JPH0315987B2 - - Google Patents

Info

Publication number
JPH0315987B2
JPH0315987B2 JP58122393A JP12239383A JPH0315987B2 JP H0315987 B2 JPH0315987 B2 JP H0315987B2 JP 58122393 A JP58122393 A JP 58122393A JP 12239383 A JP12239383 A JP 12239383A JP H0315987 B2 JPH0315987 B2 JP H0315987B2
Authority
JP
Japan
Prior art keywords
group
pod
aminosilane
carrier
immobilized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58122393A
Other languages
Japanese (ja)
Other versions
JPS6015560A (en
Inventor
Takeshi Kato
Yoshiaki Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP12239383A priority Critical patent/JPS6015560A/en
Publication of JPS6015560A publication Critical patent/JPS6015560A/en
Publication of JPH0315987B2 publication Critical patent/JPH0315987B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54353Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals with ligand attached to the carrier via a chemical coupling agent

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は表面に1級アミノシランを有する抗原
又は抗体を表面に固定し、担体として用いる免疫
学的測定用プラスチツク成形品の製造法に関す
る。 ウイルス等の微生物、モルモン、酵素またはあ
る種の薬物やこれら抗原性物質に対する抗体の検
出または定量する方法として、抗原−抗体反応を
応用した免疫学的測定法が利用されている。この
免疫学的測定法には抗原−抗体反応による沈降現
象を肉眼的に検出したり、光学的に濁度を定量す
る沈降反応の他に、抗原または抗体に標識物質を
結合させ、抗原−抗体反応現象を標識物質を介し
て検出または定量する方法がある。 標識物質として動物赤血球、ラテツクス微子、
酵素、螢光物質または放射性物質を利用した血球
凝集反応、ラテツクス凝集反応、酵素免疫測定法
(EIA)、螢光免疫測定法(FIA)または放射性免
疫測定法(RIA)等が広く応用されている。中で
も近年は検出感度を高め、測定操作の簡便化を図
るため、担体と称するガラス、シリコンゴムまた
はプラスチツクの表面に抗原または抗体を固定
し、抗原−抗体反応をしたコンプレツクス(B)
と未反応の抗原または抗体(F)との分離(B/
F分離)を遠心分離操作することなく水洗分離で
きる固相法が注目されている。この固相法で最も
重要なことは、測定精度や検出感度、検出範囲を
高めるため、抗体または抗原を担体ごとに均一に
且つより多量に固定化することが望ましく、担体
の材質選択や固定化条件の工夫が種々行なわれて
いる。 従来の主な固定化法は、抗原または抗体が担体
表面に単なる非特異的に物理吸着する現象を利用
するもので、この方法では抗体等の吸着量には自
ずと限度があるばかりでなく、特に低分子量の抗
原(たとえばハプテン類)やウイルスや細菌等の
大きな抗原を担体表面に固定することはほとんど
不可能な欠点がある。 一方、担体に抗原または抗体の固定化を高める
従来技術としては、A.R.Neurathら(J.
Virological Methods−1981)がポリススチレン
製マイクロプレートを発煙硝酸でニトロ化し、化
学的に還元することによりアミノ基を導入し、グ
ルタールアルデヒドを介して抗体の化学的共有結
合よる抗体の固定化法を提案している。しかしこ
の方法では、プレートが変色劣化したり、反応試
薬が危険且つ廃液処理問題から大量に製造するこ
とは極めて難しい欠点がある。 他の方法としてはガラス製担体にアミノシラン
カツプリング剤処理をする方法も知られている
が、形状の複雑なマイクロプレート等や放射性物
質廃棄処理問題の多いRIA用担体(たとえばボー
ル、ビーズ、または試験管等)にはガラスは適さ
ない欠点があるばかりでなく、特にアミノシラン
カツプリング剤と反応する水酸基の密度が過剰な
ため、せつかく付与したアミノ基が近接して存在
することによりグルタールアルデヒドによる化学
的共有結合がアミノシラン間で生じ、抗体等の結
合固定化効率が極めて低くなる欠点がある。 本発明は上述した免疫学的測定用担体の欠点を
解消するため種々研究をした結果、あらゆる形状
のプラスチツク成形品に適用でき、簡便且つ安全
にしかも温和な条件下で1級アミノ基を導入付与
し、且つ、導入量を調節できる化学的処理方法を
見出し、抗体又は抗原を極めて効率よく多量に固
定化することを可能とした抗原又は抗体を表面に
固定し、担体として用いる免疫学的測定用成形品
の製造方法を発明するに至つた。 すなわち、プラスチツク製担体の表面を、あら
かじめ物理化学的的手段で酸化処理をして水酸基
を導入した後、1級アミノシランカツプリング剤
と担体表面の水酸基とを縮合反応させることによ
り、担体表面に化学的共有結合した1級アミノ基
を付与できることを見い出した。 本発明のプラスチツク製担体の形状としては、
1個または複数のくぼみ(ウエル)を有するマイ
クロプレート類、試験管、分光用セル、またはボ
ール、ビーズ、ラテツクス等と称する球状および
円筒チユーブ状等で、プラスチツク成形品で免疫
学的測定に適する形状であれば上記の例示に限ら
れない。 また、本発明のプラスチツク成形品の材質とし
ては、ポリスチレン、ポリエチレン、ポリプロピ
レン、ポリカーボネイト、ポリ塩化ビニル、ポリ
エステル、ポリメチルメタアクリレート、ポリビ
ニルアセテート、塩化ビニル、ビニルアセテート
共重合体、エチレン・ビニルアセテート共重合
体、スチレン・メチルメタアクリレート共重合
体、アクリルニトリル・スチレン共重合体、アク
リルニトリル・ブタジエン・スチレン共重合体、
6ナイロン、6,6ナイロン、ポリメチルペンテ
ン、シリコン、テフロン等であり、この中でも特
に透明性が優れ、安価且つ成形しやすく、1級ア
ミノシランの導入が安易なポリスチレン、スチレ
ン系共重合体類およびポリ塩化ビニルが好まし
い。 本発明のプラスチツク製担体に水酸基を導入す
る酸化処理の方法としては、物理化学的酸化処理
法として紫外線照射、電子線照射、γ線照射、コ
ロナ放電、低周波または高周波低温プラズマ放電
処理等があるが、この中でも簡便且つ形状に制限
されないで酸化反応試薬の廃棄処理に問題がな
く、且つ水酸基の導入密度を調節しやすい低周波
または高周波低温プラズマ放電処理が好ましい。
低温プラズマ放電処理する場合、プラズマ発生装
置内にプラスチツク製担体をセツトし、10Torr
以下の減圧下に酸素ガス、アルゴンガス、炭酸ガ
スまたはチツ素ガス等の単独または混合ガスを通
気しながら低温プラズマに曝して酸化処理する
が、好ましくは酸素ガスまたは炭酸ガスの存在下
1Torr以下で、13.56MHz、50W以上5KW以下の
高周波電力を印加し、10秒間以上、より好ましく
は150W以上で2分間以上処理する。 本発明に用いる1級アミノシランカツプリング
剤としては、一般式 NH2−R−SiXnY3-o (式中、X及びYはアルコキシ基、クロル基、
アセトキシ基、アルキルアミノ基、プロペノキシ
基等の加水分解性基、nは2又は3、Rは〔−
(CH2xNH〕−n(CH2y−又は−CONH〔−
(CH2xNH〕−n(CH2y−、x,yはそれぞれ0
又は20以下の整数、mは0又は10以下の整数であ
る) で表わされ、たとえばγ−アミノプロピルトリメ
トキシシラン、N−β(アミノエチル)γ−アミ
ノプロピルトリメトキシシラン、γ−(ジエチレ
ントリアミノ)プロピルトリメトキシシラン、γ
−ウレイドプロピルトリメトキシシランなどが好
適な例としてあげられるが、加水分解性基である
トリメトキシシランの代りにトリエトキシシラ
ン、メチルジメトキシシラン、エチルジエトキシ
シランの他、トリクロル基、トリアセトキシ基等
の誘導体でも有効である。 本発明によりプラスチツク製担体に導入された
水酸基と1級アミノシランカツプリング剤と縮合
反応により、担体表面に1級アミノシランを導入
する方法としては、例えば上述のアミノシランカ
ツプリング剤をメタノール、エタノール、アセト
ン、水等を単独又は混合溶媒に0.1〜98重量%の
割合に希釈し、5分〜72時間、好ましくは水:メ
タノールの割合が0〜80:100〜20の溶媒に1〜
50重量%の割合に希釈し、1〜48時間浸漬または
注加し反応させた後、蒸留水または緩衝液で水洗
いすればよく、反応温度は4℃〜65℃、好ましく
は24℃〜60℃がよい。 次に本発明の実施例について説明する。 実施例 1 ポリスチレン製96平底ウエルマイクロプレート
を減圧下で酸素ガスを通気しながら0.5Torr−
13.56MHz、150Wの高周波低温プラズマを発生さ
せて3分間酸化処理をした後、γ−アミノプロピ
ルトリメトキシシラン(東レシリコーン社製)10
%メタノール溶液に浸漬し、16時間放置してアミ
ノシラン処理をする。その後蒸留水で洗浄し乾燥
する。 次にアミノシラン処理をした該マイクロプレー
トの各ウエルに、4%グルタールアルデヒド(和
光純薬社製)の0.05Mリン酸緩衝溶液(PH8.0)
を200μづつ分注し水洗する。POD(パーオキシ
ダーゼ)を標識したマウスIgG(マイルス社製、
POD−IgG)0.3mgを10万分の1に希釈し、該マ
イクロプレートの各ウエルに200μを分注し、
4℃で16時間放置してウエル内面にPOD・IgGを
共有結合にて固定化する。比較としてグルタール
アルデヒド処理をせず、前述のPOD・IgGを200μ
づつ分注し単なる物理的吸着により固定化す
る。 次にPOD・IgGを固定化した上記マイクロプレ
ートの各ウエル内で未固定のPOD・IgGを吸引除
去し、0.1Mリン酸緩衝液(PH7.0)で3回洗浄し
た後、基質溶液(H2O2、フエノール、4−アミ
ノアンチピリン)200μを加え、PODと基質の
酵素学的発色反応をさせる。37℃で40分間反応さ
せ、0.5%チツ化ソーダ水溶液50μを加えて酵素
発色反応を停止した後、波長500nmで吸光度を求
めアミノシラン処理をしたマイクロプレートのウ
エル内に固定化されたPOD・IgGの度合いを求め
た。吸光度測定結果を第1表に示す。
