JPH03159985A - Process for producing single crystal - Google Patents

Process for producing single crystal

Info

Publication number
JPH03159985A
JPH03159985A JP29689589A JP29689589A JPH03159985A JP H03159985 A JPH03159985 A JP H03159985A JP 29689589 A JP29689589 A JP 29689589A JP 29689589 A JP29689589 A JP 29689589A JP H03159985 A JPH03159985 A JP H03159985A
Authority
JP
Japan
Prior art keywords
melt
single crystal
crucible
oxygen concentration
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29689589A
Other languages
Japanese (ja)
Inventor
Tsutomu Kajimoto
梶本 努
Yoshihiro Akashi
義弘 明石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYUSHU ELECTRON METAL CO Ltd
Osaka Titanium Co Ltd
Original Assignee
KYUSHU ELECTRON METAL CO Ltd
Osaka Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYUSHU ELECTRON METAL CO Ltd, Osaka Titanium Co Ltd filed Critical KYUSHU ELECTRON METAL CO Ltd
Priority to JP29689589A priority Critical patent/JPH03159985A/en
Publication of JPH03159985A publication Critical patent/JPH03159985A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To control oxygen concentration in a crystal and obtain a single crystal having uniform oxygen concentration using Czochralski process by attaching a cylindrical barrier wall under a heat-radiation shielding member and adjusting the depth of the barrier wall immersed in molten liquid. CONSTITUTION:A single crystal 7 is produced by an apparatus having a crucible 3 for melting raw materials, a means for pulling up a single crystal 7 from the molten materials, and a heat-radiation shielding member 8 placed around the pulling-up zone of the single crystal 7 above the crucible 3. In the above apparatus for Czochralski process, a cylindrical barrier wall 9 is placed under the shielding member 8 to divide the molten material into an inner region and an outer region while leaving the lower part of the molten liquid to be movable between the regions. The depth of the barrier wall 9 immersed in the molten liquid is made to be adjustable.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はチョクラルスキー法(CZ法)により単結晶を
製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a single crystal by the Czochralski method (CZ method).

〔従来の技術〕[Conventional technology]

単結晶或長方法としては坩堝内の融液に種結晶を浸し、
これを回転させつつ上方に引」一げて種結晶下端に単結
晶を成長せしめる、所謂チョクラルスキー法(CZ法)
が従来広く知られている。
As a single crystal lengthening method, a seed crystal is immersed in the melt in a crucible,
This is rotated and pulled upward to grow a single crystal at the lower end of the seed crystal, the so-called Czochralski method (CZ method).
has been widely known.

一般にチョクラルスキー法(CZ法)による単結晶シリ
コンの製造は、例えば千ヤンハ内に配し,た坩堝内に多
結晶シリコンを投入し、これをヒータにて加熱溶融せし
めた後、この溶融液中に種結晶を浸し、これを回転させ
つつ上方に引き」二げて種結晶下端に単結晶を威長せし
めるごとによって行われている。
In general, single-crystal silicon is produced by the Czochralski method (CZ method), for example, by placing polycrystalline silicon in a crucible, heating it with a heater, and melting it. This is done by dipping a seed crystal inside and pulling it upwards while rotating it, thereby making the single crystal grow taller at the bottom of the seed crystal.

この方法にて石英製の坩堝から或長されたSi単結晶中
には通常13〜].8X10”alms/cc程度の酸
素が含まれている。この酸素は石英J1J堝から融液内
を通って或長結晶に取り込まれる。
The Si single crystal grown from a quartz crucible by this method usually contains 13~]. It contains about 8×10” alms/cc of oxygen. This oxygen is taken into a certain long crystal from the quartz J1J pot through the melt.

第7図は単結晶或長装置の模式的縦断面図であり、支持
軸3aにて回転可能に支持された石英坩堝20内に単結
晶用原料の融液21が収容されている。
FIG. 7 is a schematic vertical sectional view of a single crystal lengthening device, in which a melt 21 of a raw material for single crystal is contained in a quartz crucible 20 rotatably supported by a support shaft 3a.

坩堝20の外側にはヒータ40が同心円状に配設されて
いる。融液2lには引上軸70に吊るした種結晶(図示
せず)が浸漬され、これを回転させつつ上方に引き上げ
て単結晶80を或長せしめるように構威されている。第
7図において破線矢符A−Dは酸素が結晶に取り込まれ
るプロセスを示す。
Heaters 40 are arranged concentrically outside the crucible 20. A seed crystal (not shown) suspended from a pulling shaft 70 is immersed in the melt 2l, and the seed crystal 80 is pulled upward while being rotated to elongate the single crystal 80 to a certain length. In FIG. 7, dashed arrows A-D indicate the process by which oxygen is incorporated into the crystal.

A・・・融液21と石英坩堝20の界面において石英が
溶解 Si(h→Si+20   ・・・(1)B・・・融液
21内の対流により酸素が移動C・・・融液2lと単結
晶80との界面(成長界面)においてStOとして華発
する。
A: At the interface between the melt 21 and the quartz crucible 20, quartz dissolves Si (h→Si+20...(1)) B: Oxygen moves due to convection within the melt 21 C: The melt 2l and It blooms as StO at the interface with the single crystal 80 (growth interface).

Si+O−+SiO↑ ・・・(2) D・・・融液21と単結晶80との界面(成長界面)に
おいて融液21中の酸素が単結晶80に取り込まれる。
Si+O−+SiO↑ (2) D: Oxygen in the melt 21 is taken into the single crystal 80 at the interface (growth interface) between the melt 21 and the single crystal 80.

Si(in Melt)→Si(in Crystal
)  −(3)AC,Dの各酸素取込みプロセスにおい
て酸素の移動速度を夫々X,Y,7,、融液2l内での
酸素量をQとした場合、単結晶80に取り込まれる酸素
は ?=X−Y− ■  ・・・(4) dt で表される。
Si (in Melt) → Si (in Crystal
) - (3) In each oxygen uptake process of AC and D, if the moving speed of oxygen is X, Y, 7, respectively, and the amount of oxygen in 2 liters of melt is Q, how much oxygen is taken into the single crystal 80? =X-Y- (4) Represented by dt.

