JPH03159964A - Production of transparent, high-purity boron nitride sintered body of cubic system - Google Patents

Production of transparent, high-purity boron nitride sintered body of cubic system

Info

Publication number
JPH03159964A
JPH03159964A JP1300587A JP30058789A JPH03159964A JP H03159964 A JPH03159964 A JP H03159964A JP 1300587 A JP1300587 A JP 1300587A JP 30058789 A JP30058789 A JP 30058789A JP H03159964 A JPH03159964 A JP H03159964A
Authority
JP
Japan
Prior art keywords
sintered body
boron nitride
cbn
pressure
under
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1300587A
Other languages
Japanese (ja)
Other versions
JP2590413B2 (en
Inventor
Minoru Akaishi
實 赤石
Nobuo Yamaoka
山岡 信夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP1300587A priority Critical patent/JP2590413B2/en
Publication of JPH03159964A publication Critical patent/JPH03159964A/en
Application granted granted Critical
Publication of JP2590413B2 publication Critical patent/JP2590413B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To produce transparent, high-purity boron nitride of cubic system having excellent heat resistance under a high-temperature condition by sintering boron nitride of hexagonal system having oxygen content of <= a specific amount under static extra-high pressure not using a sintering auxiliary. CONSTITUTION:Boron nitride of hexagonal system (e.g. one obtained by treating high-purity powder or sintered body of boron nitride of hexagonal system sold on the market in vacuum at 1,600 deg.C for 2 hours and in N2 gas at 2,100 deg.C for 2 hours) having <=0.06wt.% oxygen content is treated under high pressure at high temperature under >=7 GPa under thermodynamically stable condition of cubic-system at >=2,100 deg.C without using a sintering auxiliary to give a transparent, high-purity sintered body of boron nitride of cubic system suitable for window material of specific use, cutting tool of material to be hardly cut, etc.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、焼結助剤を全く用いない静的超高圧法により
、透光性高鈍度立方晶窒化ほう素焼結体を製造する方法
に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention is a method for producing a transparent, highly dull cubic boron nitride sintered body by a static ultra-high pressure method that does not use any sintering aids. It is related to.

(従来の技術及び解決しようとする課題)立方晶窒化ほ
う素(以下、rcBNJと略称する)は、ダイヤモンド
に次ぐ硬度を有すると共に、化学的にも、熱的にも極め
て安定な物質である。
(Prior Art and Problems to Be Solved) Cubic boron nitride (hereinafter abbreviated as rcBNJ) has a hardness second only to diamond, and is an extremely stable substance both chemically and thermally.

このように優れた性質を有するcBN結晶は、一般に、
六方晶窒化ほう素(以下、rhBNJと略称する)に触
媒を加え、静的高圧法により、5GPa以上、1. 5
 0 0℃以上の条件下で合成されているが、現在の技
術では、大型のcI3 N単結晶を安定に合成すること
は非常に困難である。
cBN crystals with such excellent properties generally have
A catalyst is added to hexagonal boron nitride (hereinafter referred to as rhBNJ), and a static high-pressure method is applied to the hexagonal boron nitride (hereinafter referred to as rhBNJ) at a pressure of 5 GPa or more and 1. 5
However, with current technology, it is extremely difficult to stably synthesize large cI3N single crystals.

そこで、cBN微結晶に金属や、炭化物、窒化物、酸化
物等の焼結助剤を相当量添加し、cBN焼結体を静的高
圧法により工業生産し、工具利料、その他の用途に市販
されている。このcBN焼結体は、焼結助剤を相当量含
有するため、cBN単結晶に比較して、その硬さ、熱伝
導等の性質が劣っている。
Therefore, a considerable amount of metals and sintering aids such as carbides, nitrides, and oxides are added to cBN microcrystals, and cBN sintered bodies are industrially produced using a static high-pressure method and used as tools and other purposes. It is commercially available. Since this cBN sintered body contains a considerable amount of sintering aid, its properties such as hardness and thermal conductivity are inferior to cBN single crystal.

しかし、cBN本来の性質に近い焼結体としては、焼結
助剤の量を極めて少なくするか、焼結助剤を全く含有し
ない物であることが望ましい。
However, for a sintered body that has properties close to the original properties of cBN, it is desirable that the amount of the sintering aid be extremely small, or that it not contain any sintering aid at all.

従来、このような焼結体を意図した製造方法としては、 ■hBHのホッ1〜プレスがC結体にM g3B 2 
N 4の触媒を拡散含浸させたものを高温高圧処理する
方法(特公昭60−28782号公報)、■触媒を使用
せずに低結晶性hBN粉末を出発物質として高温高圧条
件下(好ましい処理条件:圧力6GPa以上、温度14
50−1600℃)で処理する方法(「マテリアルス・
リサーチ・ブルチンJ Vol. 1 7 (1.97
2)、p.999−1004)、■気相から析出させた
熱分解窒化ほう素(パイ口リティックボロンナイトライ
ド、以下rpBNJと略称する)を高温高圧条件下(好
ましい処理条件:圧力6.5GPa以上、温度2100
〜2500℃)で処理する方法(特開昭54−3351
0号公報)、等が知られている。
Conventionally, as a manufacturing method intended for such a sintered body, ■hBH hot 1~press is applied to a C body by Mg3B2
A method of high-temperature, high-pressure treatment of N4 catalyst-diffusion-impregnated material (Japanese Patent Publication No. 60-28782); : Pressure 6GPa or more, temperature 14
50-1600℃)
Research Bulletin J Vol. 1 7 (1.97
2), p. 999-1004), (1) Pyrolytic boron nitride (Pyrolytic boron nitride, hereinafter abbreviated as rpBNJ) precipitated from the gas phase under high temperature and high pressure conditions (preferred processing conditions: pressure 6.5 GPa or higher, temperature 2100
~2500℃) (JP-A-54-3351)
Publication No. 0), etc. are known.