The present invention relates to a method for producing a plastic molded article for immunoassays, on which an antigen or antibody having a primary aminosilane is immobilized and used as a carrier. Immunological assays that apply antigen-antibody reactions are used as methods for detecting or quantifying microorganisms such as viruses, mormons, enzymes, certain drugs, and antibodies against these antigenic substances. In addition to macroscopically detecting the precipitation phenomenon caused by the antigen-antibody reaction and optically quantifying turbidity, this immunoassay method involves binding a labeling substance to the antigen or antibody. There is a method of detecting or quantifying a reaction phenomenon using a labeling substance. Animal red blood cells, latex microspheres, as labeling substances
Hemagglutination reactions, latex agglutination reactions, enzyme immunoassays (EIA), fluorescence immunoassays (FIA), or radioimmunoassays (RIA), etc. using enzymes, fluorescent substances, or radioactive substances are widely applied. . Among these, in recent years, in order to increase detection sensitivity and simplify measurement operations, complexes (B) have been developed in which antigens or antibodies are immobilized on the surface of glass, silicone rubber, or plastic called carriers, and antigen-antibody reactions occur.
Separation of unreacted antigen or antibody (F) (B/
A solid-phase method that allows separation of F separation by washing with water without centrifugation is attracting attention. The most important thing in this solid-phase method is that in order to improve measurement accuracy, detection sensitivity, and detection range, it is desirable to immobilize antibodies or antigens uniformly and in large quantities on each carrier, and the selection of carrier materials and immobilization Various improvements have been made to the conditions. The main conventional immobilization methods utilize the phenomenon of nonspecific physical adsorption of antigens or antibodies onto the surface of the carrier. It has the disadvantage that it is almost impossible to immobilize low molecular weight antigens (eg haptens) and large antigens such as viruses and bacteria on the carrier surface. On the other hand, as a conventional technique for enhancing the immobilization of antigens or antibodies on carriers, ARNeurath et al. (J.
Virological Methods (1981) introduced a method of immobilizing antibodies by nitrating polystyrene microplates with fuming nitric acid, chemically reducing them to introduce amino groups, and chemically covalently bonding the antibodies via glutaraldehyde. is suggesting. However, this method has drawbacks such as discoloration and deterioration of the plate, dangerous reaction reagents, and problems with waste liquid disposal, making it extremely difficult to produce in large quantities. Another known method is to treat a glass carrier with an aminosilane coupling agent; Not only does glass have the disadvantage that it is not suitable for pipes, etc., but it also has an excessive density of hydroxyl groups that react with the aminosilane coupling agent, so the presence of the carefully added amino groups in close proximity causes glutaraldehyde A chemical covalent bond occurs between aminosilanes, which has the disadvantage that the efficiency of binding and immobilizing antibodies, etc. is extremely low. As a result of various studies to overcome the drawbacks of the above-mentioned carriers for immunological assays, the present invention can be applied to plastic molded products of all shapes, and can introduce primary amino groups easily, safely, and under mild conditions. Furthermore, we have discovered a chemical treatment method that can control the amount of introduced antibodies, making it possible to immobilize large amounts of antibodies or antigens extremely efficiently.Antigens or antibodies are immobilized on a surface and used as a carrier for immunoassays. This led to the invention of a method for manufacturing molded products. That is, the surface of the plastic carrier is oxidized in advance by physicochemical means to introduce hydroxyl groups, and then a primary aminosilane coupling agent and the hydroxyl groups on the carrier surface are subjected to a condensation reaction, thereby chemically forming the surface of the carrier. It has been found that it is possible to impart a covalently bonded primary amino group. The shape of the plastic carrier of the present invention is as follows:
Microplates having one or more wells, test tubes, spectroscopic cells, or spherical and cylindrical tubes called balls, beads, latex, etc., made of plastic and suitable for immunoassays. If so, it is not limited to the above example. Materials for the plastic molded product of the present invention include polystyrene, polyethylene, polypropylene, polycarbonate, polyvinyl chloride, polyester, polymethyl methacrylate, polyvinyl acetate, vinyl chloride, vinyl acetate copolymer, and ethylene-vinyl acetate copolymer. Coalescence, styrene/methyl methacrylate copolymer, acrylonitrile/styrene copolymer, acrylonitrile/butadiene/styrene copolymer,
