JP4088474B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP4088474B2
JP4088474B2 JP2002125192A JP2002125192A JP4088474B2 JP 4088474 B2 JP4088474 B2 JP 4088474B2 JP 2002125192 A JP2002125192 A JP 2002125192A JP 2002125192 A JP2002125192 A JP 2002125192A JP 4088474 B2 JP4088474 B2 JP 4088474B2
Authority
JP
Japan
Prior art keywords
cold air
refrigerator
temperature
compartment
room
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2002125192A
Other languages
Japanese (ja)
Other versions
JP2003322446A (en
Inventor
浩和 中村
昌幸 柴山
耕一 柴田
敏彦 永盛
Original Assignee
日立アプライアンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立アプライアンス株式会社 filed Critical 日立アプライアンス株式会社
Priority to JP2002125192A priority Critical patent/JP4088474B2/en
Publication of JP2003322446A publication Critical patent/JP2003322446A/en
Application granted granted Critical
Publication of JP4088474B2 publication Critical patent/JP4088474B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/08Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation using ducts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • F25D17/045Air flow control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/14Collecting or removing condensed and defrost water; Drip trays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2321/00Details or arrangements for defrosting; Preventing frosting; Removing condensed or defrost water, not provided for in other groups of this subclass
    • F25D2321/14Collecting condense or defrost water; Removing condense or defrost water
    • F25D2321/141Removal by evaporation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2600/00Control issues
    • F25D2600/06Controlling according to a predetermined profile
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature

Description

【0001】
【発明の属する技術分野】
本発明は、冷蔵庫に関する。
【0002】
【従来の技術】
従来の冷蔵庫は、図11に示す冷凍サイクルを有しており、この冷凍サイクルについて説明すると、圧縮機1にて圧縮された冷媒は、凝縮器2に流入して熱交換を行ない、減圧器3により圧力を低下させて、蒸発器4にて気化すると共に、ファン5から送られる空気の熱を奪い、冷気を生成する。
【0003】
蒸発器4にて生成された冷気は、冷凍室(図中F)及び冷蔵室(図中R)へと送られるが、蒸発器4から冷蔵室へと冷気を送る通路に冷蔵室用ダンパ6を設けてあり、冷蔵室への冷気供給量を制御できるようにしている。また、蒸発器4には、霜が付着するため、圧縮機の運転時間を積算し、その積算値が設定値以上になると、ヒータ9に通電して、除霜を行うようにしている。
【0004】
【発明が解決しようとする課題】
しかしながら、図11に示す冷蔵庫は、除霜を行うたびにヒータ9への通電を行うので、多くの電力を消費し、冷蔵庫全体での消費電力量を下げることが困難であるとの問題がある。
【0005】
本発明は、上記問題を解決するためになされたものであり、ヒータへの通電量を減少又はヒータそのものを廃し、蒸発器の除霜を行える冷蔵庫を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記の目的は、圧縮機と、蒸発器が設置され冷蔵室及び冷凍室に供給する冷気を生成する蒸発器室と、この蒸発器室に連通し前記冷蔵室へと冷気を供給する第1の冷気通路と、前記蒸発器室に連通し前記冷凍室へと冷気を供給する第2の冷気通路と、前記第1の冷気通路及び前記第2の冷気通路にて冷気を供給させるファンと、前記第1の冷気通路を開閉する第1の冷気制御手段と、前記第2の冷気通路を開閉する第2の冷気制御手段とを備え、前記第1の冷気通路の開閉と第2の冷気通路の開閉とを逆の開閉状態とし、前記圧縮機が停止した後に前記第1の冷気通路を開き、ファンを回転させる制御装置を有することで達成される。この際、制御装置が、圧縮機が停止してから所定時間の間、又は、前記圧縮機が停止してから冷蔵室若しくは冷凍室が予め設定した温度以上となるまでの間、第1の冷気通路を開き、ファンを回転させることが好ましい。
【0007】
また、更に冷蔵室上限設定温度を記憶する記憶手段を備え、冷蔵室の庫内温度が前記冷蔵室上限設定温度以上になると、第2の冷気制御手段の開閉状態に関わらず、第1の冷気制御手段により第1の冷気通路を開状態とする制御装置を有することが好ましい。
【0008】
また、更に外気温設定温度を記憶する記憶手段を備え、外気温が前記外気温設定温度以上になると、第1の冷気制御手段の開閉状態に関わらず、第2の冷気制御手段により第2の冷気通路を開状態とする制御装置を有することが好ましい。
【0009】
【発明の実施の形態】
図1は、本発明の実施例を示す冷蔵庫の側方断面図である。冷蔵庫本体10は、外箱11と、内箱12と、外箱11と内箱12との間に配置した断熱材13とを備えており、内箱12は、上から冷蔵室14、野菜室15、冷凍室16を形成している。
【0010】
冷凍室16と冷蔵庫本体10の背面板17との間には、圧縮機18が設置され、この圧縮機18の上方に蒸発器19を設置している。野菜室15と冷蔵庫本体10の背面板17との間には、冷気を循環させるファン20が設置してある。冷蔵室14と冷蔵庫本体10の背面板17との間には、冷蔵室14へと冷気を供給する冷蔵室用冷気通風路21が設けてあり、ファン20により循環する冷気は、冷蔵室用ダンパ22を介して冷蔵室用冷気通風路21へと流入する。
【0011】
冷凍室16と蒸発器19との間には、冷凍室用ダンパ23が設けてあり、この冷凍室用ダンパ23を通過した冷気が、冷凍室用冷気吐出口24から吐出され、冷凍室用戻り風路25よりファン20の方へと戻る。
【0012】
図2は、図1に示す冷蔵庫本体10を正面から見た断面図であり、図3は、図2の部分拡大図である。図2及び図3を用いて、以下、冷気の流れを説明する。冷蔵室14を冷やす冷気の流れは、ファン20が回転することにより、冷蔵室用戻り風路26から蒸発器19へと、冷蔵室14からの戻り空気が流入して冷却され、冷蔵室用ダンパ22を介して冷蔵室用冷気通風路21へと移流する。冷蔵室用冷気通風路21へと移流した冷気は、冷蔵室14全体を均一に冷却するように複数設けてある冷蔵室用冷気吐出口27より冷蔵室14へと吐出され、冷蔵室14内を冷却する。冷蔵室14を冷却した冷気は、その後、野菜室15へと流入し、野菜室15を冷却してから、冷蔵室用戻り風路26へと移流することを繰り返す。
【0013】
冷凍室16を冷やす冷気の流れは、ファン20が回転することにより、冷凍室用戻り風路25から蒸発器19へと、冷凍室16からの戻り空気が流入して冷却され、冷凍室用ダンパ23、23を介して冷凍室用冷気通風路28へと移流する。尚、ここで冷凍室用ダンパ23が2箇所設けてあるのは、本実施例において、冷凍室16を中央部分にて左右に区画しているためであり、その左右の冷凍室に対し各々冷気を供給可能としている。冷凍室用冷気通風路28へと移流した冷気は、冷凍室用冷気吐出口24(図1参照)より冷凍室16へと吐出され、冷凍室16内を冷却する。冷凍室16を冷却した冷気は、その後、冷凍室用戻り風路25へと移流することを繰り返す。
【0014】
図4は、図1に示した冷蔵庫の冷凍サイクルを示す概略図である。圧縮機18にて圧縮された冷媒は、凝縮器30に流入して熱交換を行ない、減圧器29により圧力を低下させて、蒸発器19にて気化すると共に、ファン20から送られる空気の熱を奪い、冷気を生成する。
【0015】
蒸発器19にて生成された冷気は、冷凍室(図中F1、F2)及び冷蔵室(図中R)へと送られるが、蒸発器19から冷蔵室へと冷気を送る通路に冷蔵室用ダンパ22を設けてあり、冷蔵室Rへの冷気供給量を制御できるようにしている。また、蒸発器19から冷凍室F1、F2へと冷気を送る通路には、冷凍室用ダンパ23を設けてあり、冷凍室F1、F2への冷気供給量を制御できるようにしている。
【0016】
図5は、ファンの回転(ON)・停止(OFF)、冷凍室用ダンパの開閉、冷蔵室用ダンパの開閉、圧縮機の稼動(ON)・停止(OFF)、冷凍室の庫内温度、冷蔵室の庫内温度を示すタイムチャートである。以下図5を用いて制御装置の制御について説明する。図5に示すように、本実施例では、冷蔵室の下限設定温度、冷凍室の上限・下限設定温度を予め記憶装置に記憶させ、冷蔵室及び冷凍室に各々設置した温度センサにより庫内温度を測定し、その測定結果に従って、圧縮機の稼動・停止、冷蔵室用ダンパの開閉、冷凍室用ダンパの開閉、ファンの回転・停止を制御装置により制御する。また、冷蔵室用ダンパと冷凍室用ダンパとは、開閉状態が逆の状態であるようになっており、冷蔵室用ダンパが開であれば冷凍室用ダンパは閉であり、冷蔵室用ダンパが閉であれば冷凍室用ダンパを開としている。
【0017】
本実施例において、冷蔵室用ダンパと冷凍室用ダンパとの開閉状態を逆にしているのは、冷蔵室内の庫内戻り空気と、冷凍室内の庫内戻り空気とを極力混合させることなく、別々に蒸発器により冷却するために行っている。即ち、冷蔵室の庫内空気温度は、冷凍室の庫内空気温度よりも高く、2つの空気の混合空気も、冷凍室の庫内空気温度よりも高くなる。このような混合空気の冷却は、冷凍室へ流入させることも考え、極力混合させずに別々に冷却する際に使用する蒸発器の温度よりも、低い温度の冷却器を使用する必要があり、それだけ電力消費量が多く必要になると共に、蒸発器自体の製造費用も多くかかる。これは、戻り空気温度と、冷却後の空気温度との温度差が、混合空気が多い場合の方が大きいためである。
【0018】
冷蔵室は、圧縮機を稼動して、ファンを回転させ、冷蔵室用ダンパを開にしていると、徐々に庫内温度が下がり、やがて図中のA点に到達する。A点は、冷蔵室の下限設定温度であり、冷蔵室内の貯蔵品を凍結させないように、圧縮機を停止させる。蒸発器は、圧縮機が停止することにより、徐々に除霜が行われ、この霜の気化水分及び除霜水の蒸発水分により高湿となった空気は、冷蔵室用ダンパが開状態であることから、冷蔵室及び野菜室へと流入し、庫内を高湿状態にして貯蔵物の乾燥を防ぐ。
【0019】
冷蔵室は、圧縮機が停止していることから、高湿状態のまま徐々に温度が上がりやがてB点に到達する。B点は、冷蔵室の庫内温度が冷蔵室の下限設定温度よりも高温となる点であり、ここで冷蔵室用ダンパを閉とすると共に、冷凍室ダンパを開とし、高湿の空気が冷蔵室内に流入して庫内温度を上昇させることを抑制するようにファンを停止させ、高湿の空気の流れを停止させる。
【0020】
冷凍室は、庫内に冷気が流入しないことから徐々に庫内温度が上昇し、やがて図中のC点に到達する。C点は、冷凍室の上限設定温度であり、早急に冷凍室を冷却する必要があることから、圧縮機の運転を開始すると共にファンを回転させ、冷気を冷凍室へと供給して冷凍室の庫内温度を速やかに下げる。
【0021】
冷凍室は、庫内温度が下がり続けると、やがてD点に到達する。D点は、冷凍室の下限設定温度であり、これ以上冷凍室を冷やす必要がなくなるので、冷凍室用ダンパを閉とすると共に、冷蔵室用ダンパを開として、冷蔵室へと冷気を供給する。その後は、順次A点、B点、C点、D点を通過する際に、同様の制御を行うことで、蒸発器の除霜を行うと共に、冷蔵室及び野菜室を高湿化することができる。
【0022】
このような制御を行う冷蔵庫は、蒸発器の除霜を行うたびにヒータへの通電を行う必要がなくなり、ヒータを必要としないか又はヒータへの通電量を減少させることができる。また、冷蔵室及び野菜室は、除霜による水分を利用することにより高湿に保つことが可能となり、貯蔵品の乾燥を阻止して鮮度をより長時間保つことができるようになる。更に、冷蔵室用ダンパと冷凍室用ダンパとの開閉状態を逆にしたので、蒸発器の温度を従来に比べ高く設定することができる。
【0023】
図6は、図5とは異なった制御を行うタイムチャートである。図5では、冷蔵室の下限設定温度、冷凍室の上限・下限設定温度を予め記憶装置に記憶させて制御を行っていたが、図6に示すものでは、更に冷蔵室の上限設定温度も記憶させてある。
【0024】
図中A点、B点、C点、D点は、各々図5にて説明したものと同じ制御になるため、説明を省略し、E点について詳細に述べる。E点は、冷蔵室の庫内温度が、予め記憶させた冷蔵室の上限設定温度よりも高温になる点であり、速やかに冷蔵室を冷却する必要がある。そのため、冷蔵室用ダンパは、冷蔵室の庫内温度がE点に達すると、冷凍室用ダンパの開閉状態に関わらず開状態となり、冷気を強制的に冷蔵室へと流入させる。その後は、再びA点、B点、C点、D点での制御を継続し、冷蔵室の庫内温度がE点に達した場合に、冷凍室用ダンパの開閉状態に関わらず冷蔵室用ダンパを開とする。
【0025】
図6に示す制御は、冷蔵室の庫内温度が冷蔵室の上限設定温度以上となった場合に、冷凍室用ダンパの開閉状態に関わらず、冷蔵室用ダンパを開とすることで、冷蔵室へと強制的に冷気を送り込むので、図5にて説明した効果を有しつつ、冷蔵室の貯蔵物をより傷みの少ない状態で長く新鮮に保存することができる。
【0026】
図7は、図5及び図6とは更に異なった制御を行うタイムチャートである。本実施例の制御では、図5にて使用した、冷蔵室の下限設定温度、冷凍室の上限・下限設定温度以外に外気温設定温度を予め記憶装置に記憶させ、冷蔵室、冷凍室及び庫外のそれぞれに設置した温度センサにより庫内・外の温度を測定し、その測定結果に従って、圧縮機の稼動・停止、冷蔵室用ダンパの開閉、冷凍室用ダンパの開閉、ファンの回転・停止を制御装置により制御する。
【0027】
本制御では、外気温が外気温設定温度以上であるか、未満であるかにより異なる2種類の制御を行っており、外気温が外気温設定温度未満であれば、図5に示すものと同様の制御を、A点、B点、C点、D点にて行う(説明は図5での説明と同様なので省略する)。外気温が、X点にて外気温設定温度以上になると、D´点にて冷蔵室ダンパを開とすると共に、冷凍室ダンパを閉じることなく開状態を維持させる。その後、冷蔵室の庫内温度がA´に達すると、圧縮機は、冷蔵室の冷えすぎを防止するために、稼動を停止して冷凍室ダンパを閉となし、冷蔵室の庫内温度がB点に達するまでの間、この状態を維持する。圧縮機が停止中は、蒸発器と凝縮器との圧力差を解消しようとする力が働き、特別なことを行わずとも蒸発器の温度が徐々に高まり、蒸発器に付着した霜の除霜が行われる。そして除霜中にファンを回転させることにより、冷蔵室及び野菜室は、高湿空気が流入することで貯蔵品の乾燥を防ぎ、鮮度を長く保つことができる。
【0028】
図7に示す制御を行えば、図5にて説明した効果を有しつつ、夏季に外気温が上昇しても、冷凍室内の貯蔵物を設定した温度にて保存することができ、品質を損なわずに保存することができる。
【0029】
図8〜図10は、冷蔵室及び冷凍室の庫内温度と、冷蔵室の庫内湿度の関係を示したタイムチャートである。図8は、従来の冷蔵庫である図11に示すもののタイムチャートであり、状態変化を後述するOFF状態、RF状態、F状態として、以降これを繰り返す。OFF状態は、圧縮機を停止させている状態を示しており、冷蔵室にも冷凍室にも冷気の供給がなされておらず、冷蔵室及び冷凍室の両方にて庫内温度が上昇する。RF状態は、圧縮機を稼動させて、冷蔵室用ダンパを開とした状態を示しており、冷蔵室及び冷凍室の双方に冷気が供給され、庫内温度が共に下がる。F状態は、圧縮機を稼動させて、冷蔵室用ダンパを閉とした状態を示しており、冷凍室のみに冷気を供給し、冷蔵室の庫内温度が上昇して、冷凍室の庫内温度が低下している。
【0030】
冷蔵室の庫内湿度は、冷蔵室に冷気が供給されるRF状態にて急激に低下する。これは、庫内空気が蒸発器を通過する際に、庫内空気と蒸発器とで熱交換を行って庫内空気の温度を低下させると共に、庫内空気中の水分を霜として蒸発器に付着させ、乾燥した冷気となるためである。OFF状態及びF状態では、冷蔵室に乾燥した冷気が供給されず、貯蔵物が含有する水分を徐々に蒸散させるので、庫内湿度が上昇するが、その湿度は約70%程度までの上昇で、平均すると約38%という乾燥状態である。
【0031】
図9は、本発明の冷蔵庫のタイムチャートを示したもので、状態変化を後述するR状態、F状態、a状態、OFF状態として、以降これを繰り返す。R状態は、圧縮機を稼動させ、冷蔵室用ダンパを開とし、冷凍室用ダンパを閉とし、冷気を冷蔵室へと流入させる。庫内温度は、冷気の流入する冷蔵室にて下がり、冷気の流入しない冷凍室にて上がる。F状態は、圧縮機を稼動させ、冷蔵室用ダンパを閉とし、冷凍室用ダンパを開とし、冷気を冷凍室へと流入させる。庫内温度は、冷気の流入しない冷蔵室にて上がり、冷気の流入する冷凍室にて下がる。a状態は、圧縮機を停止させ、冷蔵室用ダンパを開とし、冷凍室用ダンパを閉とし、ファンを回転させて庫内空気を循環させている。この状態では、蒸発器の除霜が行われており、発生した高湿の空気が冷蔵室へと流入する。庫内温度は、圧縮機を停止させていることから、冷蔵室及び冷凍室の双方で上がる。OFF状態は、圧縮機を停止させ、冷蔵室用ダンパを閉とし、冷凍室用ダンパを開とし、庫内空気を循環させるファンも停止している。庫内温度は、圧縮機を停止させていることから、冷蔵室及び冷凍室の双方で上がる。
【0032】
冷蔵室の庫内湿度は、乾燥した冷気が冷蔵室に流入するR状態で急激に低下するものの、F状態では、貯蔵物が含有する水分を徐々に蒸散させるので、庫内湿度が徐々に上昇し、a状態では、高湿の空気が冷蔵室に流入することから約82%にまで急激に上昇する。そしてOFFでは、高湿の空気流入が停止することから、湿度上昇が再び緩やかになり約85%にまで上昇する。庫内湿度の平均値は、約47%である。図9に示すタイムチャートから明らかなように、本実施例では、図8に示した従来の冷蔵庫よりも湿度が高く、貯蔵品の乾燥を防ぎ鮮度を長く保つことができる。これは、除霜時に空気中に放出される水分により高湿となった空気を、ファンを回転させて冷蔵室へ流入させることにより達成される。
【0033】