しかしながら、以下に考察するとおり、これらの製造方
法にはそれぞれ問題があり、これらの方法によって得ら
れるcBN焼結体は、未だc. B Nの特性を十分に
発揮しているとは云い難い。
However, as discussed below, each of these manufacturing methods has its own problems, and cBN sintered bodies obtained by these methods still have c. It is difficult to say that the characteristics of BN are fully exhibited.

まず、前記■の方法の場合、優れている点は、比較的穏
やかな高温高圧条件で透光性cBN焼結体が合威可能で
あり、得られたcBN焼結体は高熱伝導性であること等
である。しかし,この方法で合或されたcBN焼結体は
、焼結助剤に用いた3− Mg3B z N 4などが焼結体中に少量残留すると
いう欠点がある。すなわち、この残留焼結助剤が高温条
件下において、cBN−+hBN変換の触媒として働く
ため、焼結体の機械的、熱的性質の著しい低下が高温条
件下において生し易い。出発物質に焼結助剤を使用し、
焼結助剤を焼結体中に全く残留させないような技術は、
高温高圧焼結法では、現在まで開発されていない。
First, in the case of the method (2) above, the advantage is that a translucent cBN sintered body can be sintered under relatively mild high temperature and high pressure conditions, and the obtained cBN sintered body has high thermal conductivity. This is the case. However, the cBN sintered body formed by this method has the disadvantage that a small amount of 3-Mg3BzN4 used as a sintering aid remains in the sintered body. That is, since this residual sintering aid acts as a catalyst for cBN-+hBN conversion under high temperature conditions, the mechanical and thermal properties of the sintered body tend to deteriorate significantly under high temperature conditions. Using a sintering aid in the starting material,
The technology that does not leave any sintering aid in the sintered body is
No high-temperature, high-pressure sintering method has been developed to date.

そこで、焼結助剤を全く使用せずに、h B N又はp
BNを出発物質として用い、hBN.pBN→cBN直
接変換反応を利用した反応焼結法によりcBN焼結体を
合威する方法が、前記■及び■の焼結体製造法である。
Therefore, without using any sintering aid, h B N or p
Using BN as a starting material, hBN. The sintered body manufacturing methods (1) and (2) above are methods for sintering cBN sintered bodies by a reactive sintering method that utilizes a direct conversion reaction of pBN→cBN.

これらの製造方法で得られるcI3N焼結体は、前記■
の方法で得られる焼結体に比較し,高温条件下でのcB
N−}hBN変換が起こりにくい利点がある。これは、
焼結助剤を含有しないことが主な理由と考えられる。し
かし、これらの(2)、■の方法では、得られるcBN
焼結体は灰色半透明から黒色不透明であり、透光性焼結
体は得られない。
The cI3N sintered body obtained by these manufacturing methods is
cB under high temperature conditions compared to the sintered body obtained by the method of
There is an advantage that N-}hBN conversion is less likely to occur. this is,
The main reason is thought to be that it does not contain a sintering aid. However, in these methods (2) and (2), the obtained cBN
The sintered body is gray and semitransparent to black and opaque, and a translucent sintered body cannot be obtained.

ー4 本発明は、上記従来技術の欠点を解消し、高温条件下で
の耐熱性に優れた透光性τj;純度○BN焼結体を製造
し得る方法を提供することを目的とするものである。
-4 The object of the present invention is to eliminate the drawbacks of the above-mentioned prior art and to provide a method for producing a translucent τj; purity ○BN sintered body with excellent heat resistance under high temperature conditions. It is.

(課題を解決するための手段) 本発明者らは、前記■、■の方法に着1」シ、これらの
方法で得られるcBN焼結体は、焼結助剤を含有しない
ために高温条件下で安定であるものの、透光性を示さな
いので、この原因について検討した結果、cBN粒子間
に僅かな空隙が存在するか、cBN粒子間の直接結合が
少ないことに起因して透光性が得られないという結論に
達した。
(Means for Solving the Problems) The present inventors have discovered that the cBN sintered bodies obtained by these methods do not require high-temperature conditions because they do not contain a sintering aid. Although it is stable at low temperatures, it does not show light transmission.As a result of investigating the cause of this, we found that the light transmission is due to the existence of slight voids between cBN particles or the lack of direct bonding between cBN particles. I came to the conclusion that this is not possible.

これらの問題点を解決すれば、焼結助剤を全く使用しな
いで、高温条件下で十分使用可能な透光性高純度cBN
焼結体が合成可能であるとの知見を得た。
If these problems are solved, transparent high-purity cBN that can be used under high temperature conditions without using any sintering aids can be produced.
We found that a sintered body can be synthesized.

この知見に基づいて、本発明者らは、高温高圧焼結法に
ついて更に研究を重ね、ここに本発明をなしたものであ
る。
Based on this knowledge, the present inventors conducted further research on high-temperature, high-pressure sintering methods, and hereby accomplished the present invention.