6 nylon, 6,6 nylon, polymethylpentene, silicone, Teflon, etc. Among these, polystyrene, styrene copolymers, and styrene copolymers, which have excellent transparency, are inexpensive, easy to mold, and can easily incorporate primary aminosilane. Polyvinyl chloride is preferred. Examples of oxidation treatment methods for introducing hydroxyl groups into the plastic carrier of the present invention include physicochemical oxidation treatment methods such as ultraviolet irradiation, electron beam irradiation, γ-ray irradiation, corona discharge, and low-frequency or high-frequency low-temperature plasma discharge treatment. However, among these, low-frequency or high-frequency low-temperature plasma discharge treatment is preferable because it is simple, is not limited by shape, has no problem in disposing of the oxidation reaction reagent, and is easy to adjust the density of introduction of hydroxyl groups.
When performing low-temperature plasma discharge treatment, a plastic carrier is set in the plasma generator and the temperature is set at 10Torr.
Oxidation treatment is performed by exposing to low temperature plasma while passing single or mixed gas such as oxygen gas, argon gas, carbon dioxide gas or nitrogen gas under the following reduced pressure, but preferably in the presence of oxygen gas or carbon dioxide gas.
A high frequency power of 1 Torr or less, 13.56 MHz, 50 W or more and 5 KW or less is applied for 10 seconds or more, more preferably 150 W or more for 2 minutes or more. The primary aminosilane coupling agent used in the present invention has the general formula NH 2 -R-SiXnY 3-o (wherein, X and Y are an alkoxy group, a chloro group,
Hydrolyzable group such as acetoxy group, alkylamino group, propenoxy group, n is 2 or 3, R is [-
(CH 2 ) x NH〕− n (CH 2 ) y − or −CONH〔−
(CH 2 ) x NH〕− n (CH 2 ) y −, x and y are each 0
or an integer of 20 or less, m is 0 or an integer of 10 or less), such as γ-aminopropyltrimethoxysilane, N-β(aminoethyl)γ-aminopropyltrimethoxysilane, mino)propyltrimethoxysilane, γ
Preferred examples include ureidopropyltrimethoxysilane, but in place of trimethoxysilane, which is a hydrolyzable group, triethoxysilane, methyldimethoxysilane, ethyldiethoxysilane, trichlor group, triacetoxy group, etc. Derivatives of are also effective. As a method for introducing a primary aminosilane onto the carrier surface through a condensation reaction between the hydroxyl group introduced into the plastic carrier according to the present invention and the primary aminosilane coupling agent, for example, the above-mentioned aminosilane coupling agent may be mixed with methanol, ethanol, acetone, Dilute water, etc., alone or in a mixed solvent to a ratio of 0.1 to 98% by weight, for 5 minutes to 72 hours, preferably in a solvent with a water:methanol ratio of 0 to 80:100 to 20.
It may be diluted to a proportion of 50% by weight, immersed or poured for 1 to 48 hours to react, and then washed with distilled water or a buffer solution, and the reaction temperature is 4°C to 65°C, preferably 24°C to 60°C. Good. Next, examples of the present invention will be described. Example 1 A polystyrene 96 flat-bottom well microplate was heated to 0.5 Torr under reduced pressure while oxygen gas was vented.
After generating 13.56MHz, 150W high-frequency low-temperature plasma and performing oxidation treatment for 3 minutes, γ-aminopropyltrimethoxysilane (manufactured by Toray Silicone) 10
% methanol solution and left for 16 hours for aminosilane treatment. Then wash with distilled water and dry. Next, a 0.05M phosphate buffer solution (PH8.0) of 4% glutaraldehyde (manufactured by Wako Pure Chemical Industries, Ltd.) was added to each well of the aminosilane-treated microplate.
Dispense 200μ each and wash with water. Mouse IgG labeled with POD (peroxidase) (manufactured by Miles,
POD-IgG) 0.3mg was diluted to 1/100,000, and 200μ was dispensed into each well of the microplate.
Leave at 4°C for 16 hours to immobilize POD/IgG on the inner surface of the well by covalent bonding. For comparison, 200μ of the above POD/IgG was used without glutaraldehyde treatment.
It is dispensed in portions and fixed by simple physical adsorption. Next, unimmobilized POD/IgG was removed from each well of the microplate with immobilized POD/IgG by suction, washed three times with 0.1M phosphate buffer (PH7.0), and then the substrate solution (H Add 200μ of 2 O 2 , phenol, 4-aminoantipyrine) to allow an enzymatic color reaction between POD and the substrate. After reacting at 37℃ for 40 minutes and adding 50μ of 0.5% sodium nitride aqueous solution to stop the enzymatic coloring reaction, the absorbance was measured at a wavelength of 500nm and the POD/IgG immobilized in the wells of the aminosilane-treated microplate was measured. I asked for the degree. The absorbance measurement results are shown in Table 1.