しかしながら、A,C,Dの酸素取り込みプロセスに与
える影響としては、Bのプロセス即ち融液2l内の対流
によるものが大きく、坩堝内における酸素の殆どは結晶
原料である多結晶シリコンを石英坩堝内で溶融する過程
で石英坩堝表面からシリコン溶融液中へ供給され、坩堝
の回転による溶融液の強制対流,坩堝内の溶融液の内部
温度差による熱対流により溶融液中に攪拌され、溶融液
表面から蒸発される外、一部は単結晶の威長界面に運ば
れて単結晶中に取り込まれることとなる。
However, the influence on the oxygen uptake processes of A, C, and D is largely due to the process of B, that is, the convection within 2 liters of the melt, and most of the oxygen in the crucible is absorbed by the crystal raw material polycrystalline silicon in the quartz crucible. During the melting process, silicon is supplied from the surface of the quartz crucible into the molten liquid, and is stirred into the molten liquid by forced convection of the molten liquid due to the rotation of the crucible and thermal convection due to the internal temperature difference of the molten liquid in the crucible. In addition to being evaporated from the crystal, some of it is transported to the long interface of the single crystal and incorporated into the single crystal.

第8図に融液内に生ずる代表的な対流を示す。FIG. 8 shows typical convection that occurs within the melt.

図中矢符aは融液2l各部分の浮力差として融液全体に
駆動力が作用して流れる熱対流を示し、矢符bは単結晶
80の回転による遠心力として結晶界面に駆動力が作用
して該界面付近で特に強く流れる結晶回転による強制対
流を示し、矢符Cは坩堝20の回転による遠心力として
坩堝20と融液21との界面に駆動力が作用して該界面
付近で特に強く流れる坩堝回転による強制対流を示し、
矢符dは表面張力差として融液表面に駆動力が作用して
特に融液表面で強く流れるマランゴニ対流を示す。この
うち矢符Cが示す坩堝回転による強制対流は融液21の
温度が一定の場合、石英と融液2lとの間の相対速度V
の増大により、石英の溶解速度を増大させる。これは、
相対速度Vを増大させることにより、石英と融液21と
の界面に存在する拡散層の厚みが減少され、拡散速度が
増大されるためであり、融液2l中の酸素濃度が増加す
る。
In the figure, the arrow a indicates the thermal convection that flows due to the driving force acting on the entire melt as a buoyancy difference between each part of the melt 2l, and the arrow b indicates the driving force acting on the crystal interface as the centrifugal force due to the rotation of the single crystal 80. arrow C indicates forced convection due to crystal rotation that flows particularly strongly near the interface, and arrow C indicates a driving force acting on the interface between the crucible 20 and the melt 21 as a centrifugal force due to the rotation of the crucible 20, causing a particularly strong flow near the interface. Indicates forced convection due to strong flowing crucible rotation,
Arrow d indicates Marangoni convection where a driving force acts on the melt surface as a surface tension difference and flows particularly strongly on the melt surface. Of these, when the temperature of the melt 21 is constant, the forced convection due to the rotation of the crucible indicated by the arrow C is caused by the relative velocity V between the quartz and the melt 2l.
increases the dissolution rate of quartz. this is,
This is because by increasing the relative velocity V, the thickness of the diffusion layer existing at the interface between the quartz and the melt 21 is reduced, the diffusion rate is increased, and the oxygen concentration in the melt 21 is increased.

矢符dが示すマランゴニ対流が作用する融液21表面に
はaの熱対流、Cの坩堝回転による強制対流により持ち
込まれた酸素が蒸発し、表面近傍に酸素濃度の低い拡散
層が形威される。この拡散層は、華発したSiOの不活
性ガス流による排気によりSiO分圧が平衡分圧より非
常に低い状態に保たれており、融液21の表面から雰囲
気側への蒸発速度が非常に大きいために形威される。こ
の拡散層の厚みは表面を排気するガス流速及び酸素を供
給する対流により決定される。従って熱対流,マランゴ
ニ対流により酸素濃度の低い融液が結品威長界面方向に
運搬されることとなる。
On the surface of the melt 21 where the Marangoni convection shown by the arrow d acts, the oxygen brought in by the thermal convection shown in a and the forced convection caused by the rotation of the crucible shown in C evaporates, and a diffusion layer with a low oxygen concentration is formed near the surface. Ru. In this diffusion layer, the SiO partial pressure is maintained at a state much lower than the equilibrium partial pressure by exhausting the generated SiO with the inert gas flow, and the evaporation rate from the surface of the melt 21 to the atmosphere side is extremely low. Because it is big, it is imposing. The thickness of this diffusion layer is determined by the gas flow rate that evacuates the surface and the convection that supplies oxygen. Therefore, thermal convection and Marangoni convection transport the melt with low oxygen concentration toward the Yuishinaga interface.

結品成長界面下には、熱対流.マランゴニ対流dによっ
・て導入される酸素濃度が低い融液表面から或長界面下
部に向かって流れる対流と結晶回転による強制対流bに
より中心から外側に向かい、融液表面部の低酸素濃度融
液の侵入を阻止する方向に流れる対流とがある。つまり
結晶威長界面下の酸素濃度は坩堝内の外側から中心へ向
かう対流と、中心から外側に向かう対流との比によって
変化すると考えられる。
Heat convection occurs under the crystal growth interface. Convection flowing from the melt surface with low oxygen concentration to the lower part of the long interface introduced by Marangoni convection d and forced convection b due to crystal rotation move outward from the center and reduce the oxygen concentration of the melt at the surface of the melt. There is a convection current that flows in a direction that prevents liquid from entering. In other words, the oxygen concentration under the crystal grain interface is thought to change depending on the ratio of convection flowing from the outside to the center of the crucible and convection flowing from the center to the outside.

次に実際の結晶中の酸素濃度制御について述べる。CZ
法により一定径の石英坩堝から一定径の直胴部を有する
Si単結晶を引上げる場合、坩堝回転,結晶の回転がS
t単結晶引上げの間中一定に保たれているときは引上げ
初期、つまり結晶の先端側では坩堝内の融液が多く、融
液と坩堝との接触面積が大きく、融液に溶け出す酸素量
が多いため酸素濃度は高い。一方、引上げ後半、つまり
結晶の後端側では坩堝内の融液が少なく、融液と坩堝と
の接触面積が小さく、融液に溶け出す酸素量が少ないた
め先端側と比べて酸素濃度が低い。従って結晶の先端側
から後端側に向けて酸素濃度が漸減ずることになる。こ
のため引−ヒげに伴って酸素の溶け込み量が多くなるよ
うに坩堝回転を漸次増大させることにより、引上げ軸方
向、即ち結晶成長方向に均一にさせていた。
Next, we will discuss the actual control of oxygen concentration in the crystal. CZ
When pulling a Si single crystal with a straight body of a constant diameter from a quartz crucible of a constant diameter by the method, the rotation of the crucible and the rotation of the crystal are S.
When t is kept constant during single crystal pulling, it is the early stage of pulling, that is, at the tip side of the crystal, there is a lot of melt in the crucible, the contact area between the melt and the crucible is large, and the amount of oxygen dissolved into the melt. The oxygen concentration is high due to the large amount of On the other hand, in the latter half of pulling, that is, at the rear end of the crystal, there is less melt in the crucible, the contact area between the melt and the crucible is small, and the amount of oxygen dissolved into the melt is small, so the oxygen concentration is lower than at the front end. . Therefore, the oxygen concentration gradually decreases from the front end to the rear end of the crystal. For this reason, the rotation of the crucible is gradually increased so that the amount of dissolved oxygen increases with the pulling, thereby making it uniform in the pulling axis direction, that is, in the crystal growth direction.