すなわち、本発明は、酸素含有量が0.06wt;%以
下のhBNを、cBNの熱力学的安定条件下の7GPa
以上の圧力及び2100℃以上の温度で,焼結助剤を用
いずに高温高圧焼結することを特徴とする透光性高純度
立方晶窒化ほう素焼結体の製造法を要旨とするものであ
る。
That is, in the present invention, hBN with an oxygen content of 0.06 wt% or less is heated to 7 GPa under thermodynamically stable cBN conditions.
The gist of this invention is a method for producing a translucent, high-purity cubic boron nitride sintered body, which is characterized by high-temperature, high-pressure sintering at a pressure above and a temperature above 2100°C without using a sintering aid. be.

以下に本発明を更に詳述する。The present invention will be explained in further detail below.

(作用) 本発明に用いる出発物質のhBNは、粉末又は焼結体の
いずれでもよく、高純度のものであることが好ましい。
(Function) The starting material hBN used in the present invention may be either a powder or a sintered body, and is preferably of high purity.

但し、出発物質の酸素含有量が0.06tyt%以下の
ものを用いる必要がある。出発物質の酸素含有量が0.
06wt%より多いと、透光性のcBN焼結体が得られ
ない。
However, it is necessary to use a starting material having an oxygen content of 0.06 tyt% or less. The oxygen content of the starting material is 0.
If the amount exceeds 0.06 wt%, a translucent cBN sintered body cannot be obtained.

そのためには、例えば、市販の高純度hBN粉末や焼結
体を出発物質として用いて、真空中、1600℃×2時
間の処理後、窒素ガス中、2100℃×2時間以上の処
理をする。この処理により、出発物質の酸素含有量をQ
.Q6tat%以下にすることができる。
For this purpose, for example, using a commercially available high-purity hBN powder or sintered body as a starting material, treatment is performed in vacuum at 1600° C. for 2 hours, and then in nitrogen gas at 2100° C. for 2 hours or more. This treatment reduces the oxygen content of the starting material to Q
.. Q6tat% or less can be achieved.

次いで、得られた高純度hBN粉末又は焼結体1(出発
物質)を高温高圧処理する。この高温高圧処理の条件は
、cBNの熱力学的安定条件下で、7GPa以上の圧力
、2100℃以上の温度とする必要があり、焼結助剤は
全く不要である。この圧力条件は、タリウム,バリウム
及びビスマスの室温下で圧力により誘起される相転移を
各々3.7GPa、5,5GPa、7.7GPaの圧力
定点とし、作製した荷重一圧力曲線の関係に基づくもの
である。また、温度条件は、所定の圧力下で、白金・ロ
ジウム(6ωt%)一白金・ロジウム(30ωt%)熱
電対を用い、1800℃まで測定し、電力対温度の関係
を予め求め、この関係の外挿から1800゜C以上の温
度での電力を推定し、電力制御により、透光性、cBN
焼結体の得られる温度を求めたものである。
Next, the obtained high purity hBN powder or sintered body 1 (starting material) is subjected to high temperature and high pressure treatment. The conditions for this high-temperature, high-pressure treatment must be a pressure of 7 GPa or higher and a temperature of 2100° C. or higher under thermodynamically stable cBN conditions, and no sintering aid is required. These pressure conditions are based on the load-pressure curve relationship created by setting pressure-induced phase transitions of thallium, barium, and bismuth at room temperature to fixed pressure points of 3.7 GPa, 5.5 GPa, and 7.7 GPa, respectively. It is. In addition, the temperature conditions were determined by measuring up to 1800°C under a predetermined pressure using a platinum/rhodium (6 ωt%) - platinum/rhodium (30 ωt%) thermocouple, and determining the relationship between power and temperature in advance. From extrapolation, we estimate the power at temperatures above 1800°C, and by power control, we can improve the translucency, cBN
The temperature at which the sintered body is obtained is determined.

本発明法の実施には、高温高圧装置が必要であるが、例
えば、本出願人が先に提案したベルI・型高圧装置(特
願平1−186106)が使用できる。
A high-temperature, high-pressure device is required to carry out the method of the present invention, and for example, the Bell I type high-pressure device (Japanese Patent Application No. 1-186106) previously proposed by the present applicant can be used.

このベルト型高圧装置は、第l図に示す構成であ=7 ?て、8GPa領域の圧力で常用することが可能である
This belt-type high-pressure device has the configuration shown in FIG. Therefore, it can be used regularly at pressures in the 8 GPa range.

第1図中、(1)はゴム製Oリンク、(2)は戒形ガス
ケット、(3)はパイ口フイライトガスケット、(4)
はステンレス板、(5)は通電リング、(6)はNaC
 n − 1 0ut%Zr○2からなる圧力媒体、(
7)はZr○2焼結体、(8)はMo板である。この圧
力媒体(6)の内に試料部(9)が配置される。
In Figure 1, (1) is a rubber O-link, (2) is a circular gasket, (3) is a pie-shaped fillite gasket, and (4) is a rubber O-link.
is a stainless steel plate, (5) is a current-carrying ring, (6) is NaC
Pressure medium consisting of n − 1 0ut% Zr○2, (
7) is a Zr○2 sintered body, and (8) is a Mo plate. A sample part (9) is arranged within this pressure medium (6).