【表】 アミノシラン処理をしたマイクロプレートは、
未処理プレートに比べてPOD・IgGの物理的吸着
量(グルタールアルデヒド未処理に相当する)は
約2倍量に増加し、さらにグルタールアルデヒド
処理をした化学的共有結合させたものは約3倍量
に増加することが認められる。 実施例 2 ポリスチレン製96平底マイクロプレートを実施
例1と同様にアミノシラン処理をする。 次に実施例1と同様にグルタールアルデヒド処
理をした後、POD・IgGの代りにPOD(シグマ社
製)0.4mg/ml(80U/ml)そのものをウエル内
に共有結合にて固定化する。比較として実施例1
と同様にPODそのものをウエル内面に物理的吸
着により固定化する。固定化した後、未固定の
PODを吸引除去し、実施例1と同様に洗浄し、
さらに基質との酵素発色反応をさせてアミノシラ
ン処理をしたマイクロプレートのウエル内に固定
化されたPODの度合いを求めた。 吸光度測定結果を第2表に示す。
[Table] Microplates treated with aminosilane are
Compared to the untreated plate, the physical adsorption amount of POD/IgG (corresponding to the untreated plate with glutaraldehyde) increased to approximately 2 times, and the amount of chemically covalently bound POD/IgG treated with glutaraldehyde increased to approximately 3 times A double increase in the amount was observed. Example 2 A polystyrene 96 flat bottom microplate is treated with aminosilane in the same manner as in Example 1. Next, after glutaraldehyde treatment in the same manner as in Example 1, 0.4 mg/ml (80 U/ml) of POD (manufactured by Sigma) itself was immobilized in the wells by covalent bonding instead of POD/IgG. Example 1 for comparison
Similarly, the POD itself is immobilized on the inner surface of the well by physical adsorption. After fixation, unfixed
POD was removed by suction, washed in the same manner as in Example 1,
Furthermore, the degree of immobilization of POD in the wells of the aminosilane-treated microplate was determined by performing an enzymatic coloring reaction with the substrate. The absorbance measurement results are shown in Table 2.

