article storage section l2 is promoted. Furthermore, since the cold air from (a) returns to the evaporator 810 without passing through the storage chamber 8, it returns with a lower relative humidity than the cold air from (a), and the amount of air arriving at the evaporator lO per unit time is lower than that of the cold air from (a). The amount of frost decreases and the number of times of defrosting can be reduced.Furthermore, when the article storage section l2 is gradually cooled down to below the opening operation temperature of the first thermostat 42 (set to 36°C in this example), the The contact opens, the compressor drive motor 34 stops, and cooling of the freezer compartment 7 is stopped to prevent overcooling of the freezer compartment 7. However, since the AC fan motor 37 of the evaporator blower 11A is energized, Due to the stoppage of the cooling operation, the temperature inside the article storage section 12 gradually rises and the first thermostat 42
When the return temperature exceeds (set to -34℃ in this example),
The contact closes and the compressor is driven again to cool the freezer compartment 7. Thereafter, the above-described operations are repeated to maintain the interior of the article storage section 12 at a first temperature (-35°C in this example) lower than the freezing temperature of the refrigerant. Next, when the second mode or the third mode is selected using the operation unit 52, "for freezing" in the operation explanation in the specification selection room 8 is changed to "for ice temperature or ice temperature" or "for refrigeration temperature". or for refrigeration], and replace the first thermostat in the above operation description for the freezer compartment 7 with the second thermostat.
The explanation will be omitted as it is easy to think of this operation as follows, but in this case, select the second mode. are maintained at 0°C, and ■ if the third mode is selected,
The inside of the article storage section 12 is set to -15°C, and the inside of the specification selection room 8 is set to -15°C.
Maintain each at °C. Since the temperature relationship is that of freezing, freezing, and refrigeration, the operating temperature of each thermostat corresponding to this temperature relationship is different, and the higher the control temperature, the shorter the interval between operation and stop of the circulating air blower 11B. becomes shorter, and as a result, the amount of air blown by the blower device decreases. Through the above embodiments, an example was shown in which the inside of the storage room 8 is maintained at one of the three temperature zones: freezing, ice temperature, and refrigeration. It is also possible to have a combination of two temperature zones, freezing and refrigeration, and to be able to select one of the temperature zones.In this case, instead of supporting three temperature zones like tc shown in the example, it is possible to combine two temperature zones. This allows a low-temperature refrigerator to be used, and it is possible to omit a considerable amount of the temperature control device and other circuit configurations. According to the above configuration, the cooling device 14 installed in the low-temperature refrigerator 1 can cool the cold storage agent! 2A and 12B, the storage chamber 8 is cooled by the latent heat of fusion of the regenerator, and the compressor drive motor 34 is operated according to the operating mode of In order to control the stoppage, the amount of air per unit time of the circulating air blower 11B is controlled, and one low-temperature warehouse can be operated in multiple temperature ranges, including one in which the goods freeze and one in which the goods do not freeze. It becomes possible to use it in a temperature range.In addition, this low temperature refrigerator 1
By using this, there is no need for special low-temperature storage at collection and delivery points or relay points during transportation, and it is possible to reduce the equipment in the transportation system. Furthermore, since the circulating air blower 11B uses a forced convection method, the temperature distribution inside the storage room becomes uniform, making it possible to sufficiently cope with the case where the inside of the storage room is maintained in the freezing temperature range. Become. Then, the circulation air blower 11B and the evaporator air blower 11
A is partitioned by a partition wall I7, and the air sucked in from the suction port l6 is transferred to the cold storage agent 11 without passing through the evaporator 10.
A and IIB to prevent humid air from returning directly to the calyx generator IO. In addition, the air led to the cold storage agent is mixed with the air that has passed through the evaporator IO, and the air outlet 15 is brought close to the temperature inside the refrigerator.
The air is blown from the air into the storage chamber 8 to prevent overcooling, which is likely to occur on items placed near the air outlet 15. Furthermore, since the refrigerating cold storage agent +2A and the cold storage agent 12B for ice-temperature refrigeration are mixed in the article storage section l2, even when the operation mode is switched using the operation section 52, the cold storage agent inside the article storage section l2 There is no need to replace the refrigerant with a different refrigerant, and it can be handled by simply switching the operating section 52 to a different operation mode, greatly improving operability and making maintenance easier. By loading cold storage agents with different freezing temperatures together and switching the operation mode, the control temperature range of the freezer compartment 7 can also be changed. When the second mode and the third mode are selected, the freezing time of the cold storage agent can be shortened, and it is possible to prevent overcooling or insufficient cooling of the cold storage agent and overcooling of the freezer compartment 7 and specification selection compartment 12, and prevent the freezing of the cold storage agent. The usability of the system can be improved. [Effects of the Invention] As detailed above, according to the present invention, a plurality of types of cold storage members (i.e., a cold storage agent for freezing and a cold storage agent for ice-temperature refrigeration) each having a freezing temperature of tζ according to the operation mode are provided in the freezer compartment. 6, there is no need to replace the cold storage agent in the freezer compartment with a different cold storage agent, and it can be handled simply by switching the temperature setting section to a different operation mode. This greatly improves operability and makes it easier to maintain low-temperature storage. By loading cold storage agents with different freezing temperatures together and switching the operation mode, the control temperature range of the freezer compartment can also be changed.
■When the third mode is selected, the freezing time of the cold storage agent can be shortened, and it is possible to prevent insufficient cooling of the cold storage agent and overcooling of the freezer compartment and storage compartment, improving usability as a low-temperature refrigerator. can do.