この試料部(9)の構成は、第2図に示すように、黒鉛
ヒーター(10)と、外側Taカプセル(↓1■)と、
内側Taカプセル(11■)とを有し、hBN試料(1
2)を充填した内側Taカプセル(11■)がNaC 
Q − 1 0ut%ZrO.又はNaC Q − 2
 0tvt%Zr○2からなる圧力媒体(6)、(13
)に充填されている。
As shown in Fig. 2, this sample section (9) consists of a graphite heater (10), an outer Ta capsule (↓1■),
with an inner Ta capsule (11 cm) and an hBN sample (1
2) The inner Ta capsule (11■) filled with NaC
Q-1 0ut%ZrO. or NaC Q-2
Pressure medium (6), (13) consisting of 0tvt%Zr○2
) is filled.

この高圧装置を使用した実験の一例を以下に示す。まず
、第2図に示す試料構戊を用い、酸素含有量Q.Q6t
it%のhBN焼結体を’lGPa、2100℃の条件
で高温高圧処理した。なお、温度は前述の1800℃ま
での電力対温度の関係を外挿−8 して電力制御により求めたものである。その結果、透光
性cBN焼結体が得られた。この焼結体をX線回折で調
八たところ、cBN以外の回折線は全く認められなかっ
た。また、試料断面をエネルギー分散型のEPMAで調
べたが、Ta等の重元素は全く認められなかった。この
透光性cBN焼結体は、非常に高純度であることが確認
された。
An example of an experiment using this high-pressure device is shown below. First, using the sample structure shown in FIG. 2, the oxygen content Q. Q6t
It% hBN sintered body was subjected to high temperature and high pressure treatment under the conditions of 1GPa and 2100°C. Note that the temperature was determined by extrapolating the above-described relationship between power and temperature up to 1800° C. and performing power control. As a result, a translucent cBN sintered body was obtained. When this sintered body was examined by X-ray diffraction, no diffraction lines other than cBN were observed. Furthermore, when the cross section of the sample was examined using energy dispersive EPMA, heavy elements such as Ta were not detected at all. It was confirmed that this translucent cBN sintered body had extremely high purity.

なお、第2図の試料構或で重要なことは、NaCD.−
ZrO2圧力媒体からの試料へのNaCQのる。第2図
の場合は、hBN焼結体(試料)をTaカプセルに入れ
、0.40Paの圧力で密閉し、更にその外側をTa箔
で包んである。この遮蔽が十分でないと、決して透光性
のcBN焼結体は得られない。X線回折により検出され
ない程度のN.aCQが混入しても、cBN焼結体に空
隙が多くなり、cBN粒子の粒或長が顕著になる。その
結果、h B N −* c B N変換反応は完全に
進行するが、決して透光性cBN焼結体は得られない。
Note that the important thing about the sample structure in FIG. 2 is that NaCD. −
NaCQ is transferred to the sample from the ZrO2 pressure medium. In the case of FIG. 2, the hBN sintered body (sample) was placed in a Ta capsule, sealed with a pressure of 0.40 Pa, and the outside of the capsule was further wrapped with Ta foil. If this shielding is not sufficient, a translucent cBN sintered body will never be obtained. N. to the extent that it is not detected by X-ray diffraction. Even if aCQ is mixed in, the cBN sintered body will have more voids, and the cBN particles will become noticeably longer. As a result, although the hBN-*cBN conversion reaction proceeds completely, a translucent cBN sintered body is never obtained.

また、第2図に示したものと同様の試料構成を用い、6
.5G,Pa、2100゜Cの条件で、酸素含有量0.
06wt%のhBN焼結体を処理した。得られた試料は
、cBNに完全に変換していたが、透光性焼結体は得ら
れなかった。このことからも、透光性高純度cBN焼結
体の合成には、6.5GPaよりも高い圧力条件下で.
2100℃以上の焼結温度が必要であることが確認され
た。
In addition, using a sample configuration similar to that shown in Fig. 2,
.. Under the conditions of 5G, Pa, and 2100°C, the oxygen content was 0.
06 wt% hBN sintered body was processed. Although the obtained sample was completely converted to cBN, a translucent sintered body was not obtained. From this, it is necessary to synthesize a translucent high-purity cBN sintered body under pressure conditions higher than 6.5 GPa.
It was confirmed that a sintering temperature of 2100° C. or higher is required.

(実施例) 次に本発明の実施例を示すが、前述の実験例も本発明の
実施例足り得ることは云うまでもない。
(Example) Next, an example of the present invention will be shown, but it goes without saying that the above-mentioned experimental example can also be used as an example of the present invention.

失巖槻よ 酸素含有量0.06wt%のhBN焼結体を第2図に示
す試料構或にし、第工図に示す高圧装置を使用して7.
7GPa、2150℃の条件で30分間処理した。回収
した試料は完全に1゛aで覆われていた。
7. A hBN sintered body with an oxygen content of 0.06 wt% was made into the sample structure shown in FIG. 2 using the high-pressure apparatus shown in the drawing.
It was treated for 30 minutes at 7 GPa and 2150°C. The collected sample was completely covered with 1.a.

このTaを研削除去後、光学顕微鏡観察したところ、異
常粒成長の全く認められない均質な焼結体であった。
After the Ta was removed by polishing, observation under an optical microscope revealed that it was a homogeneous sintered body with no abnormal grain growth observed.