図10は、図5に示す制御を行った際の、湿度及び温度のタイムチャートを示したもので、状態変化を後述するR状態、a状態、OFF状態、F状態として、以降これを繰り返す。R状態は、圧縮機を稼動させ、冷蔵室用ダンパを開とし、冷凍室用ダンパを閉とし、冷気を冷蔵室へと流入させる。庫内温度は、冷気の流入する冷蔵室にて下がり、冷気の流入しない冷凍室にて上がる。a状態は、圧縮機を停止させ、冷蔵室用ダンパを開とし、冷凍室用ダンパを閉とし、ファンを回転させて庫内空気を循環させている。この状態では、蒸発器の除霜が行われており、発生した高湿の空気が冷蔵室へと流入する。庫内温度は、圧縮機を停止させていることから、冷蔵室及び冷凍室の双方で上がる。OFF状態は、圧縮機を停止させ、冷蔵室用ダンパを閉とし、冷凍室用ダンパを開とし、庫内空気を循環させるファンも停止している。庫内温度は、圧縮機を停止させていることから、冷蔵室及び冷凍室の双方で上がる。F状態は、圧縮機を稼動させ、冷蔵室用ダンパを閉とし、冷凍室用ダンパを開とし、冷気を冷凍室へと流入させる。庫内温度は、冷気の流入しない冷蔵室にて上がり、冷気の流入する冷凍室にて下がる。
【0034】
冷蔵室の庫内湿度は、乾燥した冷気が冷蔵室に流入するR状態で急激に低下するものの、a状態では、高湿の空気が冷蔵室に流入することから約84%にまで急激に上昇する。その後、OFF状態及びF状態では、共に貯蔵物が含有する水分を徐々に蒸散させるので、庫内湿度が徐々に上昇して95%にまで上昇する。庫内湿度の平均値は、78%にもなる。図10に示す制御で、庫内の平均湿度が高いのは、急激に冷蔵室の庫内湿度を低下させるR状態の直後に、庫内湿度を急激に上昇させるa状態となし、その後も、湿度の高い状態から更に湿度を上げるOFF状態及びF状態としていることに起因している。本実施例の冷蔵庫では、図8に示す従来の冷蔵庫よりも、平均湿度が高く、図9に示す本発明の他の実施例と比較しても高い平均湿度を達成することができる。
【0035】
【発明の効果】
本発明によれば、ヒータへの通電量を減少又はヒータそのものを廃し、蒸発器の除霜が行える冷蔵庫を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施例を示す、冷蔵庫の側方断面図である。
【図2】図1に示す冷蔵庫の正面から見た断面図である。
【図3】図2に示す冷蔵庫の部分拡大図である。
【図4】図1に示す冷蔵庫の冷凍サイクルの概略図である。
【図5】本発明の実施例を示す、制御状態のタイムチャートである。
【図6】本発明の他の実施例を示す、制御状態のタイムチャートである。
【図7】本発明の更に他の実施例を示す、制御状態のタイムチャートである。
【図8】図11に示す従来冷蔵庫の湿度変化を示すタイムチャートである。
【図9】本発明の冷蔵庫の庫内湿度変化を示すタイムチャートである。
【図10】図5に示す制御における庫内湿度変化を示すタイムチャートである。
【図11】従来冷蔵庫の概略冷凍サイクル図を示す。
【符号の説明】
1・・・圧縮機、2・・・凝縮器、3・・・減圧器、4・・・蒸発器、5・・・ファン、6・・・冷蔵室用ダンパ、9・・・ヒータ、10・・・冷蔵庫本体、11・・・外箱、12・・・内箱、13・・・断熱材、14・・・冷蔵室、15・・・野菜室、16・・・冷凍室、17・・・背面板、18・・・圧縮機、19・・・蒸発器、20・・・ファン、21・・・冷蔵室用冷気通風路、22・・・冷蔵室用ダンパ、23・・・冷凍室用ダンパ、24・・・冷凍室用冷気吐出口、25・・・冷凍室用戻り風路、26・・・冷蔵室用戻り風路、27・・・冷蔵室用冷気吐出口、28・・・冷凍室用冷気通風路、29・・・減圧器、30・・・凝縮器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigerator.
[0002]
[Prior art]
The conventional refrigerator has the refrigeration cycle shown in FIG. 11. The refrigeration cycle will be described. The refrigerant compressed by the compressor 1 flows into the condenser 2 to exchange heat, and the decompressor 3 Thus, the pressure is reduced and vaporized in the evaporator 4, and the heat sent from the fan 5 is taken away to generate cold air.
[0003]
The cold air generated in the evaporator 4 is sent to the freezer compartment (F in the figure) and the refrigerator compartment (R in the figure), and the cold room damper 6 is provided in the passage for sending the cold air from the evaporator 4 to the refrigerator compartment. Is provided so that the amount of cold air supplied to the refrigerator compartment can be controlled. Moreover, since frost adheres to the evaporator 4, the operation time of the compressor is integrated, and when the integrated value exceeds the set value, the heater 9 is energized to perform defrosting.
[0004]
[Problems to be solved by the invention]
However, since the refrigerator shown in FIG. 11 energizes the heater 9 every time defrosting is performed, there is a problem that it consumes a lot of power and it is difficult to reduce the power consumption of the entire refrigerator. .
[0005]
The present invention has been made to solve the above-described problem, and an object of the present invention is to provide a refrigerator capable of reducing the amount of current supplied to the heater or eliminating the heater itself and defrosting the evaporator.
[0006]
[Means for Solving the Problems]
The above-mentioned object is to provide a compressor, an evaporator chamber in which an evaporator is installed to generate cold air to be supplied to the refrigerator compartment and the freezer compartment, and a first air supply to the refrigerator compartment in communication with the evaporator chamber. A cold air passage, a second cold air passage communicating with the evaporator chamber and supplying cold air to the freezer compartment, a fan for supplying cold air through the first cold air passage and the second cold air passage, First cold air control means for opening and closing the first cold air passage; and second cold air control means for opening and closing the second cold air passage; and opening and closing of the first cold air passage and second cold air passage This is accomplished by having a control device that opens and closes the compressor, opens the first cold air passage after the compressor stops, and rotates the fan. At this time, the control device performs the first cold air for a predetermined time after the compressor stops, or until the refrigerator compartment or freezer compartment reaches a preset temperature or higher after the compressor stops. It is preferable to open the passage and rotate the fan.
[0007]
Further, storage means for storing the refrigeration room upper limit set temperature is further provided, and when the internal temperature of the refrigeration room becomes equal to or higher than the refrigeration room upper limit set temperature, the first cold air is controlled regardless of the open / closed state of the second cold air control means. It is preferable to have a control device that opens the first cool air passage by the control means.
[0008]
In addition, storage means for storing the outside air temperature setting temperature is further provided, and when the outside air temperature becomes equal to or higher than the outside air temperature setting temperature, the second cold air control means performs the second operation regardless of the open / closed state of the first cold air control means. It is preferable to have a control device that opens the cold air passage.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a side sectional view of a refrigerator showing an embodiment of the present invention. The refrigerator main body 10 includes an outer box 11, an inner box 12, and a heat insulating material 13 disposed between the outer box 11 and the inner box 12, and the inner box 12 includes a refrigerator compartment 14 and a vegetable compartment from above. 15 and a freezer compartment 16 is formed.
[0010]
A compressor 18 is installed between the freezer compartment 16 and the back plate 17 of the refrigerator body 10, and an evaporator 19 is installed above the compressor 18. A fan 20 for circulating cold air is installed between the vegetable compartment 15 and the back plate 17 of the refrigerator main body 10. Between the refrigerator compartment 14 and the back plate 17 of the refrigerator main body 10, there is provided a refrigerator air passage 21 for supplying cold air to the refrigerator compartment 14. The cold air circulated by the fan 20 is stored in the refrigerator damper. It flows into the cold air ventilation path 21 for refrigerator compartments through 22.
[0011]
A freezer compartment damper 23 is provided between the freezer compartment 16 and the evaporator 19, and the cold air that has passed through the freezer compartment damper 23 is discharged from the freezer compartment cold air outlet 24 and returned to the freezer compartment. Return to the fan 20 from the air passage 25.
[0012]