ところが、坩堝回転を増加させることにより融液表面が
振動し7、結晶内部に格子欠陥が生し単結晶の有転位化
が促進される。また融液表面部の低酸素濃度融液が結晶
或長界面下に侵入し、該界面内の酸素濃度の分布を悪化
させるという問題があった。
However, by increasing the rotation of the crucible, the surface of the melt vibrates7, lattice defects are generated inside the crystal, and the formation of dislocations in the single crystal is promoted. Furthermore, there is a problem in that the low oxygen concentration melt at the surface of the melt invades under the elongated crystal interface, worsening the oxygen concentration distribution within the interface.

更に坩堝の回転を制御するだけでは融液中の酸素レベル
を中酸素レヘル(15〜18X10l7atms/cc
),低酸素レベル(13〜15 X 10 ” a t
ms/cc)に制御することが困難である。このため、
ヒータ発熱長に対する坩堝の位置関係を変更するか、ま
たはヒータ発熱長自体を変更することにより、融液と石
英坩堝の界面の温度分布を変史させ、融液中の酸素の溶
け込み量を制御する方法がとられている。
Furthermore, simply controlling the rotation of the crucible can reduce the oxygen level in the melt to a medium oxygen level (15 to 18 x 10 l7 atms/cc).
), low oxygen level (13-15 X 10” at
ms/cc). For this reason,
By changing the positional relationship of the crucible with respect to the heater heat generation length, or by changing the heater heat generation length itself, the temperature distribution at the interface between the melt and the quartz crucible is changed, and the amount of oxygen dissolved in the melt is controlled. A method is being taken.

また、特開昭54−150378号公報では第9図に示
す如く第7図と同様の単結晶威長装Wにおいて、単結晶
80の引上げ域の周囲に位置させ゛ζ断面視例fJ, 
L字棒状の輻射熱遮蔽体10a, 10aを配設し、坩
堝壁,融液21表面から生じる輻射熱を遮蔽することに
より、単結晶80の引上げ速度を向上させている。
In addition, in Japanese Patent Application Laid-open No. 54-150378, as shown in FIG. 9, in a single-crystal pulling device W similar to that shown in FIG.
L-shaped rod-shaped radiant heat shields 10a, 10a are provided to block radiant heat generated from the crucible wall and the surface of the melt 21, thereby improving the pulling speed of the single crystal 80.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、前述した如く融液21表面近傍は舊発したS
iOの不活性ガス流による排気によりSiO分圧が平衡
分圧より非常に低い状態に保たれており、酸素濃度が低
い拡散層が形或される。融液表面から雰囲気側への華発
速度は一定なので輻射熱遮蔽体10a, 10aを用い
ない場合、単椋時間当たりの坩堝回転数を増加させるこ
とにより融液中の酸素濃度は増加され、得られる単結晶
中の酸素濃度が高くなる。
By the way, as mentioned above, the vicinity of the surface of the melt 21 is filled with sparged S.
By evacuation of iO with an inert gas flow, the SiO partial pressure is kept much lower than the equilibrium partial pressure, forming a diffusion layer with a low oxygen concentration. Since the rate of blooming from the melt surface to the atmosphere side is constant, if the radiant heat shields 10a, 10a are not used, the oxygen concentration in the melt can be increased by increasing the number of crucible rotations per single boiling time, and the oxygen concentration in the melt can be increased. The oxygen concentration in the single crystal increases.

一方、輻射熱遮蔽体10a, 10aを用いた場合は単
位時間当たりの坩堝回転数の増加により、逆に得られる
単結晶中の酸素濃度は低下する。この原因を解明すべく
本発明者が研究,実験を行ったところ以下のようなこと
を知見した。即ち融液表面直上には葎発したSiOのガ
ス拡散層が存在しており、輻射熱遮蔽体10a,10a
を用いることにより、炉内上方より導入された不活性ガ
スは、輻射熱遮蔽体]Oa,]Oaの下端と融液表面を
流れることによって、その流速が速められ、前記ガス拡
散層の厚みを減少させ、融液表面−ヒのSiO分圧が一
層低くなってSiOの華発が促進される。
On the other hand, when the radiant heat shields 10a, 10a are used, the oxygen concentration in the obtained single crystal decreases due to an increase in the number of rotations of the crucible per unit time. In order to elucidate the cause of this, the present inventor conducted research and experiments and found the following. That is, there is a gas diffusion layer of SiO emitted directly above the surface of the melt, and the radiant heat shields 10a, 10a
By using , the inert gas introduced from above inside the furnace flows through the lower end of the radiant heat shield [Oa,]Oa and the melt surface, increasing its flow rate and reducing the thickness of the gas diffusion layer. As a result, the SiO partial pressure on the melt surface becomes even lower, promoting the blooming of SiO.

このSiOの華発速度は、坩堝回転の増加により融液表
面に補給される酸素の補給速度よりも大きいため、坩堝
回転の増加によって強制対流Cが増強されることにより
、融液表面直下の低酸素融液がより多く結晶成長界面下
に持ち込まれることとなり、よって得られる単結晶中の
酸素濃度が低下するのである。
The rate of this SiO blooming is greater than the rate of oxygen replenishment to the melt surface due to increased crucible rotation, so the forced convection C is strengthened by increased crucible rotation, causing a drop in the area just below the melt surface. More of the oxygen melt is brought under the crystal growth interface, and the oxygen concentration in the resulting single crystal decreases.

輻躬熱遮蔽体10a,10aを用いた場合も、これを用
いない場合と同様、坩堝の回転を制御するだけでは融液
中の酸素レベルを中酸素レヘル,俄酸素レヘルに制御す
ることは困難である。そこでヒータ発熱長に対する坩堝
の位直関係を変更するか、またはヒータ発熱長自体を変
更して融液中への酸素の溶け込み量を制御する。
Even when the radiant heat shields 10a and 10a are used, as in the case where they are not used, it is difficult to control the oxygen level in the melt to a medium oxygen level or a medium oxygen level just by controlling the rotation of the crucible. It is. Therefore, the amount of oxygen dissolved into the melt is controlled by changing the vertical relationship of the crucible with respect to the heater heat generation length, or by changing the heater heat generation length itself.