この焼結体の裏面に文字を貼り付け、透過光で写真撮影
したところ、焼結体の下地の文字が焼結体を通してはっ
きりと読むことができた。この焼結体の厚さは0. 7
 mmであり、その色は淡緑色であった。また、この焼
結体の赤外線スペク1−ルを250〜4000cm−1
波数領域で測定したところ、1 0 0 0−2 2 
0 0cm−1の領域を除き、光を透過していた。
When letters were attached to the back of this sintered body and a photograph was taken using transmitted light, the letters on the base of the sintered body could be clearly read through the sintered body. The thickness of this sintered body is 0. 7
mm, and its color was light green. In addition, the infrared spectrum of this sintered body is 250 to 4000 cm
When measured in the wavenumber domain, 1 0 0 0-2 2
Light was transmitted except for a region of 0.00 cm-1.

また、X線回折により焼結体を調べた結果、CBNの回
折線以外の回折線は全く認められなかった。また、焼結
体の一部を切断研磨し、E PMAで調べたところ.T
a.Na.Zrは全く検出されなかった。
Further, as a result of examining the sintered body by X-ray diffraction, no diffraction lines other than the CBN diffraction line were observed. In addition, a part of the sintered body was cut and polished and examined using EPMA. T
a. Na. Zr was not detected at all.

更に、焼結体の破面をSEM観察したところ、第3図に
示すように粒界のはっきりしない緻密な組織の焼結体で
あった。焼結体を溶融N a O I−Iでエッチング
し、粒径を調べた結果、2〜5μmの粒子からなる均質
焼結体であった。また、焼結体のビッカース硬さは、荷
重2kgで測定したところ、50GPa以上であった。
Further, when the fractured surface of the sintered body was observed by SEM, it was found that the sintered body had a dense structure with unclear grain boundaries, as shown in FIG. The sintered body was etched with molten NaOI-I and the particle size was examined, and the result was that it was a homogeneous sintered body consisting of particles of 2 to 5 μm. Further, the Vickers hardness of the sintered body was 50 GPa or more when measured under a load of 2 kg.

11− これらより、得られた焼結体は、透光性で、非常に高純
度且つ高硬度であり、粒子径は2〜5μmの均質なcB
N焼結体であることが確認された。
11- From these, the obtained sintered body is transparent, has extremely high purity and high hardness, and has a homogeneous cB particle size of 2 to 5 μm.
It was confirmed that it was a N sintered body.

星較七ユ 市販の高純度h’ B N焼結体の酸素含有量を測定し
たところ、0 . 3 wt%であった。この焼結体を
実施例1と同様な試料構或にし、7.7GPa、215
0℃で30分間の条件で焼結した。得られた試料は、c
BNに完全に変換していたが、黒色不透明であった。
When the oxygen content of a commercially available high-purity h'BN sintered body was measured, it was found to be 0. It was 3 wt%. This sintered body was made into the same sample structure as in Example 1, and was heated to 7.7 GPa and 215
Sintering was performed at 0°C for 30 minutes. The obtained sample was c
Although it had completely converted to BN, it was black and opaque.

坩鮫奥茎 酸素含有量0.06りt%のhBN焼結体をTaカプセ
ルに密閉しないでTa箔で包んだ試料構成とした以外は
、実施例1と全く同じ条件で焼結した。
Sintering was carried out under exactly the same conditions as in Example 1, except that the hBN sintered body with an oxygen content of 0.06 t% was not sealed in a Ta capsule but was wrapped in Ta foil.

得られた焼結体は、cBNに完全に変換していたが、焼
結体の周囲が同心円状に白く、中心部分は黒色であった
。中心部分は僅かに光を通すが、他の部分は不透明であ
った。焼結体の白い部分は、10μm以上に粒戊長して
いた。これは、Taカプ12 セルの密閉が十分でないために、試料に部分的にNaC
Qが侵入したため、透光性焼結体が得られなかったもの
と考えられる。
The obtained sintered body had been completely converted into cBN, but the periphery of the sintered body was concentrically white and the center part was black. The center part was slightly transparent, but the other parts were opaque. The white part of the sintered body had elongated grains of 10 μm or more. This is because the sample is partially exposed to NaCl because the Ta cap cell is not tightly sealed.
It is thought that a translucent sintered body could not be obtained because Q invaded.

失鳳奥茎 酸素含有量0.06wt%のhBN粉末を7GPa、2
100℃、30分間の条件で、実施例1と全く同し試料
構或を用いて焼結した。得られた試料は、透光性高純度
cBN焼結体であることが確認された。この試料の耐熱
性を調べるため、5X10−’Torrの真空中、13
00℃の条件で2時間処理したところ、全<hBNの析
出は認められなかった。なお、1400℃、1時間の条
件で処理したところ、一部分がhBNに変換しているこ
とがX線回折により認められた。
hBN powder with an oxygen content of 0.06 wt% was heated at 7 GPa at 2
Sintering was performed at 100° C. for 30 minutes using the same sample structure as in Example 1. The obtained sample was confirmed to be a translucent high-purity cBN sintered body. In order to investigate the heat resistance of this sample, it was
When treated at 00° C. for 2 hours, no precipitation of total hBN was observed. When treated at 1400° C. for 1 hour, it was confirmed by X-ray diffraction that a portion of the material had been converted to hBN.