【図面の簡単な説明】[Brief explanation of the drawing]

各図は本発明の一実施例を示し、第1図は低温庫の冷凍
室における横断面図、第2図は低温庸の外践斜視図、第
3図は第1図のA−A断面図、第4図は第1図のB−B
断面図、第5図は低温庫の運転制御回路図、第6図及び
第7図は各運転モードにおける蓄冷剤の温度変化及び所
要時間を示す温度一時間グラフである. l・低温庫、 7・・冷凍室、 8・貯蔵室、12・・
・物品収納部、  12A・・冷凍用蓄冷剤、12B・
−・氷温冷蔵用蓄冷剤、  l5 吹出口、16・吸込
口、 52−・運転モード選択手段、41.53・温度
制御部.
Each figure shows an embodiment of the present invention. Figure 1 is a cross-sectional view of the freezer compartment of a low-temperature refrigerator, Figure 2 is a perspective view of the cold storage system, and Figure 3 is a cross-section taken along line A-A in Figure 1. Figure 4 is B-B of Figure 1.
A cross-sectional view, FIG. 5 is an operation control circuit diagram of the low-temperature storage, and FIGS. 6 and 7 are temperature one-hour graphs showing the temperature change and required time of the cold storage agent in each operation mode. l・Low temperature storage, 7.Freezer room, 8.Storage room, 12..
・Goods storage section, 12A・・Refrigerant storage agent for freezing, 12B・
- Cold storage agent for ice-temperature refrigeration, l5 outlet, 16 suction port, 52- operation mode selection means, 41.53 temperature control unit.

Claims (1)