しかしながら、例えば融液表面の{i’7. ’8がヒ
ータ発熱長の中央部に拉直ずるような場合、用堝縁と引
上げ中心とで融液の表面の温度勾配がとれず、坩堝縁の
融液が同化するといった問題が生じる。
However, for example, {i'7. If the crucible 8 is directly aligned with the center of the heating length of the heater, the temperature gradient on the surface of the melt cannot be maintained between the crucible edge and the pulling center, causing a problem that the melt at the crucible edge is assimilated.

従ってヒータ発熱長に対する坩堝の{+’/ Wを適i
E化させる必要があり、低酸素レヘル用と、中酸素レヘ
ル用とで引上炉の使い分JlをしなLJればならないと
いう問題があった。
Therefore, {+'/W of the crucible for the heat generation length of the heater is determined as
There was a problem in that the amount of Jl used in the pulling furnace had to be changed to LJ for the low-oxygen level and the medium-oxygen level.

本発明は斯かる事情に鑑みなされたものであり、前記輻
射熱遮蔽体下に形威される低酸素濃度の拡散層を結晶或
長界面へ供給する対流の流れを変化せしめるべく筒状隔
壁を融液中に浸漬させ、その浸漬深さを変化させること
により単結晶中の酸素濃度を制御し、低酸素濃度(II
XIO17atm/cc) 〜高酸素濃度(22X10
”atm/r.c)まで高範囲に単結晶中の酸素濃度を
制御することができる単結晶製造方法を提供することを
その目的とする。
The present invention has been made in view of the above circumstances, and it fuses the cylindrical partition wall in order to change the flow of convection that supplies the low oxygen concentration diffusion layer formed under the radiant heat shield to the crystal long interface. By immersing the single crystal in a liquid and changing the immersion depth, the oxygen concentration in the single crystal can be controlled, resulting in low oxygen concentration (II
XIO17atm/cc) ~ High oxygen concentration (22X10
It is an object of the present invention to provide a single crystal production method that can control the oxygen concentration in a single crystal over a wide range up to "atm/r.c."

〔課題を解決するための手段〕[Means to solve the problem]

本発明の単結晶の引上げ方法にあっては、或長させるべ
き単結晶の原料を加熱溶融する坩堝と、前記坩堝内の融
液から単結晶を引上げる手段と、前記坩堝内の融液の上
方であって、単結晶の引上げ域の周囲に配設された輻射
熱遮蔽体とを有する単結晶或長装置を用いて単結晶を製
造する方法において、前記輻射熱遮蔽体下に、融液面下
では融液が相通じる状態で、融液面を含むその上,下に
わたって単結晶を引上げる内側領域と、その外側領域と
に区分する筒状隔壁を取り付け、該筒状隔壁の融液中へ
の浸漬深さを変化させることにより単結晶中の酸素濃度
を制御することを特徴とする。
The single crystal pulling method of the present invention includes a crucible for heating and melting a single crystal raw material to be elongated, a means for pulling the single crystal from the melt in the crucible, and a means for pulling the single crystal from the melt in the crucible. In a method for producing a single crystal using a single crystal growing apparatus having a radiant heat shield disposed above and around a pulling area of the single crystal, a radiant heat shield disposed below the radiant heat shield and below the melt surface. Then, with the melts communicating with each other, a cylindrical partition wall is installed that divides the single crystal into an inner region that extends above and below the melt surface, and an outer region thereof, and the cylindrical partition wall is drawn into the melt of the cylindrical partition wall. It is characterized by controlling the oxygen concentration in the single crystal by changing the immersion depth.

〔原理〕〔principle〕

以下に本発明の原理を図面に基づき説明ず゛る。 The principle of the present invention will be explained below based on the drawings.

第4図は第7図と同様輻射熱遮蔽体10a,IOaが配
設された従来の単結晶或長装置を示す模式的縦断面図、
第5図及び第6因は第4図において輻射熱遮蔽体10a
,1’Oaの下端部の直下の融液面に石英製の筒状隔壁
9を浸漬させたものであり、第5図は浸漬深さが浅い場
合、第6図は浸漬深さが深い場合を示す。
FIG. 4 is a schematic vertical cross-sectional view showing a conventional single crystal elongation device in which a radiant heat shield 10a and IOa are arranged, similar to FIG.
The fifth and sixth factors are the radiant heat shield 10a in FIG.
, 1'Oa, a cylindrical partition wall 9 made of quartz is immersed in the melt surface directly below the lower end of the quartz crystal. Figure 5 shows the case where the immersion depth is shallow, and Figure 6 shows the case where the immersion depth is deep. shows.

第4図においては雰囲気中から輻射熱遮蔽体10a10
a内へ^rガスが導入され、この^rガスにより輻射熱
遮蔽体10a, ].Oaの下端部の直下の融液表面直
上のSiOガス拡散層の厚みが減じられSiOの薫発が
促進され、前述した如く坩堝回転数の増加に伴い単結晶
中の酸素濃度が低下する。
In FIG. 4, the radiant heat shield 10a10 is
^r gas is introduced into the radiant heat shield 10a, ]. The thickness of the SiO gas diffusion layer just above the melt surface directly under the lower end of Oa is reduced, promoting the smoke-off of SiO, and as described above, the oxygen concentration in the single crystal decreases as the crucible rotation speed increases.

また熱対流a,坩堝回転による強制対流C(図中白抜矢
符)により、結晶回転による強制対流bは坩堝2内の外
側から結晶成長界面へ向かう対流に変えられる。これに
より拡散層Xの低酸素濃度の融液が大量に結晶成長界面
に持ち込まれる。
Further, by the thermal convection a and the forced convection C (hollow arrow mark in the figure) caused by the crucible rotation, the forced convection b caused by the crystal rotation is changed into a convection flowing from the outside of the crucible 2 toward the crystal growth interface. As a result, a large amount of the low oxygen concentration melt in the diffusion layer X is brought to the crystal growth interface.