【表】 実施例1と同様アミノシラン処理をしたマイク
ロプレートは、未処理プレートに比べてPODの
物理的吸着量は約4倍に、グルタールアルデヒド
処理をした化学的共有結合させたものは約10倍量
に増加することが認められる。実施例1,2を比
較すると、アミノシラン処理をしたマイクロプレ
ートは分子量の大きいたん白質(POD・IgGは分
子量約18万)より分子量の小さいたん白質
(PODは分子量約3万)の方が相対的に物理的及
び化学的共有結合による固定化量が大きくなるこ
とが認められ、特に低分子量の抗原たん白質の固
定化にきわめて有効であることがわかる。 実施例 3 ポリ塩化ビニル樹脂製のマイクロプレート(直
径8mm、深ささ6mm−10ウエル)を、実施例1に
準じ、アルゴンガス及び酸素ガスを通気しながら
高周波低温プラズマに曝して酸化処理をした後、
実施例1と同様にアミノシラン処理をする。実施
例2と同様にアミノシラン処理をしたマイクロプ
レートのウエル内をグルタールアルデヒド処理を
した後、PODを化学的共有結合にて固定化する。
比較に実施例2と同様にPODを物理吸着にて固
定化する。固定化した後実例2と同様にPODと
基質との酵素発色反応させて、アミノシラン処理
をしたマイクロプレートのウエル内に固定化され
たPODの度合いを求めた。第3表にその吸光度
測定結果を示す。
[Table] As in Example 1, the aminosilane-treated microplate had about 4 times the physical adsorption amount of POD compared to the untreated plate, and the glutaraldehyde-treated chemically covalently bonded microplate had about 10 times more POD than the untreated plate. A double increase in the amount was observed. Comparing Examples 1 and 2, the aminosilane-treated microplate shows higher molecular weight proteins (POD has a molecular weight of approximately 30,000) than high molecular weight proteins (POD/IgG has a molecular weight of approximately 180,000). It was observed that the amount of immobilization due to physical and chemical covalent bonds was increased, and it was found that this method is particularly effective for immobilizing low molecular weight antigen proteins. Example 3 A polyvinyl chloride resin microplate (diameter 8 mm, depth 6 mm - 10 wells) was subjected to oxidation treatment by exposing it to high-frequency low-temperature plasma while passing argon gas and oxygen gas in accordance with Example 1. ,
Aminosilane treatment is carried out in the same manner as in Example 1. After treating the wells of a microplate treated with aminosilane with glutaraldehyde in the same manner as in Example 2, POD is immobilized by chemical covalent bonding.
For comparison, POD was immobilized by physical adsorption in the same manner as in Example 2. After immobilization, POD was subjected to an enzymatic coloring reaction with the substrate in the same manner as in Example 2, and the degree of immobilization of POD in the wells of the aminosilane-treated microplate was determined. Table 3 shows the absorbance measurement results.