【特許請求の範囲】[Claims] 1、仕切板にて仕切られ吹出口及び吸込口にて連通する
貯蔵室及び冷凍室と、該貯蔵室及び冷凍室を冷却する冷
却装置と、制御する温度帯にて区分けされた3つの運転
モードのうちいずれか一つの運転モードにて前記冷却装
置の運転を制御する運転モード選択手段と、前記冷凍室
内に収納され前記運転モードに合わせた異なる凍結温度
を有する複数種類の蓄冷剤とを備えた低温庫であって、
前記運転モード選択手段によるモード選択時に、(1)
第1モードを選択したときには、前記冷凍室の温度を第
1温度に・前記貯蔵室の温度を前記第1温度より高い第
4温度に制御し、(2)第2モードを選択したときには
、前記冷凍室の温度を第1温度より高い第2温度に・前
記貯蔵室の温度を前記第2温度より高い第5温度に制御
し、(3)第3モードを選択したときには、前記冷凍室
の温度を前記第2温度に・前記貯蔵室の温度を前記第5
温度より高い第3温度に制御させるようにしたことを特
徴とする低温庫の運転制御方法。
1. A storage room and a freezing room that are separated by a partition plate and communicated through an air outlet and a suction port, a cooling device that cools the storage room and the freezing room, and three operating modes that are divided by temperature range to be controlled. an operation mode selection means for controlling the operation of the cooling device in one of the operation modes; and a plurality of types of cold storage agents stored in the freezing chamber and having different freezing temperatures according to the operation mode. It is a low temperature refrigerator,
When selecting a mode by the operation mode selection means, (1)
When the first mode is selected, the temperature of the freezer compartment is controlled to the first temperature and the temperature of the storage compartment is controlled to a fourth temperature higher than the first temperature; (2) when the second mode is selected, The temperature of the freezing compartment is controlled to a second temperature higher than the first temperature, the temperature of the storage compartment is controlled to a fifth temperature higher than the second temperature, and (3) when the third mode is selected, the temperature of the freezing compartment is controlled to a second temperature higher than the first temperature. to the second temperature and the temperature of the storage chamber to the fifth temperature.
A method for controlling the operation of a low-temperature refrigerator, characterized in that the temperature is controlled to a third temperature higher than the temperature.
JP30021089A 1989-08-11 1989-11-17 Operation control method for refrigerator Pending JPH03160287A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP30021089A JPH03160287A (en) 1989-11-17 1989-11-17 Operation control method for refrigerator
EP90308753A EP0412811B1 (en) 1989-08-11 1990-08-09 Cold box
DE69010422T DE69010422T2 (en) 1989-08-11 1990-08-09 Cooling tank.
US07/566,248 US5065592A (en) 1989-08-11 1990-08-10 Cold box

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30021089A JPH03160287A (en) 1989-11-17 1989-11-17 Operation control method for refrigerator

Publications (1)

Publication Number Publication Date
JPH03160287A true JPH03160287A (en) 1991-07-10

Family

ID=17882047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30021089A Pending JPH03160287A (en) 1989-08-11 1989-11-17 Operation control method for refrigerator

Country Status (1)

Country Link
JP (1) JPH03160287A (en)

Similar Documents

Publication Publication Date Title
JP2889600B2 (en) Cold storage
KR101556801B1 (en) Temperature-controlled storage unit
JP4088474B2 (en) refrigerator
US5065592A (en) Cold box
JP2776577B2 (en) Cool storage cool box
JP4093810B2 (en) Cooling storage
JPH03160287A (en) Operation control method for refrigerator
JPH03158681A (en) Low temperature chamber
JPH0391676A (en) Low temperature box
JP2889602B2 (en) Cold storage
JPH0391677A (en) Low temperature box
US3905206A (en) Refrigeration apparatus
JPH02143074A (en) Cold heat accumulating type cold reserving case
JP2517077B2 (en) Cold storage type cold storage
JPH0370963A (en) Low temperature warehouse
JP3190381B2 (en) Cool storage type cool box
JPH0452478A (en) Cold storage type thermal insulation chamber
JPH0370961A (en) Method of controlling operation of refrigerator
JPH04187962A (en) Cold accumulating heat insulator
JP2023158276A (en) Cooling storage type refrigerator
JPH0452479A (en) Cold storage type cold insulation chamber
JPH04143571A (en) Cold heat accumulating type cold storage chamber
JPH0498074A (en) Cold heat accumulating type cold storage
JPH03241275A (en) Cold accumulating-type thermal insulating container
JP2001355953A (en) Cold insulation box