第5図においては上述した如く輻射熱遮蔽体10a,1
0a下の融液面に筒状隔壁9が浸漬されており、その浸
漬深さは浅い(例えば2mm程度)。筒状隔壁9には、
坩堝回転により坩堝20と融液21との界面を流れる高
酸素濃度の融液の流れを遮る作用があり、前記拡散層X
へ補給される酸素量が制限される。これにより拡散層X
の酸素濃度はより低下し、・拡散層Xの厚みが増加する
。一方、筒状隔壁9の浸漬深さは浅く石英製の筒状隔壁
9から融液中へ供給される酸素は微量である。また熱対
流a及び坩堝回転による強制対流C(図中白抜矢符)は
殆ど遮られない。このため筒状隔壁9の浸漬深さが浅け
れば浅いほど拡散層Xの低酸素融液は結晶或長界面下へ
輸送されることとなり単結晶中の酸素濃度は低減する。
In FIG. 5, as described above, the radiant heat shields 10a, 1
The cylindrical partition wall 9 is immersed in the melt surface below 0a, and the immersion depth is shallow (for example, about 2 mm). The cylindrical partition wall 9 includes
The rotation of the crucible has the effect of blocking the flow of the melt with high oxygen concentration flowing at the interface between the crucible 20 and the melt 21, and the diffusion layer
The amount of oxygen supplied to the body is limited. As a result, the diffusion layer
The oxygen concentration of is further reduced, and the thickness of the diffusion layer X is increased. On the other hand, the immersion depth of the cylindrical partition 9 is shallow, and the amount of oxygen supplied from the quartz cylindrical partition 9 into the melt is very small. Further, thermal convection a and forced convection C (white arrow in the figure) due to crucible rotation are hardly blocked. Therefore, the shallower the immersion depth of the cylindrical partition wall 9, the more the low-oxygen melt in the diffusion layer X is transported below the crystal or long interface, and the oxygen concentration in the single crystal decreases.

第6図においては筒状隔壁9の浸漬深さは深い(例えば
50mm程度)。この場合も拡散層Xへ補給される酸素
量が制限され拡散層χの厚みが増すことは浸漬深さが浅
い場合と同様である。しかしながら石英製の筒状隔壁9
と融液21との接触面積が大きいため筒状隔壁9から融
液中へ供給される酸素量が多い。また輻射熱遮蔽体10
a,lOaの下端部の直下の低酸素濃度の拡散層Xを或
長界面下へ輸送する熱対流a及び坩堝回転による強制対
流C(図中白抜矢符)が遮られる。このため筒状隔壁9
の浸漬深さが深ければ深いほど成長界面下には主に坩堝
底の高酸素濃度の融液が供給されることとなり、単結晶
中の酸素濃度は増加する。
In FIG. 6, the immersion depth of the cylindrical partition wall 9 is deep (for example, about 50 mm). In this case as well, the amount of oxygen supplied to the diffusion layer X is limited and the thickness of the diffusion layer χ increases, as in the case where the immersion depth is shallow. However, the cylindrical partition wall 9 made of quartz
Since the contact area between the cylindrical partition wall 9 and the melt 21 is large, a large amount of oxygen is supplied from the cylindrical partition wall 9 into the melt. Also, the radiant heat shield 10
Thermal convection a that transports the low oxygen concentration diffusion layer X directly under the lower end of a and lOa to a certain long interface and the forced convection C (hollow arrow mark in the figure) due to the rotation of the crucible are blocked. Therefore, the cylindrical partition wall 9
The deeper the immersion depth, the more the high oxygen concentration melt at the bottom of the crucible will be supplied below the growth interface, and the oxygen concentration in the single crystal will increase.

〔作用〕[Effect]

本発明の単結晶製造方法にあっては前記輻射熱遮蔽体下
の融液中に筒状隔壁を浸漬させる。該筒状隔壁は坩堝の
回転により坩堝と融液との界面を流れる高酸素濃度の流
れを遮る。これにより前記輻射熱遮蔽体下の低酸素濃度
の拡散層はより低下し、その厚みが増す。前記拡散層は
前記筒状隔壁の融液中への浸漬深さが浅いほど融液中の
対流により結晶或長界面下へ供給され、単結晶中の酸素
濃度は低減される。一方、前記浸漬深さが深いほど前記
拡散層を結晶或長界面下へ輸送する融液中の対流が遮ら
れ、或長界面下には主に坩堝底の高酸素濃度の融液が供
給されることとなり、単結晶中の酸素濃度は増加する。
In the single crystal manufacturing method of the present invention, a cylindrical partition wall is immersed in the melt under the radiant heat shield. The cylindrical partition wall blocks the flow of high oxygen concentration flowing at the interface between the crucible and the melt due to the rotation of the crucible. As a result, the low oxygen concentration diffusion layer under the radiant heat shield is further reduced and its thickness is increased. The shallower the immersion depth of the cylindrical partition wall into the melt, the more the diffusion layer is supplied to the bottom of the long interface of the crystal due to convection in the melt, and the oxygen concentration in the single crystal is reduced. On the other hand, the deeper the immersion depth, the more the convection in the melt that transports the diffusion layer below the long interface of the crystal is blocked, and the melt with high oxygen concentration at the bottom of the crucible is mainly supplied under the long interface. As a result, the oxygen concentration in the single crystal increases.

〔実施例〕〔Example〕

以下本発明をその実施例を示す図面に基づき具体的に説
明する。第l図は本発明方法の実施に用いる結晶或長装
置の模式的断面図であり、図中1はチャンハ、2は保温
壁、3は坩堝、4はヒータを示している。チャンバ1内
にはその側周に保温壁2が内張リされ、この保温壁2で
囲われた中央部に坩堝3が配設され、この用堝3と保温
壁2どの間にヒータ4がこれらとの間に排気用の通気路
を構成する間隙を隔てて配設されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on drawings showing embodiments thereof. FIG. 1 is a schematic cross-sectional view of a crystal elongation apparatus used in carrying out the method of the present invention, in which 1 is a chamber, 2 is a heat retaining wall, 3 is a crucible, and 4 is a heater. A heat insulating wall 2 is lined around the side of the chamber 1, and a crucible 3 is disposed in the center surrounded by the heat insulating wall 2. A heater 4 is placed between the crucible 3 and the heat insulating wall 2. A gap forming an exhaust air passage is provided between them.

坩堝3はカーボン製の容器3aの内側に石英製の容器3
hを嵌め合わせた二重構造に構或されており、底部中央
にはチャンハ1の底壁を貫通させた軸3Cの上端が連結
され、該軸3cにて回転させつつ昇降せしめられるよう
になっている。
The crucible 3 has a quartz container 3 inside a carbon container 3a.
The upper end of the shaft 3C that penetrates the bottom wall of the changha 1 is connected to the center of the bottom, and the shaft 3c allows the shaft 3c to be rotated and raised and lowered. ing.

チャンハ1の上部壁中央にはチャンバl内の雰囲気ガス
の供給口を兼ねる単結晶の引上l’J1aが開「」され
ている。引上口1aが開口されている部分のチャンハ1
上にはプルチャンハ5が立設されており、プルチャンハ
5の上端からは引上軸5aを用いて種結晶5cを掴持す
るチャック5bが吊り下げられ、また引」二軸5aの上
端は図示しない回転,昇降機構に連繋されている。而し
て種結晶5Cを融液になし1 5 ませた後、回転させつつ上昇させることによって、種結
晶5c下端に単結晶7を威長せしめるようになっている
At the center of the upper wall of chamber 1, a single crystal pulling l'J1a is opened which also serves as a supply port for atmospheric gas in chamber l. Changha 1 in the part where the pulling port 1a is opened
A pull shaft 5 is erected above, and a chuck 5b is suspended from the upper end of the pull shaft 5 for gripping a seed crystal 5c using a pull shaft 5a.The upper end of the pull shaft 5a is not shown. It is connected to a rotating and lifting mechanism. After the seed crystal 5C is immersed in the melt, the single crystal 7 is made to grow at the lower end of the seed crystal 5c by rotating and raising the seed crystal 5C.