【表】 実施例2と同様にアミノシラン処理をしたポリ
塩化ビニル樹脂製マイクロプレートは、未処理品
に比べてPODの物理的及び化学的共有結合によ
る吸着固定量が増加するのが認められる。特に酸
化処理では酸素ガス低温プラズマ処理をした方
が、アルゴンガス低温プラズマ処理よりたん白質
の固定化量を高めより効果的である。 これらの結果から明らかなように、プラスチツ
ク成形品を本発明における物理化学的手段で酸化
処理をした後、アミノシラン処理をすることによ
り抗体または低分子等の抗原性物質の固定化量を
高め抗原又は抗体を表面に固定し、担体として用
いる成形品を得ることができる。
[Table] In the polyvinyl chloride resin microplate treated with aminosilane in the same manner as in Example 2, it was observed that the amount of POD adsorbed and fixed by physical and chemical covalent bonds was increased compared to the untreated product. In particular, in the oxidation treatment, oxygen gas low-temperature plasma treatment is more effective than argon gas low-temperature plasma treatment because it increases the amount of protein immobilized. As is clear from these results, by oxidizing a plastic molded article by physicochemical means according to the present invention and then treating it with aminosilane, the amount of immobilized antigenic substances such as antibodies or small molecules can be increased. A molded article can be obtained by immobilizing the antibody on the surface and using it as a carrier.