2 is a cross-sectional view of the refrigerator main body 10 shown in FIG. 1 as viewed from the front, and FIG. 3 is a partially enlarged view of FIG. Hereinafter, the flow of cold air will be described with reference to FIGS. 2 and 3. As the fan 20 rotates, the flow of the cool air that cools the refrigerator compartment 14 is cooled by the return air from the refrigerator compartment 14 flowing from the refrigerator compartment return air passage 26 to the evaporator 19 and being cooled. It moves to the cold-air ventilation path 21 for refrigerator compartments via 22. The cold air that has flowed into the cold air passage 21 for the refrigerator compartment is discharged to the refrigerator compartment 14 through a plurality of refrigerator outlets 27 that are provided so as to uniformly cool the entire refrigerator compartment 14, and the inside of the refrigerator compartment 14 is discharged. Cooling. The cold air that has cooled the refrigerator compartment 14 then flows into the vegetable compartment 15, cools the vegetable compartment 15, and then repeats the transfer to the refrigerator compartment return air passage 26.
[0013]
The flow of cool air that cools the freezer compartment 16 is cooled by the return air from the freezer compartment 16 flowing from the freezer compartment return air passage 25 to the evaporator 19 by the rotation of the fan 20. It moves to the cold-air ventilation path 28 for freezing rooms via 23,23. Here, the two freezer compartment dampers 23 are provided in the present embodiment because the freezer compartment 16 is divided into left and right at the central portion, and each of the left and right freezer compartments is cooled. Can be supplied. The cold air that has flowed to the freezer compartment cold air passage 28 is discharged to the freezer compartment 16 from the freezer compartment cold air discharge port 24 (see FIG. 1), thereby cooling the inside of the freezer compartment 16. The cold air that has cooled the freezer compartment 16 is then repeatedly transferred to the freezer compartment return air passage 25.
[0014]
FIG. 4 is a schematic diagram showing a refrigeration cycle of the refrigerator shown in FIG. The refrigerant compressed by the compressor 18 flows into the condenser 30 to perform heat exchange, the pressure is reduced by the decompressor 29 and is vaporized by the evaporator 19, and the heat of the air sent from the fan 20 is obtained. Take away and generate cold.
[0015]
The cold air generated in the evaporator 19 is sent to the freezer compartment (F1, F2 in the figure) and the refrigerator compartment (R in the figure), but for the refrigerator compartment in the passage for sending the cold air from the evaporator 19 to the refrigerator compartment. A damper 22 is provided so that the amount of cold air supplied to the refrigerator compartment R can be controlled. Further, a freezer damper 23 is provided in a passage for sending cold air from the evaporator 19 to the freezer compartments F1 and F2, so that the amount of cold air supplied to the freezer compartments F1 and F2 can be controlled.
[0016]
FIG. 5 shows rotation (ON) / stop (OFF) of a fan, opening / closing of a freezer damper, opening / closing of a refrigerator refrigerator, operation (ON) / stop (OFF) of a compressor, freezer compartment temperature, It is a time chart which shows the internal temperature of a refrigerator compartment. Hereinafter, the control of the control device will be described with reference to FIG. As shown in FIG. 5, in this embodiment, the lower limit set temperature of the refrigeration room and the upper limit / lower limit set temperature of the freezer room are stored in the storage device in advance, and the internal temperature is measured by the temperature sensors respectively installed in the refrigeration room and the freezer room. In accordance with the measurement result, the controller controls the operation / stop of the compressor, the opening / closing of the cold room damper, the opening / closing of the freezer damper, and the rotation / stop of the fan. In addition, the open / close state of the cold room damper and the freezer damper is reversed. If the cold room damper is open, the freezer damper is closed. If is closed, the freezer damper is open.
[0017]
In the present embodiment, the open / close state of the refrigerating room damper and the freezing room damper is reversed without mixing the return air in the refrigerator room and the return air in the freezer room as much as possible. This is done separately for cooling by an evaporator. That is, the air temperature in the refrigerator compartment is higher than the air temperature in the freezer compartment, and the mixed air of the two airs is also higher than the air temperature in the freezer compartment. Such cooling of the mixed air is also considered to flow into the freezer compartment, and it is necessary to use a cooler having a lower temperature than the temperature of the evaporator used when cooling separately without mixing as much as possible. Accordingly, a large amount of power consumption is required, and the manufacturing cost of the evaporator itself is high. This is because the temperature difference between the return air temperature and the cooled air temperature is larger when the amount of mixed air is large.
[0018]
In the refrigerator compartment, when the compressor is operated, the fan is rotated, and the damper for the refrigerator compartment is opened, the internal temperature gradually decreases and eventually reaches point A in the figure. Point A is the lower limit set temperature of the refrigerator compartment, and the compressor is stopped so that the stored items in the refrigerator compartment are not frozen. The evaporator is gradually defrosted when the compressor stops, and the air that has become highly humid due to the vaporized moisture of the frost and the evaporated moisture of the defrost water is in the open state of the damper for the refrigerator compartment. Therefore, it flows into the refrigeration room and the vegetable room, and the inside of the cabinet is kept in a high humidity state to prevent drying of stored items.
[0019]
Since the compressor is stopped in the refrigerator compartment, the temperature gradually rises in the high humidity state and reaches point B. Point B is a point where the temperature inside the refrigerator compartment is higher than the lower limit set temperature of the refrigerator compartment, where the damper for the refrigerator compartment is closed and the freezer compartment damper is opened so that the humid air is The fan is stopped so as to suppress the temperature inside the refrigerator from flowing into the refrigerator and the flow of humid air is stopped.
[0020]
In the freezer compartment, since the cool air does not flow into the refrigerator, the temperature in the refrigerator gradually rises and eventually reaches the point C in the figure. Point C is the upper limit set temperature of the freezer compartment, and since it is necessary to cool the freezer compartment as soon as possible, the compressor is started and the fan is rotated to supply cold air to the freezer compartment. Immediately lower the temperature in the cooking cabinet.
[0021]
The freezer compartment will eventually reach point D as the internal temperature continues to drop. Point D is the lower limit set temperature of the freezer compartment, so that it is no longer necessary to cool the freezer compartment. Therefore, the freezer compartment damper is closed and the refrigerating compartment damper is opened to supply cold air to the refrigerating compartment. . After that, when passing through point A, point B, point C and point D in sequence, it is possible to defrost the evaporator and increase the humidity of the refrigerator compartment and vegetable compartment by performing the same control. it can.