チャンバ1内の−L方には前記単結晶7の引−1二げ域
の周囲に位置させてカーボン製の輻射熱遮蔽体たる輻射
スクリーン8がプルヂャンバ5内上部に配した昇降手段
にて昇降可能に配設され、またこの輻射スクリーン8に
は筒状隔壁9が取り付kJられている。
In the −L side of the chamber 1, a radiant screen 8, which is a radiant heat shield made of carbon, is located around the pull-1 draw area of the single crystal 7 and can be raised and lowered by a lifting means arranged at the upper part of the pull chamber 5. A cylindrical partition wall 9 is attached to this radiation screen 8.

輻射スクリーン8はカーボン製の環状リム8aの外周縁
部に円筒形の支持部8bを、また環状リム8aの内周縁
部にはここから下方に向かうに従って縮径され、中空の
逆円錐台形をなすよう傾斜させたテーバ部8cを夫々設
けて構威されており、前記支持部8hにより保温壁2の
」二面に支持されている。
The radiation screen 8 has a cylindrical support part 8b on the outer peripheral edge of an annular rim 8a made of carbon, and a hollow inverted truncated cone shape with a diameter decreasing downward from the inner peripheral edge of the annular rim 8a. The tapered portions 8c are respectively provided so as to be inclined as shown in FIG.

第2図は筒状隔壁の斜視図であり、筒状隔壁9は石英製
であって、円筒形の隔壁本体部9aの上端部に周方向の
複数個所から支持片9bを立設して構成してあり、各支
持片9hは、輻射スクリーン8のテーパ部8cに穿った
複数個の孔8dを通り、プルチ1 G ャンハ5内に配した昇降手段にて昇降可能に配設されて
いる。あるいは、各支持片9bを輻射スクリーン8のテ
ーバ部8cに穿った孔8dに係人してピン1トめずるこ
とにより輻射スクリーン8に上,下方向に位置調節可能
に取り付けられている。筒状隔壁9の位置は輻射スクリ
ーン8を上昇させたとき筒状隔壁9の下端が坩堝3内の
融液に漬からない付置に上昇させ得、また輻射スクリー
ン8を下降させたときは輻射スクリーン8の支持部8h
が保温壁2に当接すると同時に筒状隔壁9の下端が坩堝
3の内底から所要高さの位置であって、且つ融液中の適
正な深さ位置まで漬かるよう設定される。
FIG. 2 is a perspective view of the cylindrical partition wall 9. The cylindrical partition wall 9 is made of quartz and has supporting pieces 9b erected from a plurality of circumferential locations at the upper end of the cylindrical partition main body 9a. Each of the support pieces 9h passes through a plurality of holes 8d formed in the tapered portion 8c of the radiation screen 8, and is arranged to be able to be raised and lowered by means of raising and lowering means arranged in the pulley 5. Alternatively, each support piece 9b is attached to the radiation screen 8 so that its position can be adjusted in the upward and downward directions by inserting each support piece 9b into a hole 8d formed in the tapered portion 8c of the radiation screen 8 and shifting the pin 1. The position of the cylindrical partition 9 can be such that when the radiant screen 8 is raised, the lower end of the cylindrical partition 9 is not immersed in the melt in the crucible 3, and when the radiant screen 8 is lowered, the radiant screen 9 8 support part 8h
The lower end of the cylindrical partition wall 9 is set at a required height from the inner bottom of the crucible 3 and immersed in the melt to an appropriate depth at the same time as the cylindrical partition wall 9 contacts the heat retaining wall 2.

なお輻射スクリーン8に対する筒状隔壁9の取り付け手
段については特に限定するものではなく、従来知られて
いるボルト・ナノト、その他の手段を適官に採択すれば
よい。
Note that the means for attaching the cylindrical partition wall 9 to the radiation screen 8 is not particularly limited, and conventionally known bolts, nanototes, or other means may be adopted as appropriate.

而して−1二述の如く構威された単結晶威長装置にあっ
ては、当初、筒状隔壁9を上方に引上げ、筒状隔壁9が
坩堝3内の原料と接触しないよう設定し7ておく。
Therefore, in the single crystal lengthening apparatus configured as described in -1-2 above, the cylindrical partition wall 9 is initially pulled upward and set so that the cylindrical partition wall 9 does not come into contact with the raw material in the crucible 3. Keep it at 7.

この状態でヒータ4にて坩堝3を加熱し、川堝3に収容
した原料を加熱溶融する。原料が溶融すると昇降手段を
作動して輻射スクリーン8、筒状隔壁9を下降し、輻射
スクリーン8はその支持部8hが保温壁2の上部に配し
た支持第2alに当接し、また筒状隔壁9はその隔壁本
体部9aの下端が融液下の適宜位置9こ浸漬されるよう
設定する。
In this state, the crucible 3 is heated by the heater 4, and the raw material contained in the crucible 3 is heated and melted. When the raw material is melted, the elevating means is activated to lower the radiant screen 8 and the cylindrical partition wall 9, and the support part 8h of the radiant screen 8 comes into contact with the support 2al arranged on the upper part of the heat insulating wall 2, and the cylindrical partition wall 9 is set so that the lower end of the partition main body 9a is immersed at an appropriate position 9 under the melt.

坩堝3はこれを支持ずる軸3cにて矢符方向に回転させ
、また引上げ手段を構威ずる引上げ軸5aを下降して種
結晶5cを筒状隔壁9にて囲われた内側の融液中に浸漬
した後、引七げ軸5aを回転させつつ所定の速度で引−
Lげ(平均].5mm/分)、種結晶5c下に単結晶7
を或長せU7める。
The crucible 3 is rotated in the direction of the arrow by a supporting shaft 3c, and a pulling shaft 5a serving as a pulling means is lowered to drop the seed crystal 5c into the melt inside surrounded by a cylindrical partition wall 9. After being immersed in water, it is pulled at a predetermined speed while rotating the pulling shaft 5a.
L growth (average) .5 mm/min), single crystal 7 under seed crystal 5c
Lengthen U7 by a certain length.

なお坩堝3の昇降行程が充分でない場合は、筒状隔壁9
を予め上方に引上げておく必要はない。
Note that if the crucible 3 does not move up and down sufficiently, the cylindrical partition wall 9
It is not necessary to pull it upward in advance.