Claims (1)

【特許請求の範囲】 1 プラスチツク形成品の表面をあらかじめ物理
化学的手段により酸化処理した後、一般式 NH2−R−Si−XnY3−n (式中、X及びYはアルコキシ基又はクロル
基、アセトキシ基、アルキルアミノ基、プロペノ
キシ基等の加水分解性基、nは2又は3、Rは 〔−(CH2x−NH〕−n(CH2y−又は −CONH〔−(CH2x−NH〕−n(CH2y、 x,yはそれぞれ0又は20以下の整数、mは0
又は10以下の整数である。) で表わされる1級アミノシランカツプリング剤を
反応させて、該形成品の面に1級アミノシランを
形成させることを特徴とする、抗原又は抗体を表
面に固定し、担体として用いる免疫学的測定用プ
ラスチツク成形品の製造法。
[Claims] 1. After the surface of the plastic product is oxidized in advance by physicochemical means, the general formula NH 2 -R-Si-XnY 3 -n (wherein, X and Y are an alkoxy group or a chloro group) , an acetoxy group, an alkylamino group, a hydrolyzable group such as a propenoxy group, n is 2 or 3, R is [-(CH 2 ) x -NH]- n (CH 2 ) y - or -CONH[-(CH 2 ) x −NH〕− n (CH 2 ) y , x, y are each 0 or an integer of 20 or less, m is 0
or an integer less than or equal to 10. ) is reacted with a primary aminosilane coupling agent represented by the formula to form a primary aminosilane on the surface of the formed product, and an antigen or antibody is immobilized on the surface and used as a carrier for immunological measurement. Method of manufacturing plastic molded products.
JP12239383A 1983-07-07 1983-07-07 Immunological measuring molded article and preparation thereof Granted JPS6015560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12239383A JPS6015560A (en) 1983-07-07 1983-07-07 Immunological measuring molded article and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12239383A JPS6015560A (en) 1983-07-07 1983-07-07 Immunological measuring molded article and preparation thereof

Publications (2)