[0022]
The refrigerator that performs such control does not need to energize the heater each time the evaporator is defrosted, and does not require a heater or can reduce the energization amount to the heater. Further, the refrigerator compartment and the vegetable compartment can be kept at a high humidity by utilizing the moisture by defrosting, and the freshness can be kept for a long time by preventing the stored product from drying. Furthermore, since the open / close states of the refrigerator compartment damper and the freezer compartment damper are reversed, the evaporator temperature can be set higher than in the prior art.
[0023]
FIG. 6 is a time chart for performing control different from that in FIG. In FIG. 5, the lower limit set temperature of the refrigerator compartment and the upper limit / lower limit preset temperatures of the freezer compartment are stored in the storage device in advance, but in the case shown in FIG. 6, the upper limit set temperature of the refrigerator compartment is also stored. I'm allowed.
[0024]
In the figure, point A, point B, point C, and point D have the same control as that described with reference to FIG. 5, and therefore description thereof will be omitted and point E will be described in detail. Point E is a point where the internal temperature of the refrigerator compartment becomes higher than the preset upper limit temperature of the refrigerator compartment, and it is necessary to quickly cool the refrigerator compartment. Therefore, when the inside temperature of the refrigerator compartment reaches the point E, the refrigerator for the refrigerator compartment is opened regardless of the open / close state of the damper for the refrigerator compartment, and the cold air is forced to flow into the refrigerator compartment. After that, the control at points A, B, C, and D is continued again, and when the inside temperature of the refrigerator reaches the point E, the refrigerator is used regardless of whether the damper for the freezer is opened or closed. Open the damper.
[0025]
In the control shown in FIG. 6, when the inside temperature of the refrigerating room becomes equal to or higher than the upper limit set temperature of the refrigerating room, the refrigerating room damper is opened regardless of the open / close state of the freezing room damper. Since the cold air is forcibly fed into the room, the stored items in the refrigerating room can be preserved fresh for a long time with less damage while having the effects described in FIG.
[0026]
FIG. 7 is a time chart for performing control different from those in FIGS. 5 and 6. In the control of the present embodiment, in addition to the lower limit set temperature of the refrigerator compartment and the upper limit / lower limit preset temperatures of the freezer compartment used in FIG. Measure the temperature inside and outside the chamber with temperature sensors installed on the outside, and according to the measurement results, start and stop the compressor, open and close the refrigerator damper, open and close the freezer damper, and rotate and stop the fan Is controlled by a control device.
[0027]
In this control, two different types of control are performed depending on whether the outside air temperature is equal to or higher than the outside air temperature setting temperature. If the outside air temperature is less than the outside air temperature setting temperature, the same as shown in FIG. Is controlled at point A, point B, point C, and point D (the description is omitted because it is the same as the description in FIG. 5). When the outside air temperature reaches or exceeds the outside air temperature setting temperature at the point X, the refrigerator compartment damper is opened at the point D ′, and the open state is maintained without closing the freezer compartment damper. After that, when the internal temperature of the refrigerator compartment reaches A ′, the compressor stops operation and closes the freezer damper in order to prevent the refrigerator compartment from being overcooled. This state is maintained until point B is reached. When the compressor is stopped, the force that tries to eliminate the pressure difference between the evaporator and the condenser works, and the evaporator temperature gradually rises without any special action. Is done. Then, by rotating the fan during defrosting, the refrigerator compartment and the vegetable compartment can prevent stored items from being dried and keep the freshness long by flowing in high-humidity air.
[0028]
If the control shown in FIG. 7 is performed, the stored item in the freezer compartment can be stored at the set temperature even if the outside air temperature rises in the summer while having the effect described in FIG. Can be stored without damage.
[0029]
8 to 10 are time charts showing the relationship between the internal temperature of the refrigerator compartment and the freezer compartment and the internal humidity of the refrigerator compartment. FIG. 8 is a time chart of the conventional refrigerator shown in FIG. 11, and this is repeated thereafter with the state change as an OFF state, an RF state, and an F state to be described later. The OFF state indicates a state in which the compressor is stopped. Cold air is not supplied to the refrigerator compartment or the freezer compartment, and the internal temperature rises in both the refrigerator compartment and the freezer compartment. The RF state indicates a state in which the compressor is operated and the refrigerating room damper is opened. Cold air is supplied to both the refrigerating room and the freezing room, and the inside temperature is lowered. The state F indicates a state in which the compressor is operated and the refrigerating room damper is closed, the cool air is supplied only to the freezing room, the inside temperature of the refrigerating room rises, and the inside of the freezing room The temperature has dropped.
[0030]
The internal humidity of the refrigerator compartment rapidly decreases in an RF state where cold air is supplied to the refrigerator compartment. This is because when the internal air passes through the evaporator, heat is exchanged between the internal air and the evaporator to lower the temperature of the internal air, and the moisture in the internal air is frosted to the evaporator. It is because it is made to adhere and it becomes dry air. In the OFF state and the F state, the dry cold air is not supplied to the refrigerator compartment, and the moisture contained in the stored product is gradually evaporated, so that the humidity in the cabinet rises, but the humidity rises to about 70%. On average, it is about 38% dry.
[0031]