また引上げ中に筒状隔壁9の浸漬深さを変更しない場合
は、予め所定の浸漬深さになるように筒状隔壁9を輻射
スクリーン8に取り付iノでおくこともできる。
Further, if the immersion depth of the cylindrical partition wall 9 is not changed during lifting, the cylindrical partition wall 9 can be attached to the radiation screen 8 in advance so as to have a predetermined immersion depth.

輻射熱遮蔽体にはその融液面側の保温効果により融液面
から蒸発したSiOの固体化[SiO(gass)→S
in(solid) )を阻止するという機能がある。
The radiant heat shield has a heat insulating effect on the melt surface side, which allows the solidification of SiO evaporated from the melt surface [SiO(gas)→S
It has the function of preventing in(solid)).

これにより蒸発したSiOが筒状隔壁9及び支持片9b
に付着し異物となって融液面に落下することが防止され
る。
As a result, the evaporated SiO is transferred to the cylindrical partition wall 9 and the support piece 9b.
This prevents the foreign matter from adhering to the surface of the melt and falling onto the melt surface.

本実施例において用いられた結晶威長装置の坩堝3は直
径16インチ、筒状隔壁9は直径10インチであり、引
上げ開始前の融液量は35kgであった。
The crucible 3 of the crystal lengthening apparatus used in this example had a diameter of 16 inches, the cylindrical partition wall 9 had a diameter of 10 inches, and the amount of melt before the start of pulling was 35 kg.

引上げた単結晶は直径6インチ、引上げ中の単結晶の回
転数は15rpm 、坩堝回転数ば5 rpmであり、
引上速度は1.5mm/minであった。そして筒状隔
壁9の浸漬深さを2mm、5mm、10mm、30陥、
50mmの5水準で変化させて融液中の酸素濃度の制御
を行った。なお、浸漬深さが50mmの場合には引上後
半の坩堝3と筒状隔壁9との接触を防止するため、引上
げ途中より坩堝3の上昇に同期させて筒状隔壁9を上昇
させた。
The pulled single crystal had a diameter of 6 inches, the rotation speed of the single crystal during pulling was 15 rpm, and the crucible rotation speed was 5 rpm.
The pulling speed was 1.5 mm/min. Then, the immersion depth of the cylindrical partition wall 9 is set to 2 mm, 5 mm, 10 mm, 30 depths,
The oxygen concentration in the melt was controlled by changing it at five levels of 50 mm. In addition, when the immersion depth was 50 mm, in order to prevent contact between the crucible 3 and the cylindrical partition wall 9 in the latter half of the pulling process, the cylindrical partition wall 9 was raised in synchronization with the rise of the crucible 3 during the pulling process.

第3図は筒状隔壁9の浸漬深さを上述の如く変化させて
本発明の単結晶製造方法を実施した場合の引上げ長に対
する酸素濃度を示すグラフである。
FIG. 3 is a graph showing the oxygen concentration versus the pulling length when the single crystal manufacturing method of the present invention is carried out by changing the immersion depth of the cylindrical partition wall 9 as described above.

縦軸には酸素濃度( X 10 ” a tms/cc
)、横軸には引上長(mm)が示してある。
The vertical axis shows the oxygen concentration (X 10" atms/cc
), and the horizontal axis shows the pulling length (mm).

図より明らかな如く、筒状隔壁9の浸漬深さが深いほど
酸素濃度は高く、浸漬深さが浅いほど酸素濃度は低くな
る。例えば浸漬深さが50間の場合は19X10”at
ms/cc以上の酸素濃度が得られた。
As is clear from the figure, the deeper the immersion depth of the cylindrical partition wall 9, the higher the oxygen concentration, and the shallower the immersion depth, the lower the oxygen concentration. For example, if the immersion depth is between 50 and 19
An oxygen concentration of ms/cc or higher was obtained.

また浸漬深さが2帥の場合は8 X 10”atms/
cc以下の酸素濃度であった。このように酸素濃度の制
御範囲は通常の低酸素レベル、中酸素レベルの酸素濃度
の範囲である13〜18XIO■7at…s/ccを大
きく超えて可能である。また浸漬深さを301Ilm、
10mm、5帥にした場合は低酸素レベルの酸素濃度を
得ることができた。更にいずれの場合も結晶面内の酸素
分布のバラッキは5〜10%であった。
If the immersion depth is 2 meters, 8 x 10” atms/
The oxygen concentration was below cc. In this way, the control range of oxygen concentration can greatly exceed the normal oxygen concentration range of low and medium oxygen levels of 13 to 18XIO7at...s/cc. Also, the immersion depth is 301Ilm,
When the diameter was 10 mm and 5 layers, it was possible to obtain an oxygen concentration at a low oxygen level. Furthermore, in each case, the variation in oxygen distribution within the crystal plane was 5 to 10%.

なお、ヒータ発熱長、ヒータ発熱長に対ずる坩堝の位置
等により坩堝内融液の加熱分布が異なり引上方向の酸素
分布が一様でない場合には、引上中に筒状隔壁9の昇降
装置を用いて浸漬深さを変更し(通常は酸素濃度が低下
していくので筒状隔壁9の浸漬深さを深くしてい<)、
引上方向に一l9 様な酸素濃度の結晶を得ることができる。
Note that if the heating distribution of the melt in the crucible varies depending on the heater heat generation length, the position of the crucible relative to the heater heat generation length, etc., and the oxygen distribution in the pulling direction is not uniform, the cylindrical partition wall 9 may be raised or lowered during pulling. The immersion depth is changed using a device (normally, as the oxygen concentration decreases, the immersion depth of the cylindrical partition wall 9 is increased),
Crystals having an oxygen concentration of -19 in the pulling direction can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明の単結晶の引上げ方法にあって
は、前記輻射熱遮蔽体下に前記筒状隔壁を取り付け、該
筒状隔壁の浸漬深さを変化させる。
As detailed above, in the single crystal pulling method of the present invention, the cylindrical partition wall is attached under the radiant heat shield, and the immersion depth of the cylindrical partition wall is varied.

これにより前記輻射熱:IxWM体下に形成される低酸
素濃度の拡散層を結晶成長界面へ供給する対流の流れを
変化させ、単結晶中の酸素濃度を制御する。
As a result, the radiant heat: The flow of convection that supplies the low oxygen concentration diffusion layer formed under the IxWM body to the crystal growth interface is changed, and the oxygen concentration in the single crystal is controlled.