Publication Number Publication Date
JPS6015560A JPS6015560A (en) 1985-01-26
JPH0315987B2 true JPH0315987B2 (en) 1991-03-04

Family

ID=14834681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12239383A Granted JPS6015560A (en) 1983-07-07 1983-07-07 Immunological measuring molded article and preparation thereof

Country Status (1)

Country Link
JP (1) JPS6015560A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013011479A (en) * 2011-06-28 2013-01-17 Dainippon Printing Co Ltd Carrier for immobilizing material for use in immunoassay
JP2013011480A (en) * 2011-06-28 2013-01-17 Dainippon Printing Co Ltd Base material having hydrophilic layer

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01181790A (en) * 1988-01-18 1989-07-19 Toray Silicone Co Ltd Immobilization of bilogically active substance
JP2667447B2 (en) * 1988-06-28 1997-10-27 オリンパス光学工業株式会社 Method for immobilizing cells on a solid surface
JP4526392B2 (en) * 2005-01-07 2010-08-18 日本板硝子株式会社 Biochemical substance holding container and manufacturing method thereof
US20080020941A1 (en) 2005-03-24 2008-01-24 Jimpei Tabata Biomolecule-immobilized plate and method for fabricating biomolecule-immobilized plate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5011448A (en) * 1973-06-04 1975-02-05
JPS56168159A (en) * 1980-05-29 1981-12-24 Sekisui Chem Co Ltd Method for measurement of antigen or antibody

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5011448A (en) * 1973-06-04 1975-02-05
JPS56168159A (en) * 1980-05-29 1981-12-24 Sekisui Chem Co Ltd Method for measurement of antigen or antibody

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013011479A (en) * 2011-06-28 2013-01-17 Dainippon Printing Co Ltd Carrier for immobilizing material for use in immunoassay
JP2013011480A (en) * 2011-06-28 2013-01-17 Dainippon Printing Co Ltd Base material having hydrophilic layer

Also Published As

Publication number Publication date
JPS6015560A (en) 1985-01-26

Similar Documents

Publication Publication Date Title
JP3456660B2 (en) Biosensor
Fu et al. Flow-injection chemiluminescent immunoassay for α-fetoprotein based on epoxysilane modified glass microbeads
US4347311A (en) Enzyme immunoassay for determining antigen specific antibodies and test kit for carrying out this assay
CA2723436C (en) Analyte detecting sensor with coated transducer
JPS6367661B2 (en)
AU724475B2 (en) Synthetic particles as agglutination reagents
FR2521303A1 (en) METHOD FOR THE IMMUNOLOGICAL DETERMINATION OF IMMUNOGLOBULIN TYPE ANTIBODIES OF SPECIFIC CLASS
JPH06503886A (en) Test method and its reagent kit
JP2005515469A (en) Solid phase optimized for chemiluminescent detection
US20050118727A1 (en) Conjugates and their use in detection methods
JPH0315987B2 (en)
EP0201211A1 (en) Method and compositions for visual solid phase immunoassays based on luminescent microspheric particles
JP2013205159A (en) Method for producing substance immobilizing carrier having hydrophilic polymer layer
JP2736143B2 (en) Immunochemical test agent containing carboxyl group-containing polymer
US20130137115A1 (en) Homogeneous detection method
IL171177A (en) Method for the preparation of photoreactive polymers with molecules immobilized thereon
JPH01209370A (en) Method and apparatus for measuring immunologically active substance
EP0308235B1 (en) Attachment of compounds to polymeric particles using carbamoylonium compounds
EP0228225A2 (en) Immunoassay kit and method employing modified solid surface
JPS61252215A (en) Substance for fixing molecule containing amino group and itsproduction and use
JPH05506094A (en) Radiative transfer fluorescence assay
CA2547353A1 (en) Conjugates, and use thereof in detection methods
JP3800712B2 (en) Antigen-antibody or protein-cofactor reaction method, detection method and apparatus therefor
JPS62288560A (en) Biosensor
JPH08146003A (en) Molded product for immunoassay and production thereof