FIG. 9 shows a time chart of the refrigerator according to the present invention. The state changes are set as R state, F state, a state, and OFF state, which will be described later, and this is repeated thereafter. In the R state, the compressor is operated, the refrigeration room damper is opened, the freezer compartment damper is closed, and cold air flows into the refrigeration room. The inside temperature is lowered in the refrigerating room where the cold air flows and rises in the freezer room where the cold air does not flow. In the F state, the compressor is operated, the refrigerating room damper is closed, the freezing room damper is opened, and the cold air flows into the freezing room. The internal temperature rises in the refrigerator room where cold air does not flow and decreases in the freezer room where cold air flows. In the state a, the compressor is stopped, the refrigerator compartment damper is opened, the freezer compartment damper is closed, and the fan is rotated to circulate the internal air. In this state, the evaporator is defrosted, and the generated high-humidity air flows into the refrigerator compartment. The internal temperature rises in both the refrigerator compartment and the freezer compartment because the compressor is stopped. In the OFF state, the compressor is stopped, the refrigerator compartment damper is closed, the freezer compartment damper is opened, and the fan for circulating the internal air is also stopped. The internal temperature rises in both the refrigerator compartment and the freezer compartment because the compressor is stopped.
[0032]
Although the humidity in the refrigerator compartment decreases sharply in the R state when dry cold air flows into the refrigerator compartment, the moisture in the storage gradually evaporates in the F state, so the humidity in the refrigerator gradually increases. However, in the state a, since the high-humidity air flows into the refrigerating room, it rapidly rises to about 82%. In the OFF state, since the high-humidity air inflow stops, the humidity rise becomes gentle again and rises to about 85%. The average value of the inside humidity is about 47%. As is clear from the time chart shown in FIG. 9, in this embodiment, the humidity is higher than that of the conventional refrigerator shown in FIG. This is achieved by rotating the fan and causing the air, which has become highly humid due to moisture released into the air during defrosting, to flow into the refrigerator compartment.
[0033]
FIG. 10 shows a time chart of humidity and temperature when the control shown in FIG. 5 is performed. The state changes are set as R state, a state, OFF state, and F state, which will be described later, and this is repeated thereafter. In the R state, the compressor is operated, the refrigeration room damper is opened, the freezer compartment damper is closed, and cold air flows into the refrigeration room. The inside temperature is lowered in the refrigerating room where the cold air flows and rises in the freezer room where the cold air does not flow. In the state a, the compressor is stopped, the refrigerator compartment damper is opened, the freezer compartment damper is closed, and the fan is rotated to circulate the internal air. In this state, the evaporator is defrosted, and the generated high-humidity air flows into the refrigerator compartment. The internal temperature rises in both the refrigerator compartment and the freezer compartment because the compressor is stopped. In the OFF state, the compressor is stopped, the refrigerator compartment damper is closed, the freezer compartment damper is opened, and the fan for circulating the internal air is also stopped. The internal temperature rises in both the refrigerator compartment and the freezer compartment because the compressor is stopped. In the F state, the compressor is operated, the refrigerating room damper is closed, the freezing room damper is opened, and the cold air flows into the freezing room. The internal temperature rises in the refrigerator room where cold air does not flow and decreases in the freezer room where cold air flows.
[0034]
The humidity in the refrigerator compartment decreases rapidly in the R state where dry cold air flows into the refrigerator compartment, but in the a state, the humidity rises rapidly to about 84% because high humidity air flows into the refrigerator compartment. To do. Thereafter, in the OFF state and the F state, the moisture contained in the stored product is gradually evaporated, so that the internal humidity gradually rises to 95%. The average value of the inside humidity is 78%. In the control shown in FIG. 10, the average humidity in the storage is high because the a state in which the internal humidity is rapidly increased immediately after the R state in which the internal humidity of the refrigerator compartment is rapidly decreased, and thereafter, This is due to the OFF state and F state in which the humidity is further increased from the high humidity state. In the refrigerator of this embodiment, the average humidity is higher than that of the conventional refrigerator shown in FIG. 8, and a high average humidity can be achieved even when compared with the other embodiments of the present invention shown in FIG.
[0035]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the amount of electricity supply to a heater can be reduced or a heater itself can be abolished, and the refrigerator which can defrost an evaporator can be provided.
[Brief description of the drawings]
FIG. 1 is a side sectional view of a refrigerator showing an embodiment of the present invention.
FIG. 2 is a cross-sectional view seen from the front of the refrigerator shown in FIG.
FIG. 3 is a partially enlarged view of the refrigerator shown in FIG.
4 is a schematic view of a refrigeration cycle of the refrigerator shown in FIG.
FIG. 5 is a time chart of a control state showing an embodiment of the present invention.
FIG. 6 is a time chart of a control state showing another embodiment of the present invention.
FIG. 7 is a time chart of a control state showing still another embodiment of the present invention.
8 is a time chart showing changes in humidity of the conventional refrigerator shown in FIG.
FIG. 9 is a time chart showing the humidity change in the refrigerator of the present invention.
FIG. 10 is a time chart showing the humidity change in the cabinet in the control shown in FIG.
FIG. 11 is a schematic refrigeration cycle diagram of a conventional refrigerator.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Condenser, 3 ... Depressurizer, 4 ... Evaporator, 5 ... Fan, 6 ... Cold room damper, 9 ... Heater, 10 ... refrigerator main body, 11 ... outer box, 12 ... inner box, 13 ... heat insulating material, 14 ... refrigerated room, 15 ... vegetable room, 16 ... freezer room, 17. ..Back plate, 18 ... Compressor, 19 ... Evaporator, 20 ... Fan, 21 ... Cooling air passage for cold room, 22 ... Damp for cold room, 23 ... Freezing Room damper, 24 ... Cold air outlet for freezer room, 25 ... Return air channel for freezer room, 26 ... Return air channel for refrigerator room, 27 ... Cold air outlet for refrigerator room, 28 ..Cooling air passage for freezer, 29 ... decompressor, 30 ... condenser