このような本発明方法によると、低酸素濃度から高酸素
濃度まで高範囲に単結晶中の酸素濃度を制御することが
でき、また単結晶引上げ長さ方向に酸素濃度が均一な単
結晶が得られるという優れた効果を有する。
According to the method of the present invention, it is possible to control the oxygen concentration in a single crystal over a wide range from low oxygen concentration to high oxygen concentration, and it is also possible to obtain a single crystal with a uniform oxygen concentration in the length direction of pulling the single crystal. It has the excellent effect of being

【図面の簡単な説明】[Brief explanation of the drawing]

第l図は本発明方法の実施に用いる単結晶威長装置の模
式的断面図、第2図は筒状隔壁の斜視図、第3図は本発
明の結晶製造方法を実施した場合の筒状隔壁の浸漬深さ
別引上げ長に対する酸素濃度を示すグラフ、第4図は輻
射熱遮蔽体が配設された単結晶或長装置の模式的縦断面
図、第5図及び20 第6図は第4図において輻射熱遮蔽体下に筒状隔壁を浸
漬させたものであり、第5図は浸漬深さが浅い場合、第
6図は浸漬深さが深い場合、第7図は従来の単結晶或長
装置において酸素が結晶に取り込まれるプロセスを示す
模式的縦断面図、第8図は同じく融液内に生ずる対流を
示す模式的縦断面図、第9図は従来の単結晶或長装置の
模式的縦断面図である。 3・・・坩堝 7・・・単結晶 8・・・輻射熱遮蔽体
9・・・筒状隔壁
Fig. 1 is a schematic cross-sectional view of a single crystal growth device used in carrying out the method of the present invention, Fig. 2 is a perspective view of a cylindrical partition wall, and Fig. 3 is a cylindrical shape when carrying out the method of producing crystals of the present invention. A graph showing the oxygen concentration against the pulling length according to the immersion depth of the partition wall, Fig. 4 is a schematic vertical cross-sectional view of a single crystal lengthening device equipped with a radiant heat shield, Figs. In the figure, the cylindrical partition wall is immersed under the radiant heat shield. Figure 5 shows the case where the immersion depth is shallow, Figure 6 shows the case where the immersion depth is deep, and Figure 7 shows the case where the cylindrical partition wall is immersed under the radiant heat shield. A schematic vertical cross-sectional view showing the process in which oxygen is incorporated into the crystal in the device, FIG. 8 is a schematic vertical cross-sectional view showing the convection that occurs in the melt, and FIG. 9 is a schematic vertical cross-sectional view of a conventional single crystal lengthening device. FIG. 3... Crucible 7... Single crystal 8... Radiant heat shield 9... Cylindrical partition wall

Claims (1)

【特許請求の範囲】 1、成長させるべき単結晶の原料を加熱溶融する坩堝と
、前記坩堝内の融液から単結晶を引上げる手段と、前記
坩堝内の融液の上方であって、単結晶の引上げ域の周囲
に配設された輻射熱遮蔽体とを有する単結晶成長装置を
用いて単結晶を製造する方法において、 前記輻射熱遮蔽体下に、融液面下では融液 が相通じる状態で、融液面を含むその上、下にわたって
単結晶を引上げる内側領域と、その外側領域とに区分す
る筒状隔壁を取り付け、該筒状隔壁の融液中への浸漬深
さを変化させることにより単結晶中の酸素濃度を制御す
ることを特徴とする単結晶製造方法。
[Scope of Claims] 1. A crucible for heating and melting raw materials for a single crystal to be grown, means for pulling the single crystal from the melt in the crucible, and a means for pulling the single crystal from the melt in the crucible; In a method for producing a single crystal using a single crystal growth apparatus having a radiant heat shield disposed around a crystal pulling region, the melt is in communication with the melt below the radiant heat shield and below the melt surface. Then, a cylindrical partition wall is installed that divides the area above and below the melt surface into an inner region for pulling the single crystal, and an outer region thereof, and the immersion depth of the cylindrical partition wall into the melt is varied. A single crystal manufacturing method characterized by controlling the oxygen concentration in the single crystal.
JP29689589A 1989-11-15 1989-11-15 Process for producing single crystal Pending JPH03159985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29689589A JPH03159985A (en) 1989-11-15 1989-11-15 Process for producing single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29689589A JPH03159985A (en) 1989-11-15 1989-11-15 Process for producing single crystal

Publications (1)

Publication Number Publication Date
JPH03159985A true JPH03159985A (en) 1991-07-09

Family

ID=17839555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29689589A Pending JPH03159985A (en) 1989-11-15 1989-11-15 Process for producing single crystal

Country Status (1)

Country Link
JP (1) JPH03159985A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05105578A (en) * 1991-10-17 1993-04-27 Shin Etsu Handotai Co Ltd Single crystal pulling up device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05105578A (en) * 1991-10-17 1993-04-27 Shin Etsu Handotai Co Ltd Single crystal pulling up device

Similar Documents

Publication Publication Date Title
US20190136407A1 (en) Single crystal ingots with reduced dislocation defects and methods for producing such ingots
US8123855B2 (en) Device and process for growing Ga-doped single silicon crystals suitable for making solar cells
US4659421A (en) System for growth of single crystal materials with extreme uniformity in their structural and electrical properties
EP1021598B1 (en) Heat shield for crystal puller
EP0170856B1 (en) Process for growing monocrystals of semiconductor materials from shallow crucibles by czochralski technique
US20070101926A1 (en) Method of manufacturing silicon single crystal, silicon single crystal and silicon wafer
JPH0859386A (en) Semiconductor single crystal growing device
US6071341A (en) Apparatus for fabricating single-crystal silicon
JP2005336020A (en) Silicon single crystal puller and method of manufacturing silicon single crystal
JP2005247671A (en) Single crystal pulling apparatus
JP2813592B2 (en) Single crystal manufacturing method
US7329317B2 (en) Method for producing silicon wafer
WO2023051616A1 (en) Crystal pulling furnace for pulling monocrystalline silicon rod
JP3832536B2 (en) Method for producing silicon single crystal and pulling machine
JPH03159985A (en) Process for producing single crystal
JP3129187B2 (en) Single crystal manufacturing apparatus and single crystal manufacturing method
JP2003221296A (en) Apparatus and method for producing single crystal
JP2005145724A (en) Method for manufacturing silicon single crystal and silicon single crystal
JP3635694B2 (en) Single crystal manufacturing method
JP2001089289A (en) Method of pulling single crystal
JP4016471B2 (en) Crystal growth method
JP3642175B2 (en) Silicon single crystal pulling apparatus and pulling method thereof
JP5196438B2 (en) Raw material melt supply apparatus, polycrystal or single crystal production apparatus and production method
JPH0656571A (en) Method for controlling oxygen concentration of single crystal at pulling up of single crystal and apparatus for growing single crystal used in this method
JP2020045258A (en) Method for manufacturing silicon single crystal