生較椴主 酸素含有量Q.Q6wt%のhBN焼結体に触媒(焼結
助剤) M ga B N aを拡散含浸させ、0.8
モル%のMg313N3を含む試料を作製した。この試
料を5.8GPa、1500℃の条件で焼結した。得ら
れた試料は、透光性cBN焼結体で、X線回折ではMg
3BN3は全く認められなかった。しかし、EPMAで
は微量のMgが検出された。この焼結体の耐熱性を調べ
るため、実施例2と同し真空度のもとで、1100℃、
1時間の条件で処理した。
Main oxygen content Q. Q6 wt% hBN sintered body is diffused and impregnated with catalyst (sintering aid) M ga B Na and 0.8
A sample containing mol% Mg313N3 was prepared. This sample was sintered under conditions of 5.8 GPa and 1500°C. The obtained sample was a translucent cBN sintered body, and X-ray diffraction revealed that Mg
3BN3 was not recognized at all. However, a trace amount of Mg was detected by EPMA. In order to investigate the heat resistance of this sintered body, it was heated at 1100°C under the same vacuum as in Example 2.
The treatment was carried out for 1 hour.

処理後、試料のX線回折した結果、一部分がhBNに変
換していた。このように低い温度からh f3Nの析出
が認められるのは、微量の触媒(焼結助剤)が焼結体中
に残留しているためと考えられる。
After the treatment, X-ray diffraction of the sample revealed that a portion of the sample had been converted to hBN. The reason why h f3N precipitation is observed at such a low temperature is considered to be because a trace amount of catalyst (sintering aid) remains in the sintered body.

(発明の効果) 以上詳述したように、本発明によれば、焼結助剤を全く
使用しないで透光性、高純度のcBN焼結体が得られ、
この焼結体は高硬度で耐熱性に優れているため、特殊な
用途の窓材料、ボンデングツール、難削材料の切削工具
等への応用に適している。
(Effects of the Invention) As detailed above, according to the present invention, a translucent and highly pure cBN sintered body can be obtained without using any sintering aid,
This sintered body has high hardness and excellent heat resistance, so it is suitable for applications such as window materials for special purposes, bonding tools, and cutting tools for difficult-to-cut materials.

なお、本発明での焼結体の合或条件が従来の焼結体合戒
条件に比べて厳しいという難点があるが、得られる焼結
体の特性が非常に優れており、且つ厳しい高温高圧条件
に耐え得る高圧装置も開発されていることを勘案すると
、単に圧力、温度が高いから工業的な製品化が難しいと
断定することは早言1であり、厳しい高温高圧条件での
合或であっても、余りある性能を有する焼結体であるの
で、実用化もさして困難ではない。
Although there is a drawback that the conditions for coalescence of the sintered compact in the present invention are stricter than those of conventional sintered compact coalescence conditions, the characteristics of the obtained sintered compact are very excellent, and Considering that high-pressure equipment that can withstand these conditions has also been developed, it is a simplification to conclude that it is difficult to commercialize it on an industrial scale simply because the pressure and temperature are high. Even if there is, the sintered body has sufficient performance, so it is not difficult to put it into practical use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はベル1・型高圧装置の圧力媒体を含めた試料部
の断面図であり、 第2図は試料部の試料構戒を説明する縦断面図であり、 第3図は実施例で得られた透光性、高純度cBN焼結体
の破面の粒子構造に係るSEM像(二次電子像)を示す
写真である。 1・・ゴム製Oリング、2・・成形ガスケット、3・・
・パイ口フイライ1〜ガスケッ1・、4・・・ステンレ
ス板、5・・・通電リング、6・・・NaC党−10w
t%Zr02(焼結媒体)、7=ZrO2焼結体、8−
Mo板、9・・試料部、10・・・黒鉛ヒーター、11
1・・・外側Taカプセル、112・・・内側Taカプ
セル、12・hBN試料、1 3−NaC Q−2 0
t1t%Z r O 2 (焼結媒体)。
Figure 1 is a sectional view of the sample section of the Bell 1 type high pressure device including the pressure medium, Figure 2 is a longitudinal sectional view illustrating the sample configuration of the sample section, and Figure 3 is an example. This is a photograph showing a SEM image (secondary electron image) of the particle structure of the fracture surface of the obtained translucent, high-purity cBN sintered body. 1. Rubber O-ring, 2. Molded gasket, 3.
・Pie mouth filler 1 ~ Gasket 1・, 4...Stainless steel plate, 5...Electrification ring, 6...NaC party-10w
t% Zr02 (sintering medium), 7=ZrO2 sintered body, 8-
Mo plate, 9...sample part, 10...graphite heater, 11
1...Outer Ta capsule, 112...Inner Ta capsule, 12.hBN sample, 1 3-NaC Q-2 0
t1t%Z r O 2 (sintering medium).

Claims (1)

【特許請求の範囲】[Claims]  酸素含有量が0.06wt%以下の六方晶窒化ほう素
を、立方晶窒化ほう素の熱力学的安定条件下の7GPa
以上の圧力及び2100℃以上の温度で、焼結助剤を用
いずに高温高圧焼結することを特徴とする透光性高純度
立方晶窒化ほう素焼結体の製造法。
Hexagonal boron nitride with an oxygen content of 0.06 wt% or less was heated to 7 GPa under thermodynamically stable conditions for cubic boron nitride.
A method for producing a translucent high-purity cubic boron nitride sintered body, characterized by performing high-temperature, high-pressure sintering at a pressure above and a temperature above 2100° C. without using a sintering aid.
JP1300587A 1989-11-17 1989-11-17 Method for producing translucent high-purity cubic boron nitride sintered body Expired - Lifetime JP2590413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1300587A JP2590413B2 (en) 1989-11-17 1989-11-17 Method for producing translucent high-purity cubic boron nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1300587A JP2590413B2 (en) 1989-11-17 1989-11-17 Method for producing translucent high-purity cubic boron nitride sintered body