Claims (3)

  1. 圧縮機と、蒸発器が設置され冷蔵室及び冷凍室に供給する冷気を生成する蒸発器室と、この蒸発器室に連通し前記冷蔵室へと冷気を供給する第1の冷気通路と、前記蒸発器室に連通し前記冷凍室へと冷気を供給する第2の冷気通路と、前記第1の冷気通路及び前記第2の冷気通路にて冷気を供給させるファンと、前記第1の冷気通路を開閉する第1の冷気制御手段と、前記第2の冷気通路を開閉する第2の冷気制御手段とを備え、前記第1の冷気通路の開閉と第2の冷気通路の開閉とを逆の開閉状態とし、前記圧縮機が停止した後に前記第1の冷気通路を開き、ファンを回転させる制御装置を有し
    前記制御装置は、前記圧縮機が停止してから所定時間の間、又は、前記圧縮機が停止してから前記冷蔵室若しくは前記冷凍室が予め設定した温度以上となるまでの間、前記第1の冷気通路を開き、前記ファンを回転させる冷蔵庫。
    A compressor, an evaporator chamber in which an evaporator is installed to generate cold air to be supplied to the refrigerator compartment and the freezer compartment, a first cold air passage that communicates with the evaporator chamber and supplies cold air to the refrigerator compartment, and A second cold air passage that communicates with the evaporator chamber and supplies cold air to the freezer compartment; a fan that supplies cold air through the first cold air passage and the second cold air passage; and the first cold air passage. A first cold air control means for opening and closing the second cold air passage and a second cold air control means for opening and closing the second cold air passage, wherein the opening and closing of the first cold air passage and the opening and closing of the second cold air passage are reversed. A controller that opens and closes, opens the first cool air passage after the compressor stops, and rotates the fan ;
    The control device may be configured such that the first time is a predetermined time after the compressor is stopped, or until the refrigerator room or the freezer room is at a preset temperature or higher after the compressor is stopped. A refrigerator that opens the cold air passage and rotates the fan .
  2. 請求項1において、
    更に冷蔵室上限設定温度を記憶する記憶手段を備え、冷蔵室の庫内温度が前記冷蔵室上限設定温度以上になると、第2の冷気制御手段の開閉状態に関わらず、第1の冷気制御手段により第1の冷気通路を開状態とする制御装置を有した冷蔵庫。
    Oite to claim 1,
    Furthermore, a storage means for storing the refrigeration room upper limit set temperature is provided, and when the internal temperature of the refrigeration room becomes equal to or higher than the refrigeration room upper limit set temperature, the first cold air control means regardless of the open / closed state of the second cold air control means. A refrigerator having a control device for opening the first cold air passage.
  3. 請求項1において、更に外気温設定温度を記憶する記憶手段を備え、外気温が前記外気温設定温度以上になると、第1の冷気制御手段の開閉状態に関わらず、第2の冷気制御手段により第2の冷気通路を開状態とする制御装置を有した冷蔵庫。Oite to claim 1, further comprising storage means for storing the outside air temperature set temperature, the outside temperature is equal to or greater than the outside air temperature set temperature, regardless of the open or closed state of the first cold air control means, the second cold air control A refrigerator having a control device for opening the second cold air passage by means.
JP2002125192A 2002-04-26 2002-04-26 refrigerator Active JP4088474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002125192A JP4088474B2 (en) 2002-04-26 2002-04-26 refrigerator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002125192A JP4088474B2 (en) 2002-04-26 2002-04-26 refrigerator
KR10-2003-0026238A KR100532902B1 (en) 2002-04-26 2003-04-25 Refrigerator
CNB031240143A CN1227498C (en) 2002-04-26 2003-04-25 Refrigerator

Publications (2)

Publication Number Publication Date
JP2003322446A JP2003322446A (en) 2003-11-14
JP4088474B2 true JP4088474B2 (en) 2008-05-21

Family

ID=29267552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002125192A Active JP4088474B2 (en) 2002-04-26 2002-04-26 refrigerator

Country Status (3)

Country Link
JP (1) JP4088474B2 (en)
KR (1) KR100532902B1 (en)
CN (1) CN1227498C (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8365543B2 (en) * 2007-03-12 2013-02-05 Hoshizaki Denki Kabushiki Kaisha Cooling storage
KR100872225B1 (en) * 2007-11-05 2008-12-05 엘지전자 주식회사 Control method of refrigerator
JP4982537B2 (en) * 2009-08-12 2012-07-25 日立アプライアンス株式会社 refrigerator
JP5253337B2 (en) * 2009-09-08 2013-07-31 日立アプライアンス株式会社 refrigerator
JP5017340B2 (en) * 2009-09-09 2012-09-05 日立アプライアンス株式会社 refrigerator
JP5237908B2 (en) * 2009-09-09 2013-07-17 日立アプライアンス株式会社 refrigerator
JP5487054B2 (en) * 2010-08-25 2014-05-07 日立アプライアンス株式会社 refrigerator
JP5417397B2 (en) * 2011-09-12 2014-02-12 日立アプライアンス株式会社 refrigerator
CN103075858A (en) * 2011-10-26 2013-05-01 海信(北京)电器有限公司 Air-cooling refrigerator and control method thereof
CN104896828B (en) * 2015-05-21 2018-02-02 青岛海尔股份有限公司 Refrigerator
KR101916727B1 (en) * 2017-01-19 2018-11-08 엘지전자 주식회사 Refrigerator and controlling method thereof
CN111486640A (en) * 2020-04-23 2020-08-04 长虹美菱股份有限公司 Moisturizing air-cooled refrigerator and control method thereof

Also Published As

Publication number Publication date
KR100532902B1 (en) 2005-12-05
CN1227498C (en) 2005-11-16
KR20030084748A (en) 2003-11-01
CN1453538A (en) 2003-11-05
JP2003322446A (en) 2003-11-14

Similar Documents

Publication Publication Date Title
JP4088474B2 (en) refrigerator
KR101387522B1 (en) Refrigerator and Controlling method for the same
JP4159172B2 (en) How to prevent icing of dampers for refrigerators
WO2018121592A1 (en) Constant-temperature refrigerator and control method therefor
KR20080070511A (en) Refrigerator and operation control method therof
SK283586B6 (en) Refrigerator and control method therefor
US7942012B2 (en) Refrigerator with select temperature compartment
JP2003322454A (en) Refrigerator
WO2015035886A1 (en) Refrigerator
US10082330B2 (en) Refrigerator and method for controlling a refrigerator
JP4076804B2 (en) refrigerator
JP2008249292A (en) Refrigerator
JP3455058B2 (en) refrigerator
JP2007147112A (en) Refrigerator
JP2007225178A (en) Refrigerator
JP3452781B2 (en) refrigerator
KR101916727B1 (en) Refrigerator and controlling method thereof
JP2003287331A (en) Refrigerator
JP3549358B2 (en) refrigerator
JP2005024203A (en) Refrigerator
JP2004069198A (en) Refrigerant leak detecting method for refrigerator
JP3851246B2 (en) Control method of flammable refrigerant refrigerator
KR20190023257A (en) Refrigerator and controlling method thereof
JP2000356445A (en) Refrigerator
JP3819693B2 (en) Refrigerator operation control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050404

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060510

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060510

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4088474

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350