Publications (2)

Publication Number Publication Date
JPH03159964A true JPH03159964A (en) 1991-07-09
JP2590413B2 JP2590413B2 (en) 1997-03-12

Family

ID=17886639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1300587A Expired - Lifetime JP2590413B2 (en) 1989-11-17 1989-11-17 Method for producing translucent high-purity cubic boron nitride sintered body

Country Status (1)

Country Link
JP (1) JP2590413B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11322310A (en) * 1998-05-11 1999-11-24 Sumitomo Electric Ind Ltd Cubic boron nitride polycrystalline abrasive grain and its production
US6071841A (en) * 1996-11-28 2000-06-06 Sumitomo Electric Industries, Ltd. Cubic boron nitride sintered body and method of preparing the same
US6716544B2 (en) 2000-03-08 2004-04-06 Sumitomo Electric Industries, Ltd. Coated sinter of cubic-system boron nitride
US6737377B1 (en) 1998-05-22 2004-05-18 Sumitomo Electric Industries, Ltd. Cutting tool of a cubic boron nitride sintered compact
WO2004054943A1 (en) * 2002-12-18 2004-07-01 Japan Science And Technology Agency Heat-resistant composite diamond sintered product and method for production thereof
JP2004196567A (en) * 2002-12-17 2004-07-15 National Institute For Materials Science High purity superfine particle cubic boron nitride sintered compact and its producing method
JP2008019164A (en) * 2007-08-08 2008-01-31 National Institute For Materials Science Superfine particulate cubic boron nitride sintered compact
EP2354110A2 (en) 2010-02-09 2011-08-10 Mitsubishi Materials Corporation Method for producing sintered cubic boron nitride compact
WO2013031681A1 (en) 2011-08-30 2013-03-07 住友電気工業株式会社 Cubic boron nitride complex polycrystalline substance, method for manufacturing same, cutting tool, wire-drawing die, and grinding tool
JP2015529611A (en) * 2012-08-03 2015-10-08 燕山大学 Ultra-hard nano-twinned boron nitride bulk material and synthesis method thereof
DE102015206749A1 (en) 2014-04-18 2015-10-22 Sumitomo Electric Industries, Ltd. Cubic boron nitride polycrystal, cutting tool, wear-resistant tool, grinding tool, and method of producing a polycrystal of cubic boron nitride
JP2016060680A (en) * 2014-09-19 2016-04-25 信越化学工業株式会社 Boron nitride agglomerate and thermally conductive composition
WO2018066261A1 (en) 2016-10-06 2018-04-12 住友電気工業株式会社 Method for producing boron nitride polycrystal, boron nitride polycrystal, cutting tool, wear-resistant tool, and grinding tool
JP2019525883A (en) * 2016-06-29 2019-09-12 スミス インターナショナル インコーポレイテッド Binderless cBN sintering with cubic press
CN110467469A (en) * 2019-08-28 2019-11-19 郑州中南杰特超硬材料有限公司 A kind of preparation method of synthesised polycrystalline cubic boron nitride predecessor
US10519068B2 (en) 2015-02-09 2019-12-31 Sumitomo Electric Industries, Ltd. Cubic boron nitride polycrystal, cutting tool, wear-resistant tool, grinding tool, and method of producing cubic boron nitride polycrystal
US10562822B2 (en) 2015-02-04 2020-02-18 Sumitomo Electric Industries, Ltd. Cubic boron nitride polycrystalline material, cutting tool, wear resistant tool, grinding tool, and method of manufacturing cubic boron nitride polycrystalline material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4927518A (en) * 1972-07-11 1974-03-12

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4927518A (en) * 1972-07-11 1974-03-12

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6071841A (en) * 1996-11-28 2000-06-06 Sumitomo Electric Industries, Ltd. Cubic boron nitride sintered body and method of preparing the same
JPH11322310A (en) * 1998-05-11 1999-11-24 Sumitomo Electric Ind Ltd Cubic boron nitride polycrystalline abrasive grain and its production
US6737377B1 (en) 1998-05-22 2004-05-18 Sumitomo Electric Industries, Ltd. Cutting tool of a cubic boron nitride sintered compact
US6716544B2 (en) 2000-03-08 2004-04-06 Sumitomo Electric Industries, Ltd. Coated sinter of cubic-system boron nitride
JP2004196567A (en) * 2002-12-17 2004-07-15 National Institute For Materials Science High purity superfine particle cubic boron nitride sintered compact and its producing method
CN1300053C (en) * 2002-12-18 2007-02-14 独立行政法人科学技术振兴机构 Heat-resistant composite diamond sintered product and method for production thereof
WO2004054943A1 (en) * 2002-12-18 2004-07-01 Japan Science And Technology Agency Heat-resistant composite diamond sintered product and method for production thereof
JP2008019164A (en) * 2007-08-08 2008-01-31 National Institute For Materials Science Superfine particulate cubic boron nitride sintered compact
EP2354110A2 (en) 2010-02-09 2011-08-10 Mitsubishi Materials Corporation Method for producing sintered cubic boron nitride compact
EP2354110A3 (en) * 2010-02-09 2012-11-28 Mitsubishi Materials Corporation Method for producing sintered cubic boron nitride compact
US8657893B2 (en) 2010-02-09 2014-02-25 Mitsubishi Materials Corporation Method for producing sintered cubic boron nitride compact
EP2942341A1 (en) 2011-08-30 2015-11-11 Sumitomo Electric Industries, Ltd. Cubic boron nitride complex polycrystalline substance, method for manufacturing same, cutting tool, wire-drawing die, and grinding tool
WO2013031681A1 (en) 2011-08-30 2013-03-07 住友電気工業株式会社 Cubic boron nitride complex polycrystalline substance, method for manufacturing same, cutting tool, wire-drawing die, and grinding tool
US9416304B2 (en) 2011-08-30 2016-08-16 Sumitomo Electric Industries, Ltd. Cubic boron nitride complex polycrystal and manufacturing method therefor, and cutting tool, wire-drawing die and grinding tool
JP2015529611A (en) * 2012-08-03 2015-10-08 燕山大学 Ultra-hard nano-twinned boron nitride bulk material and synthesis method thereof
US9422161B2 (en) 2012-08-03 2016-08-23 Yanshan University Ultrahard nanotwinned boron nitride bulk materials and synthetic method thereof
DE102015206749A1 (en) 2014-04-18 2015-10-22 Sumitomo Electric Industries, Ltd. Cubic boron nitride polycrystal, cutting tool, wear-resistant tool, grinding tool, and method of producing a polycrystal of cubic boron nitride
JP2016060680A (en) * 2014-09-19 2016-04-25 信越化学工業株式会社 Boron nitride agglomerate and thermally conductive composition
US10562822B2 (en) 2015-02-04 2020-02-18 Sumitomo Electric Industries, Ltd. Cubic boron nitride polycrystalline material, cutting tool, wear resistant tool, grinding tool, and method of manufacturing cubic boron nitride polycrystalline material
US10519068B2 (en) 2015-02-09 2019-12-31 Sumitomo Electric Industries, Ltd. Cubic boron nitride polycrystal, cutting tool, wear-resistant tool, grinding tool, and method of producing cubic boron nitride polycrystal
JP2019525883A (en) * 2016-06-29 2019-09-12 スミス インターナショナル インコーポレイテッド Binderless cBN sintering with cubic press
US11066334B2 (en) 2016-06-29 2021-07-20 Schlumberger Technology Corporation Binderless cBN sintering with cubic press
WO2018066261A1 (en) 2016-10-06 2018-04-12 住友電気工業株式会社 Method for producing boron nitride polycrystal, boron nitride polycrystal, cutting tool, wear-resistant tool, and grinding tool
US11453589B2 (en) 2016-10-06 2022-09-27 Sumitomo Electric Industries, Ltd. Method of producing boron nitride polycrystal, boron nitride polycrystal, cutting tool, wear-resisting tool, and grinding tool
CN110467469A (en) * 2019-08-28 2019-11-19 郑州中南杰特超硬材料有限公司 A kind of preparation method of synthesised polycrystalline cubic boron nitride predecessor

Also Published As

Publication number Publication date
JP2590413B2 (en) 1997-03-12

Similar Documents

Publication Publication Date Title
JPH03159964A (en) Production of transparent, high-purity boron nitride sintered body of cubic system
Riley Silicon nitride and related materials
Rafaniello et al. Investigation of Phase Stability in the System SiC‐AlN
JPS58176179A (en) Manufacture of sintered body of cubic bron nitride
CN105016776B (en) Aluminum oxynitride transparent ceramic and preparation method thereof
Kleebe et al. B6O: A correlation between mechanical properties and microstructure evolution upon Al2O3 addition during hot pressing
Singhal et al. Synthesis of cubic boron nitride from amorphous boron nitride containing oxide impurity using Mg–Al alloy catalyst solvent
JP3550587B2 (en) Method for manufacturing fine diamond sintered body
Pourali et al. Microstructures and Mechanical Behavior of Ti 3 SiC 2/Al 2 O 3-Ni Composites Synthesized by Pulse Discharge Sintering
US4772575A (en) Method of manufacturing sintered compact of cubic boron nitride
CN109534385B (en) Nano-pore-rich silver sulfide and rapid preparation method thereof
JPWO2002034972A1 (en) Nitride single crystal containing Group III or IV metal element and method for producing the same
Ahmed et al. Synthesis of Mg‐stabilized nitrogen‐rich alpha‐sialons along Si3N4–0.5 Mg3N2: 3AlN line via field‐assisted sintering
JPH05294709A (en) Polycrystalline transparent ceramic for laser
JPS5957967A (en) Manufacture of light permeable cubic boron nitride fine body
CN1179918C (en) Method for preparing single-phase compact titanium aluminium carbon block body material by using si as adjurant through hot pressing process
JP3810116B2 (en) Ultra-high pressure high temperature generator and cBN synthesis method
JPH0478335B2 (en)
JPS6213311B2 (en)
JPH05221730A (en) Cubic boron nitride sintered body and production thereof
Liu et al. Processing and oxidation behavior of Nb-Si-B intermetallics
Kovalev et al. Phase transformations in the surface layer of compact zirconium nitride-based ceramics
WO2019076903A1 (en) Polycrystalline cubic boron nitride body
JPH0455144B2 (en)
JPH04500499A (en) Improving thermal conductivity of aluminum nitride with vapor phase carbon

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term